V. V. KHRUSTALEV, T. V. LATUSHKO, T. A. KHRUSTALEVA

PRACTICE IN PRE-UNIVERSITY CHEMISTRY

Minsk BSMU 2016

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ОБЩЕЙ ХИМИИ

В. В. ХРУСТАЛЁВ, Т. В. ЛАТУШКО, Т. А. ХРУСТАЛЁВА

ПРАКТИКУМ ПО ДОУНИВЕРСИТЕТСКОМУ КУРСУ ХИМИИ

PRACTICE IN PRE-UNIVERSITY CHEMISTRY

Минск БГМУ 2016

УДК 546(811.111)-054.6(076.5) (075.8) ББК 24.1 (81.2 Англ-923) X95

Рекомендовано Научно-методическим советом университета в качестве практикума 21.09.2016 г., протокол № 2

Рецензенты: канд. мед. наук, доц. В. Н. Беляцкий; канд. мед. наук, доц. А. В. Колб

Хрусталёв, В. В.

X95 Практикум по доуниверситетскому курсу химии = Practice in pre-university chemistry / В. В. Хрусталёв, Т. В. Латушко, Т. А. Хрусталёва. – Минск : БГМУ, 2016. – 164 с.

ISBN 978-985-567-579-3.

Содержит тесты, задачи, цепочки химических превращений и другие типы заданий по основным разделам общей, неорганической и органической химии. Представлены задания для разбора на занятиях и для домашней работы по 51 теме.

Предназначен для иностранных слушателей подготовительного отделения.

УДК 546(811.111)-054.6(076.5) (075.8) ББК 24.1 (81.2 Англ-923)

Учебное издание

Хрусталёв Владислав Викторович **Латушко** Татьяна Викторовна **Хрусталёва** Татьяна Александровна

ПРАКТИКУМ ПО ДОУНИВЕРСИТЕТСКОМУ КУРСУ ХИМИИ

PRACTICE IN PRE-UNIVERSITY CHEMISTRY

На английском языке

Ответственный за выпуск В. В. Хрусталёв Переводчик В. В. Хрусталёв Компьютерный набор В. В. Хрусталёва Компьютерная верстка Н. М. Федорцовой

Подписано в печать 22.09.16. Формат 60×84/8. Бумага офсетная. Ризография. Гарнитура «Times». Усл. печ. л. 19,06. Уч.-изд. л. 6,6. Тираж 120 экз. Заказ 669.

Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный медицинский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/187 от 18.02.2014. Ул. Ленинградская, 6, 220006, Минск.

[©] УО «Белорусский государственный медицинский университет», 2016

PREFACE

This book contains exercises for classwork and homework on 51 lessons from the course of pre-university chemistry. Multiple choice questions may have from 1 to 3 correct answers. The answers to multiple choice questions and the ways to solve problems and chains of chemical reactions can be found: 1) in the text of the book written by the same authors («Pre-University Chemistry»); 2) in any other relevant source of knowledge; 3) most answers are hidden in other questions from this book. Finally, all those questions must be answered during corresponding lessons. The main purpose of this book is to make foreign attendees familiar with the style of questions from the entrance exam. The authors are looking forward to receive any feedback regarding this book from both attendees and colleagues.

Please, be aware that some chemical terms have different meanings in English and Russian. For example, «chemical element» is defined in the IUPAC Gold Book as both: 1) all atoms with the same number of protons in the atomic nucleus; 2) a pure chemical substance composed of atoms with the same number of protons in the atomic nucleus. In Russian just the first meaning of the term «chemical element» is used, while the second meaning has its own expression which can be translated as «simple substance». Moreover, the term «compound» is used in English to refer to substances composed of atoms from different chemical elements, while in Russian it refers to any substance. In this book we use English terminology and not literal translation from Russian. Such trivial English names of substances as «lime water», «sodium bicarbonate», «carbon dioxide», etc. are also used in this book.

LESSON 1. INTRODUCTION TO THE GENERAL CHEMISTRY

1.	Choose physical	processes:					
	a. the melting of the ice						
	b. the boiling of	water					
	c. the burning o	f wood					
	d. the oxidation	of sulfur					
2.	Choose chemical	l processes:					
	a. production of ammonia from nitrogen and hydrogen						
	b. the dissolving of glucose in water						
	c. the dissolving	g of calcium	n carbide in water				
	d. the dissolving	g of sodium	bicarbonate in ace	tic acid			
3.	Choose pure che	mical eleme	ents:				
	a. chlorine gas		c. steel				
	b. iron		d. sodium chlorid	e			
4.	Choose compour	nds:					
	a. sulfur dioxide	;	c. methane				
	b. white phosph	orus	d. oxygen				
5.	Choose allotropi	c modificat	ions of carbon:				
	a. graphite		c. propane				
	b. diamond		d. carbon dioxide				
6.	Choose oxygen o	containing o	compounds:				
	a. CaO	b. O ₂	c. O ₃	d. H_2SO_4			
7.	Choose chemical	l elements v	which have absolut	ely different names in English and Latin:			
	a. Ag	b. Ni	c. K	d. Fe			
8.	Choose chemical	l elements v	which have similar	names in English and Latin:			
	a. B	b. W	c. N	d. Pb			
9.	Which compoun	ds are comp	posed of three aton	ns?			
	a. NO ₂	b. HCN	c. HNO ₃	d. N_2O_5			
10.	Which compoun	ds are made	e from atoms of tw	o chemical elements?			
	a. SO ₃	b. N ₂	c. P_2O_5	d. H ₂ SiO ₃			

TEST FOR HOMEWORK

	•					
a. the mixing of flour with sugar						
b. condensation	of water					
c. the burning of	of magnesium	in CO ₂				
d. the rusting o	f iron					
Choose chemic	al processes:		.63			
a. production of	of the distilled	water				
b. the dissolving of sodium chloride in water						
c. the dissolvin	g of sodium s	sulfide in water				
d. the dissolvin	g of aluminu	m chloride in wat	er			
Choose pure ch	nemical eleme	ents:	3 6			
a. lime water	c. niti	rogen	7/			
b. marble	d. me	rcury				
Choose compo	unds:	4				
a. pyrite	c. silv	ver				
b. gold	d. bro	onze				
Choose allotrop	pic modificati	ons of oxygen:				
a. oxide	c. oxy	/gen				
b. ozone	d. ozo	onide				
Choose phosph	orus containi	ng compounds:				
a. F ₂	b. NaF	c. P ₄	d. H_3PO_4			
Choose chemic	al elements w	vhich have absolu	tely different names in English and Lati	n:		
a. Au	b. Pt	c. Na	d. F			
Choose chemic	al elements w	which have similar	r names in English and Latin:			
a. Br	b. I	c. Sn	d. Sb			
Which compou	nds are comp	osed of four atom	ns?			
a. H_2O_2	b. SO ₃	c. H ₃ O ⁺	d. P ₄			
Which compou	nds are made	from atoms of th	ree chemical elements?			
a. CCl ₄	b. O ₂	c. H ₃ PO ₄	d. KCN			
	b. condensation c. the burning of d. the rusting of Choose chemic a. production of b. the dissolvin c. the dissolvin d. the dissolvin Choose pure ch a. lime water b. marble Choose compor a. pyrite b. gold Choose allotrop a. oxide b. ozone Choose phosph a. F ₂ Choose chemic a. Au Choose chemic a. Br Which compour a. H ₂ O ₂	b. condensation of water c. the burning of magnesium d. the rusting of iron Choose chemical processes: a. production of the distilled b. the dissolving of sodium of c. the dissolving of sodium of d. the dissolving of aluminum Choose pure chemical eleme a. lime water c. nitr b. marble d. me Choose compounds: a. pyrite c. silv b. gold d. bro Choose allotropic modification a. oxide c. oxy b. ozone d. ozo Choose phosphorus containina. F ₂ b. NaF Choose chemical elements w a. Au b. Pt Choose chemical elements w a. Br b. I Which compounds are comp a. H ₂ O ₂ b. SO ₃ Which compounds are made	b. condensation of water c. the burning of magnesium in CO ₂ d. the rusting of iron Choose chemical processes: a. production of the distilled water b. the dissolving of sodium chloride in water c. the dissolving of sodium sulfide in water d. the dissolving of aluminum chloride in wat Choose pure chemical elements: a. lime water c. nitrogen b. marble d. mercury Choose compounds: a. pyrite c. silver b. gold d. bronze Choose allotropic modifications of oxygen: a. oxide c. oxygen b. ozone d. ozonide Choose phosphorus containing compounds: a. F ₂ b. NaF c. P ₄ Choose chemical elements which have absolut a. Au b. Pt c. Na Choose chemical elements which have similar a. Br b. I c. Sn Which compounds are composed of four atom a. H ₂ O ₂ b. SO ₃ c. H ₃ O ⁺ Which compounds are made from atoms of the	b. condensation of water c. the burning of magnesium in CO2 d. the rusting of iron Choose chemical processes: a. production of the distilled water b. the dissolving of sodium chloride in water c. the dissolving of sodium sulfide in water d. the dissolving of aluminum chloride in water Choose pure chemical elements: a. lime water c. nitrogen b. marble d. mercury Choose compounds: a. pyrite c. silver b. gold d. bronze Choose allotropic modifications of oxygen: a. oxide c. oxygen b. ozone d. ozonide Choose phosphorus containing compounds: a. F2 b. NaF c. P4 d. H ₃ PO ₄ Choose chemical elements which have absolutely different names in English and Latin a. Au b. Pt c. Na d. F Choose chemical elements which have similar names in English and Latin: a. Br b. I c. Sn d. Sb Which compounds are composed of four atoms? a. H ₂ O ₂ b. SO ₃ c. H ₃ O ⁺ d. P ₄ Which compounds are made from atoms of three chemical elements?		

1. Write the formula of sodium sulfide:
2. Write the formula of zinc sulfide:
3. Write the formula of aluminum sulfide:
4. Write the formula of lithium sulfite:
5. Write the formula of calcium sulfate:
6. Write the formula of sodium nitrite:
7. Write the formula of potassium nitrate:
8. Write the formula of aluminum nitrite:
9. Write the formula of strontium phosphate:
10. Write the formula of calcium carbonate:
11. Write the formula of barium silicate:
12. Write the formula of strontium oxide:
13. Write the formula of calcium hydroxide:
14. Write the formula of sulfuric acid:
15. Write the formula of nitric acid:
EXERCISES FOR HOMEWORK
1. Write the name of NaOH:
2. Write the name of H ₂ SO ₄ :
3. Write the name of FeO:
4. Write the name of KCl:
5. Write the name of HBr:
6. Write the name of NaNO ₂ :
7. Write the name of NH ₄ NO ₃ :
8. Write the name of CO ₂ :
9. Write the name of H ₃ PO ₄ :
10. Write the name of K ₂ SiO ₃ :

LESSON 2. MOLAR MASS

-	
-	
1	What is the mass of 3.6 moles of sulfuric acid (H_2SO_4) ?
-	
]	Find the molar mass of a substance if 5.5 moles of it has a mass of 435 g?
_	
]	How many molecules are there in 3 L of liquid water (density is equal to 1 g/ml
_	
-	
	Find the number of moles in a sample of a substance if there are $3.7 \cdot 10^{26}$ moled in that sample.
_	
]	How many molecules are there in 128 g of oxygen?
_	
(Calculate the mass of $4.9 \cdot 10^{25}$ molecules of carbon dioxide (CO ₂).

8.	Find the molar mass of a substance if 3.01·10 ²³ molecules of it have a mass of 49 g.
9.	How many moles of oxygen atoms are there in 100 g of barium sulfate (BaSO ₄)?
10.	Find the mass of a sample of ammonium nitrate if you know that there are 0.47 moles of nitrogen atoms in that sample.
	EXERCISES FOR HOMEWORK
1.	Calculate the number of moles in 50 g of potassium hydroxide (KOH)?
2.	What is the mass of 0.67 moles of nitric acid (HNO ₃)?
3.	Find the molar mass of a substance if 2.5 moles of it has a mass of 150 g?
4.	How many molecules are there in 4 L of liquid ethanol (the density of C_2H_5OH is equal to 0.8 g/ml)?

5.	Find the number of moles in a sample of a substance if there are 8.9·10 ²² molecules					
	in that sample.					
6.	How many units are there in 523 g of ZnCl ₂ ?					
7.	Calculate the mass of 2.6· 10^{23} molecules of hydrogen peroxide (H_2O_2).					
8.	Find the molar mass of a substance if 1.2·10 ²⁴ molecules of it have a mass of 126 g.					
9.	How many moles of sodium ions are there in 200 g of sodium carbonate (Na_2CO_3)?					
10.	Find the mass of a sample of zinc hydroxide if you know that there are 0.27 moles of oxygen atoms in that sample.					

LESSON 3. VALENCE

TEST FOR CLASSWORK

1.	a. II	b. III	c. IV	d. V	kide?			
2.	In which co	ompounds	the valen	ce of phospho	orus is e	equal to V?		
	a. P_2O_5	b. P_2O_3	c.	H_3PO_4	d. PCl ₅			,
3.	Calculate Zn + HCl -			coefficients	in t	he following	chemical	reaction:
	a. 4	b. 5	c. 6	d. 7		40		
4.	Calculate t NaOH + H a. 2	$_2SO_4 \rightarrow N$		H_2O	actants	in the following	ng chemical	reaction:
5.	Calculate t	the sum of \rightarrow AlCl ₃ +	H_2	ents before p	roducts	in the following	ng chemical	reaction:
	a. 3	b. 4		d. 6			. 1 10	
6.		b. H ₂ O		rree single or CO	a single d. H ₂ O	e triple covalen	t bond?	
7.	Calculate $Ca + H_2O - a$. 3		2 + ?		in t	he following	chemical	reaction:
8.	Calculate t $AgNO_3 + ?$ a. 2			ents before re	actants	in the following	ng chemical	reaction:
9.		the sum of $H_3PO_4 \rightarrow$	coefficio	ents before pr	roducts	in the following	ng chemical	reaction:
	a. 1	b. 3	c. 5	d. 7				
10.	How many a. 0	atoms are b. 1	connecte c. 2	d to the nitrog	gen ator	m in HNO ₂ mol	ecule?	
			,	TEST FOR HO	MEWOF	RK		

d. VI

1. What is the valence of sulfur in sulfur trioxide?

c. IV

b. III

a. II

2. In which compounds the valence of silicon is equal to IV? a. SiO₂ b. H₂SiO₃ c. K₂SiO₃ d. SiO 3. Calculate the sum of all coefficients in the following chemical reaction: $Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$ b. 5 d. 7 a. 4 4. Calculate the sum of coefficients before reactants in the following chemical reaction: $Al(OH)_3 + H_2SO_4 \rightarrow Al_2(SO_4)_3 + H_2O$ a. 2 b. 3 c. 4 5. Calculate the sum of coefficients before products in the following chemical reaction: $Fe_2O_3 + HNO_3 \rightarrow Fe(NO_3)_3 + H_2O$ a. 3 b. 4 c. 5 d. 6 6. In which molecules there are four single or two double covalent bonds? a. C_2H_2 b. NH₃ c. SO₂ d. CH₄ 7. Calculate the sum of all coefficients in the following chemical reaction: $K + H_2O \rightarrow ? + H_2$ a. 4 b. 5 c. 6 d. 7 8. Calculate the sum of coefficients before reactants in the following chemical reaction: $CaCO_3 + ? \rightarrow CaSO_4 + CO_2 + H_2O$ b. 3 c. 4 a. 2 d. 5 9. Calculate the sum of coefficients before products in the following chemical reaction: $Ca(OH)_2 + HNO_3 \rightarrow ? + H_2O$ d. 7 a. 1 b. 3 c. 5 10. How many atoms are connected to the chlorine atom in HClO₄ molecule? a. 2 b. 3 c. 4 d. 5 EXERCISES FOR CLASSWORK 1. Balance the following chemical equations:

$$Cr + O_2 \rightarrow Cr_2O_3$$

 $Zn(NO_3)_2 + Al \rightarrow Al(NO_3)_3 + Zn$
 $H_3PO_4 + NaOH \rightarrow Na_3PO_4 + H_2O$
 $Ca(OH)_2 + H_3PO_4 \rightarrow Ca_3(PO_4)_2 + H_2O$
 $K + O_2 \rightarrow K_2O$
 $Cu(NO_3)_2 + Zn \rightarrow Zn(NO_3)_2 + Cu$
 $H_2SO_4 + NaOH \rightarrow Na_2SO_4 + H_2O$

 $Ca(OH)_2 + HNO_3 \rightarrow Ca(NO_3)_2 + H_2O$ $Na + O_2 \rightarrow Na_2O$ $Cu(NO_3)_2 + Cr \rightarrow Cr(NO_3)_3 + Cu$ $H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + H_2O$

 $Sr(OH)_2 + HNO_3 \rightarrow Sr(NO_3)_2 + H_2O$

2. What are the products of the reaction between iron (II) oxide and hydrochloric acid?

What are the madvets of the accetion between ineq (III) evide and nitric soid?

3. What are the products of the reaction between iron (III) oxide and nitric acid?

- **4.** To produce zinc sulfate we need to put _____ in sulfuric acid.
- 5. To produce potassium hydroxide we should put _____ in water

EXERCISES FOR HOMEWORK

1. Balance the following chemical equations

$$Pb(NO_3)_2 + Al \rightarrow Pb + Al(NO_3)_3$$

$$Al(OH)_3 + H_2SO_4 \rightarrow Al_2(SO_4)_3 + H_2O$$

$$NH_3 + O_2 \rightarrow NO + H_2O$$

$$P + O_2 \rightarrow P_2O_5$$

$$PbCl_2 + Al \rightarrow Pb + AlCl_3$$

$$Cr(OH)_3 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + H_2O$$

$$NH_3 + O_2 \rightarrow N_2 + H_2O$$

$$P + O_2 \rightarrow P_2O_3$$

$$Al + KOH + H_2O \rightarrow K[Al(OH)_4] + H_2$$

$$Fe_2O_3 + HCl \rightarrow FeCl_3 + H_2O$$

$$AgNO_3 + AlCl_3 \rightarrow AgCl + Al(NO_3)_3$$

$$N_2 + H_2 \rightarrow NH_3$$

2. The products of the reaction between aluminum and hydrochloric acid are:

- 3. Copper forms ______ in the reaction with sulfur.
- **4.** To produce zinc phosphate we need to put zinc in _____ acid.
- 5. To produce iron (III) oxide we should burn _____.

LESSON 4. STOICHIOMETRIC CALCULATIONS

balance the equation:	$S + O_2 \rightarrow SO_2$
Calculate the mass of and oxygen?	phosphorus (V) oxide produced from 6.2 g of phospho
balance the equation:	$P + O_2 \rightarrow P_2O_5$
What is the mass of zin	c chloride produced in the reaction between 9 g of zinc
hydrochloric acid?	
balance the equation:	$Zn + HCl \rightarrow ZnCl_2 + H_2$
What is the mass of silv	ver chloride produced in the reaction between 10 g of siloride?
nitrate and barium chlo	oride?
nitrate and barium chlobalance the equation:	oride?
nitrate and barium chlobalance the equation:	Oride? $AgNO_3 + BaCl_2 \rightarrow AgCl + BaNO_3$

produced is equal to 1 balance the equation:		
balance the equation.		
What is the mass of i	on (III) chloride formed in the reaction between ir	on
	s of iron is equal to 18.2 g, the mass of chlorine gas i	
to 16.4 g.	9,	
balance the equation:	$Fe + Cl_2 \rightarrow FeCl_3$	
•		
	3/	
	EXERCISES FOR HOMEWORK	
	EXERCISES FOR HOMEWORK	
What is the mass of		car
	EXERCISES FOR HOMEWORK arbon reacted with oxygen and produced 5.2 g of	car
dioxide:	arbon reacted with oxygen and produced 5.2 g of	car
dioxide:	arbon reacted with oxygen and produced 5.2 g of $C + O_2 \rightarrow CO_2$	car
dioxide:	arbon reacted with oxygen and produced 5.2 g of	car
dioxide:	arbon reacted with oxygen and produced 5.2 g of $C + O_2 \rightarrow CO_2$	car
dioxide:	arbon reacted with oxygen and produced 5.2 g of $C + O_2 \rightarrow CO_2$	car
dioxide:	arbon reacted with oxygen and produced 5.2 g of $C + O_2 \rightarrow CO_2$	car
dioxide: balance the equation:	arbon reacted with oxygen and produced 5.2 g of $C + O_2 \rightarrow CO_2$	
dioxide: balance the equation:	arbon reacted with oxygen and produced 5.2 g of $C + O_2 \rightarrow CO_2$	
dioxide: balance the equation: Calculate the mass of (V) oxide and water?	arbon reacted with oxygen and produced 5.2 g of $C + O_2 \rightarrow CO_2$	

balance the equation:	$Na + I_2 \rightarrow Nal$
What is the mass of bar	ium sulfate produced in the reaction between 6 g of bar
hydroxide and potassium	m sulfate?
balance the equation:	$Ba(OH)_2 + K_2SO_4 \rightarrow BaSO_4 + KOH$
	trontium needed to produce 30 g of strontium hydroxid
the reaction with water.	
balance the equation:	$Sr + H_2O \rightarrow Sr(OH)_2 + H_2$
Find the mass of alumi	num oxide formed in the reaction of aluminum hydro
decomposition. The ma water produced is equal	iss of aluminum hydroxide was equal to $110 \mathrm{g}$, the mas l to $15 \mathrm{g}$.
balance the equation:	$Al(OH)_3 \rightarrow Al_2O_3 + H_2O$
	^
	/
What is the mass of ca	alcium carbonate formed in the reaction between calc de? The mass of calcium oxide is equal to 33.3 g, the n
	ial to 12.2 g.
oxide and carbon dioxion of carbon dioxide is equ	caO + CO ₂ \rightarrow CaCO ₃

LESSON 5. MOLAR VOLUME OF GASES

What volume is occupied by 4.5 moles of oxygen (in normal conditions)?
How many molecules are there in 2 L of hydrogen (in normal conditions)?
Find the molar mass of a gas if 10 g of it occupy a volume of 5.1 L (in nonconditions)?
Calculate the mass of ammonia which has a volume of 133.6 L (in nonconditions)?
Calculate the volume of oxygen required to burn down 14.2 L of methane.
<u> </u>
What is the volume of carbon monoxide produced from 37 L of carbon dio
in its reaction with coal (in normal conditions)?

	nat is the density of unknown gas per nitrogen if its density per hydro equal to 17?
	nd the volume of carbon dioxide (in normal conditions) produced in the reactive ween $10\ \mathrm{g}$ of calcium carbonate and $8\ \mathrm{g}$ of hydrochloric acid.
	Exercises for homework
Ho	w many moles are there in 1.8 L of ozone (in normal conditions)?
Wł	nat volume is occupied by 3.2 moles of hydrogen (in normal conditions)?
Ho	w many molecules are there in 7.7 L of ammonia (in normal conditions)?
Fin	nd the molar mass of a gas if 5 g of it occupy a volume of 2.2 L (in non aditions)?

Calo	ulate the volume of oxygen required to burn down 5.2 L of acetylene.
XX 71-	4 :- 4b
	at is the volume of sulfur (IV) oxide produced from 4.5 g of hydrogen sulfur reaction with the excess of expect (in normal conditions)?
ın ıı	s reaction with the excess of oxygen (in normal conditions)?
	plate the volume of an unknown gas which has a mass equal to 5 g a
	plate the volume of an unknown gas which has a mass equal to 5 g a elative density per dry air which is equal to 1.25?
the r	elative density per dry air which is equal to 1.25? It is the density of unknown gas per dry air if its density per ozone is equal to 1.25?
the r	elative density per dry air which is equal to 1.25? It is the density of unknown gas per dry air if its density per ozone is equal to 1.25?
the r	elative density per dry air which is equal to 1.25? It is the density of unknown gas per dry air if its density per ozone is equal to 1.25?
the r	elative density per dry air which is equal to 1.25? It is the density of unknown gas per dry air if its density per ozone is equal to 1.25?
What o 1.	elative density per dry air which is equal to 1.25? It is the density of unknown gas per dry air if its density per ozone is equal to 1.25?

LESSON 6. THE SAMPLE OF CONTROL TASK #1

Balance t	ne following chen	nical equatior	ns:			
$(NH_4)_2SO$	$+ BaCl_2 \rightarrow BaSC$	$D_4 + NH_4C1$			9	
Al(OH) ₃ +	$HCl \rightarrow AlCl_3 + F$	H_2O				
$CuS + O_2$	\rightarrow CuO + SO ₂					
$Mg(NO_3)_2$	$+ NaOH \rightarrow Mg(O)$	OH) ₂ + NaNC) ₃			
How man	y moles of oxyger	n react with 3	36 g of carb	on?		
			J_(
	the molar mass	of unknown	gas if the	mass of 3	L of that	gas is equa
Calculate to 9.51 g	the molar mass	of unknown	gas if the	mass of 3	L of that	gas is equa
	the molar mass	of unknown	gas if the	mass of 3	L of that	gas is equa
to 9.51 g		ZĆ	<u>)</u>			
to 9.51 g What is	he mass of AgO	Cl which is	<u>)</u>			
to 9.51 g What is		Cl which is	<u>)</u>			
to 9.51 g What is	he mass of AgO	Cl which is	<u>)</u>			
to 9.51 g What is	he mass of AgO	Cl which is	<u>)</u>			
What is of AgNO ₃	the mass of Ag0 and 1.34 g of Zn	Cl which is 1 Cl ₂ ?	produced	in the re	action bet	ween 1.34 ş
What is of AgNO ₃	he mass of AgO	Cl which is Cl ₂ ?	produced as require	in the rea	action between	ween 1.34 g
What is of AgNO ₃	the wolume of at 35 °C and at	Cl which is Cl ₂ ?	produced as require	in the rea	action between	ween 1.34 g

LESSON 7. THE PERIODIC TABLE

1.					
	a. left to right c. to	op to bottom			
	b. right to left d. b	ottom to top			
2.	Nonmetallic properties of	chemical elements from A subgroups increase from:			
	a. left to right c. to	op to bottom			
	b. right to left d. b	ottom to top			
3.	Atomic radii of chemical e	elements from A subgroups increase from:			
	a. left to right c. to	op to bottom			
	b. right to left d. b	ottom to top			
4.	Electronegativity of chemi	cal elements from A subgroups increases from:			
	a. left to right c. to	op to bottom			
	b. right to left d. b	ottom to top			
5.	Ionization energy of chem	ical elements from A subgroups increases from:			
	a. left to right c. to	op to bottom			
	b. right to left d. b	ottom to top			
6.	Choose s-elements:	.()			
	a. Na b. Sr c. A	d. Sc			
7.	Choose p-elements:				
	a. Cu b. Sb c. C	d. He			
8.	Choose d-elements:				
	a. Ba b. Fe c. S	i d. Mn			
9.	Which properties are usua	lly identical for elements from the same subgroup?			
	a. number of protons				
	b. highest valence				
	c. number of electrons on	the outer layer			
	d. electronegativity				
10.). Which properties are ident	ical for elements from the same period?			
	a. atomic radius				
	b. ionization energy				
	c. the number of electron l	ayers			
	d. chemical properties				

TEST FOR HOMEWORK

1.	Metallic pr	operties of	chemical e	element	s from A subgroups decrease fr	rom:	
	a. left to right		c. top to b	c. top to bottom			
	b. right to left		d. bottom to top				
			es of chemical elements from A subgroups decrease from:				
	a. left to rig		c. top to b			7	
	b. right to l	eft	d. bottom	to top			
3.	Atomic rad	lii of chemi	ical elemen	cal elements from A subgroups decrease from:			
	a. left to rig	ght	c. top to b	ottom			
	b. right to l	eft	d. bottom	to top	\(\O\)\)		
4.	Electroneg	ativity of c	hemical ele	ements	From A subgroups decreases from	om:	
	a. left to rig	ght	c. top to b	ottom	2		
	b. right to l	eft	d. bottom	to top			
5.	Ionization	energy of c	hemical ele	ements	from A subgroups decreases fr	om:	
	a. left to rig	ght	c. top to b	ottom			
	b. right to l	eft	d. bottom	to top			
6.	Choose s-e	lements:					
	a. He	b. Cl	c. H	d. Ar			
7.	Choose p-e	elements:					
	a. Al	b. S	c. Hg	d. C			
8.	Choose d-e	elements:					
	a. Be	b. Co	c. Ni	d. Mg			
9.	Which proj	perties are	usually ide	ntical fo	or elements from the same subg	group?	
	a. the form	ula of the l	highest oxid	de			
	b. atomic r						
	c. the formula of the pure chemical element						
	d. the form	ula of the l	oinary com	pound v	vith hydrogen		
10.	Which prop	perties are	identical fo	or eleme	nts from the same period?		
	a. electronegativity						
	b. molecul	ar mass					
	c. the line	in the Perio	odic table				
	d. the column in the Periodic table						

1.	Write the names of metals from the group IIIA of the periodic table:							
2.	Write the names of metals from the group IVA of the periodic table:							
3.	Write the names of nonmetals from the group VA of the periodic table:							
4.	Write the names of nonmetals from the group VIA of the periodic table:							
5.	Write the names of metals from the 3 rd period of the periodic table:							
6.	Arrange these elements in the order of the increase of their metallic properties (Al / Na / Mg / Si / Cs / C):							
7.	Arrange these elements in the order of the decrease of their nonmetallic properties (B / Br / Cl / F / Al / I):							
8.	Write the formula of the highest oxide of elements from the VIA group of the periodic table starting from the 3^{rd} period:							
9.	Write the formula of the binary compound with hydrogen for elements from the IIIA group of the periodic table:							
10.	Which metalloids are classified as metals if we divide all the elements into metals and nonmetals?							
11.	Calculate the number of protons in 20 g of phosphoric acid.							
12.	The percent of ³⁵ Cl in the sample of HCl is 80 %, the percent of ³⁷ Cl is 20 %. Find the volume of hydrogen produced in the reaction between 100 g of that HCl sample with sodium.							

EXERCISES FOR HOMEWORK

1.	1. Write the names of nonmetals from the group IIIA of the periodic table:							
2.	. Write the names of nonmetals from the group IVA of the periodic table:							
3.	Write the names of metals from the group VA of the periodic table:							
4.	Write the names of metals from the group VIA of the periodic table:							
5.	Write the names of metals from the 2 nd period of the periodic table:							
6.	Arrange these elements in the order of the increase of their metallic properties (Ca $/$ Sr $/$ Al $/$ Mg $/$ Ba $/$ B):							
7.	Arrange these elements in the order of the decrease of their nonmetallic properties $(F/O/S/C/Si/Be)$:							
8.	Write the formula of the highest oxide of elements from the VA group of the periodic table starting from the $3^{\rm rd}$ period:							
9.	Write the formula of the binary compound with hydrogen for elements from the VIIA group of the periodic table:							
10.	Which metalloids are classified as nonmetals if we divide all the elements into metals and nonmetals?							
11.	Calculate the number of protons in 60 g of calcium phosphate.							
12.	The percent of 2H in the sample of H_2O is 2 %, the percent of 1H is 98 %. Find the volume of hydrogen produced in the reaction between 10 g of that H_2O sample with potassium.							

LESSON 8. ELECTRON CONFIGURATIONS

1. How many energetic sublevels are there on the 4 th energetic level?				
	a. 1	b. 2	c. 3	d. 4
2.	How many	electron or	rbitals are t	here on the p-sublevel?
	a. 1	b. 2	c.3	d. 4
3.	What is the d-sublevel?		number o	f electrons which can occupy all orbitals of the same
	a. 2	b. 6	c. 10	d. 14
4.	How many	unpaired e	electrons ar	e there in the nitrogen atom (in its normal state)?
	a. 1	b. 2	c. 3	d. 4
5.	What is the a. 17	e number of b. 8	f electrons of c. 18	on the outer shell (level) of the chlorine atom: d. 7
6.	What is the	e maximal ı	number of o	electrons on the same orbital?
	a. 1	b. 2	c. 6	d. 10
7.	Choose the	correct or	der of elect	ron orbitals fulfillment:
	a. 1s/2s/2p/	/3s/3d	c. 1s/2s/3s	s/2p/3d
	b.1s/2s/3p/	3s/3d	d. 1s/2s/2j	p/3s/3p
8.	Choose the a. 1s ² 2s ² 2p b. 1s ² 2s ¹ 2p	3	c. $1s^2 2s^3 2$	
9.	What eleme	ent has the b. Mg	following o	electron configuration: 1s ² 2s ² 2p ⁶ 3s ² 3p ¹ d. Si
10.	Choose pot the carbon a. $1s^22s^22p$ b. $1s^22s^12p$	atom:	c. 1s ³ 2s ² 2 d. 1s ² 2s ² 2	•

TEST FOR HOMEWORK

1. How many energetic sublevels are there on the 3 rd energetic level?							
	a. 1	b. 2	c. 3	d. 4			
2.	How many	electron o	rbitals are t	there on the d-sublevel?			
	a. 1	b. 3	c.5	d. 7			
3.	What is th f-sublevel?		number o	of electrons which can occupy all orbitals of the same			
	a. 2	b. 6	c. 10	d. 14			
4.	How many	unpaired e	electrons ar	re there in the oxygen atom (in its normal state)?			
	a. 1	b. 2	c. 3	d. 4			
5.	What is the	number o	f electrons	on the outer shell (level) of the copper atom:			
	a. 1	b. 2	c. 8	d. 18			
6.	How many state)?			on the 3 rd sublevel of the chrome atom (in its normal			
	a. 1	b. 3	c. 4	d. 5			
7.	Choose the	correct or	der of elect	tron orbitals fulfillment:			
	a3s/3p/	4s/3d	c3s/3d/3p/4s				
	b3s/3d/	3p/4s	d3p/30	3d/3s/4s			
8.	Choose the electron configuration of the zinc atom (in its normal state):						
	a. $[Ar]4s^24$	•	c. [Ar]4s ¹				
	b. [Ar]4s ² 4	d^{10}	d. [Kr]5s ²	$^{2}5d^{10}$			
9.	What elem	ent has the	following	electron configuration: [Ne]3s ² 3p ⁴			
	a. S	b. P	c. Cl	d. Ar			
10.	the nitrogen	n atom:	ctron conf	figurations (in both normal and excited states) for			
	a. $1s^22s^22p$		c. $1s^3 2s^2 2$				
	b. $1s^2 2s^1 2p$	4	d. $1s^2 2s^3 2$	$2p^2$			
	4)						

1.	Write the complete electron configuration for beryllium:
2.	Write the complete electron configuration for bromine:
3.	Write the complete electron configuration for scandium:
4.	Write the short electron configuration for magnesium:
5.	Write the short electron configuration for germanium:
6.	Write the short electron configuration for titanium:
7.	Draw the diagram with cells and arrows for the outer shell of carbon:
8.	Draw the diagram with cells and arrows for the outer shell of sulfur:
9.	Draw the diagram with cells and arrows for the outer shell of copper:
10.	Find the mass of the product of the reaction between two pure chemical elements. The first one has an electronic configuration $1s^22s^22p5$ and the volume of 5 L (in normal conditions). The second one has an electronic configuration $1s^22s^22p^63s^2$ and the mass of 0.5 g.
11.	Which particles from this line $(Na^+/Mg^{2+}/F^-/Cl^-/Al^{3+}/Ne/Ar)$ have the same electronic configuration (if we ignore empty orbitals). Write this configuration.
12.	Arrange the atoms (in their ground state) from this line (Ne / Cr / C / N / K / Mn) in the order of the increase of the number of unpaired electrons.

EXERCISES FOR HOMEWORK

1.	. Write the complete electron configuration for calcium:						
2.	Write the complete electron configuration for phosphorus:						
3.	Write the complete electron configuration for vanadium:						
4.	Write the short electron configuration for lithium:						
5.	Write the short electron configuration for arsenic:						
6.	Write the short electron configuration for cobalt:						
7.	Draw the diagram with cells and arrows for the outer shell of chrome:						
8.	Draw the diagram with cells and arrows for the outer shell of fluorine:						
9.	Draw the diagram with cells and arrows for the outer shell of nickel:						
10.	Find the mass of the product of the reaction between two pure chemical elements. The first one has an electronic configuration $1s^22s^22p^4$ and the volume of 7 L (in normal conditions). The second one has an electronic configuration $1s^22s^22p^63s^23p^4$ and the mass of 1.5 g.						
11.	Which particles from this line $(K^+ / Ca^{2+} / \Gamma / C\Gamma / S^{2-} / Xe / Ar)$ have the same electronic configuration (if we ignore empty orbitals). Write this configuration.						
12.	Arrange atoms and ions (in their ground state) from this line (He / Fe / Cu / P / Si / Mn^{2+}) in the order of the increase of the number of unpaired electrons.						

LESSON 9. CHEMICAL BONDS

1.	Choose binary c	ompounds with i	ionic bonds:	
	a. CCl ₄	b. KCl	c. ZnO	d. SiO
2.	Choose compou	nds with ionic ar	nd covalent polar	r bonds:
	a. NaCl	b. KNO ₃	c. NO ₂	d. KOH
3.	Choose binary c	ompounds with	covalent polar bo	onds:
	a. PCl ₃	b. Na ₃ N	c. K ₂ O	d. KH
4.	In which compo	unds one can fin	d at least one co	valent nonpolar bond?
	a. H ₂	b. C_2H_6	c. H ₂ O ₂	d. H ₂ O
5.	Choose substance	ces with the meta	allic bonding:	
	a. AgCl	b. KAlO ₂	c. AgAu	d. Cu ₉ Zn
6.	In which compo	unds there are ju	st sigma covaler	nt bonds?
	a. CH ₄	b. C_2H_2	c. C ₂ H ₄	d. C_5H_{12}
7.	Which compoun	ds contain a dou	ble bond?	
	a. O ₂	b. N ₂	c. H ₂	$d. C_2H_4$
8.	Which compoun	ds contain a trip	le bond?	
	a. C_2H_2	b. CO	c. N ₂	d. O ₃
9.	Choose a compo	ound with the mo	st polar covalen	t bond:
	a. NaF	b. HF	c. H ₂ O	$d. H_2S$
10.	Indicate the poss	sible schemes of	hydrogen bond	formation:
	a. N-HO	b. O-H	N c. F-	·HF d. N-HC
		Тъ	EST FOR HOMEW	'ORK
1	Chassassassassas			Olik
1.	Choose compou		onas: c. KNO ₃	d. SiO ₂
2	a. Ba(OH) ₂	b. H ₂ SO ₄	3	u. 510 ₂
2.	Choose compou		•	d 7n0
2	a. Cl ₂	b. ZnSO ₄	c. NH ₃	d. ZnO
3.	Choose diatomic		_	
4	a. P ₄	b. N ₂	$c. O_2$	$d. S_8$
4.	_			valent polar bond?
_	a. Br ₂	b. CH ₃ Cl	c. N ₂ O	d. LiCl
5.	Choose substance		_	J I/N
	a. NaH	b. SnCu ₄	c. K_2ZnO_2	d. KNa

6.	In which compounds there are pi-bonds?				
	a. C_3H_8	b. C_3H_4	c. C_2H_4	d. O ₂	
7.	Which compour	nds contain a	double bond?		
	a. I ₂	b. P ₄	$c. SO_2$	d. SO_3	
8.	Which compour	nds contain a	triple bond?		
	a. CaC ₂	b. CO ₂	c. KCN	d. S ₈	
9.	Choose a compo	ound with the	most polar bond	:	97
	a. KCl	b. LiF	c. HF	d. BF ₃	
10.	Indicate the poss	sible scheme	s of hydrogen bor	nd formation:	
	a. N-HF	b. P-H	IP c	. О-НО	d. N-HN
		E	XERCISES FOR CI	LASSWORK	
1.	Write 5 sample	s of substan	ces with just cov	alent nonpolar b	onds:
2.	Write 5 sample	s of substan	ces with just ion	ic bonds:	
3.	Write 5 sample	s of substan	ces with just cov	alent polar bond	s:
4.	Write 5 sample	s of substan	ces with metallic	bonding:	
5.	_			O / BH ₃ / CH ₄ en atoms of diffe	/ H ₂ S) in the order of rent elements:
		E	XERCISES FOR HO	OMEWORK	
1.	Write 5 samples of substances with both covalent polar and ionic bonds:				
2.	Write 5 samples of substances with both covalent nonpolar and ionic bonds:				
3.	Write 5 sample	s of substan	ces with both co	valent polar and	nonpolar bonds:
4.	Write 5 sample	es of substan	ces which can m	ake intermolecul	ar hydrogen bonds:
5.	Write 5 sample	s of substan	ces with a triple	bond:	

LESSON 10. OXIDATION STATE

1.	Determine the or	Determine the oxidation state of phosphorus in H ₃ PO ₄ :						
	a. +5	b. +3	c. +1	d3				
2.	2. Choose compounds in which the oxidation state of nitrogen is equal to +3:							
	a. NH ₃	b. NaNO ₃	c. N_2O_3	d. HNO ₂				
3.	Choose anions in which the oxidation state of phosphorus is equal to +5:							
	a. PO ₄ ³⁻	b. HPO ₄ ²⁻	c. $H_2PO_4^-$	d. $H_2PO_3^-$				
4.	Calculate the charge of the anion made from three oxygen atoms and one silicon atom							
	in its maximal or	xidation state:						
	a. –2	b. +2	c. –3	d. +3				
5.	Choose oxidation states possible for hydrogen atoms:							
	a. +1	b1	c. +2	d. 0				
6.	•	pounds the term	n «oxidation sta	ite» is more applicable than the term				
	«valence»?							
	a. K ₂ O	b. NaCl	c. PH ₃	d. SiH ₄				
7.	For which compounds the term «valence» is more applicable than the term «oxidati state»?							
	a. PCl ₃	b. N ₂	c. LiF	$d. C_3H_8$				
8.	Choose the minimal oxidation state for sulfur:							
	a. 0	b. +6	c. +4	d2				
9.	Choose the maximal oxidation state for chlorine:							
	a1	b. +1	c. +3	d. +7				
10.	Which chemical	Which chemical elements demonstrate a single possible oxidation state in compound						
	a. H	b. K	c. F	d. O				

TEST FOR HOMEWORK

4.	S_8 SO_3	-	H_2SO_3 H_2					
2.			- 0	•	the following compounds:			
1.	Write oxid P ₄ PCl			ents ir PO4	the following compounds: H ₄ P ₂ O ₇			
	EXERCISES FOR CLASSWORK							
	a. Ca	b. Zn	c. Cr	d. M	In			
10.					ossible oxidation state in compounds?			
		b. +1	c. +3	d. +				
9.	Choose the maximal oxidation state for manganese:							
o.	a. 0	b. –6	c. –4	d. –	2			
8.	_	e minimal oxidat			<u> </u>			
	state»? a. NH ₃	b. BaO	c. NaF	d. H				
7.					ore applicable than the term «oxidation			
	«valence»? a. NaBr		c. CH ₄	d. C	aO			
6.	For which compounds the term «oxidation state» is more applicable than the term							
	a. +1	b. +3	c. +5	d. +	7			
5.	Choose ox	idation states po						
	a. –2	b. +2		d. +	3			
4.	Calculate the charge of the anion made from four oxygen atoms and one phosphoru atom in its maximal oxidation state:							
4		b. HCOO-			${}_{2}\mathrm{O_{4}}^{2-}$			
3.					rbon is equal to +4:			
	a. NO	b. K ₂ O	c. K ₂ O ₂	d. K				
2.	Choose con	mpounds in which	ch the oxidation	n state	of oxygen is equal to –2:			
1.	a. +4	b. +6	c. 0	d. –⁄				
1.	Determine the oxidation state of sulfur in H ₂ SO ₄ :							

00	CO	-			wing compounds:			
CO	CO_2	H_2CO_3	CH_4	C_2H_2	нсон			
	_		_		Al ₂ O ₃ / Mn ₂ O ₇) in	the order		
Write 5 samples of substances in which oxygen demonstrates oxidation state different from –2:								
		Exe	RCISES FOR HO	OMEWORK				
Writ	Write oxidation states upon all the elements in the following compounds:							
N_2	NO	N_2O_3	NH_4NO_2	N_2O_5	N_2O			
Writ	te oxidation st	ates upon a	ll the elements	in the follow	wing compounds:			
Cr	$K_2Cr_2O_7$	CrO	BaCrO ₄	NaCrO ₂	Cr_2O_3			
Writ	Write oxidation states upon all the elements in the following compounds:							
HI	$\mathbf{I_2}$	HIO_3	NaIO ₄	KIO	$Ca(IO_2)_2$			
Arrange compound in this line (SO $_3$ / OF $_2$ / SiO $_2$ / P $_2$ O $_5$ / As $_2$ O $_3$) in the order of the increase of the oxidation state of a nonmetal (which is not oxygen):								
	-		ces in which l	nydrogen de	monstrates oxida	ation state		
	Write N2 Write HI Arrathe i	Arrange compound of the increase of the increase of the write 5 samples different from -2: Write oxidation st N2 NO Write oxidation st Cr K2Cr2O7 Write oxidation st HI I2 Arrange compound the increase of the Write 5 samples	Arrange compound in this line of the increase of the oxidation. Write 5 samples of substant different from -2: EXE Write oxidation states upon a N2 NO N2O3 Write oxidation states upon a Cr K2Cr2O7 CrO Write oxidation states upon a HI I2 HIO3 Arrange compound in this line the increase of the oxidation states.	Arrange compound in this line (CsCl / Mge of the increase of the oxidation state of a me which different from -2: EXERCISES FOR HO Write oxidation states upon all the elements N2 NO N2O3 NH4NO2 Write oxidation states upon all the elements Cr K2Cr2O7 CrO BaCrO4 Write oxidation states upon all the elements HI I2 HIO3 NaIO4 Arrange compound in this line (SO3 / OF2 the increase of the oxidation state of a nonme which is samples of substances in which is	Arrange compound in this line (CsCl / MgO / CrO ₃ / A of the increase of the oxidation state of a metal: Write 5 samples of substances in which oxygen deridifferent from –2: EXERCISES FOR HOMEWORK Write oxidation states upon all the elements in the follow N ₂ NO N ₂ O ₃ NH ₄ NO ₂ N ₂ O ₅ Write oxidation states upon all the elements in the follow Cr K ₂ Cr ₂ O ₇ CrO BaCrO ₄ NaCrO ₂ Write oxidation states upon all the elements in the follow HI I ₂ HIO ₃ NaIO ₄ KIO Arrange compound in this line (SO ₃ / OF ₂ / SiO ₂ / P ₂ t the increase of the oxidation state of a nonmetal (which Write 5 samples of substances in which hydrogen derivative states are not states in which hydrogen derivative states are not states of the oxidation state of a nonmetal (which	Arrange compound in this line (CsCl / MgO / CrO ₃ / Al ₂ O ₃ / Mn ₂ O ₇) in of the increase of the oxidation state of a metal: Write 5 samples of substances in which oxygen demonstrates oxida different from -2: EXERCISES FOR HOMEWORK Write oxidation states upon all the elements in the following compounds: N ₂ NO N ₂ O ₃ NH ₄ NO ₂ N ₂ O ₅ N ₂ O Write oxidation states upon all the elements in the following compounds: Cr K ₂ Cr ₂ O ₇ CrO BaCrO ₄ NaCrO ₂ Cr ₂ O ₃ Write oxidation states upon all the elements in the following compounds: HI I ₂ HIO ₃ NaIO ₄ KIO Ca(IO ₂) ₂ Arrange compound in this line (SO ₃ / OF ₂ / SiO ₂ / P ₂ O ₅ / As ₂ O ₃) in the the increase of the oxidation state of a nonmetal (which is not oxygen):		

LESSON 11. CLASSIFICATION OF CHEMICAL REACTIONS

- 1. Choose composition reactions:
 - a. $2H_2 + O_2 \rightarrow 2H_2O$
 - b. $2Na + 2H_2O \rightarrow 2NaOH + H_2$
 - c. $CaCO_3 \rightarrow CaO + CO_2$
 - d. $Zn + S \rightarrow ZnS$
- 2. Choose decomposition reactions:
 - a. $NH_3 + HCl \rightarrow NH_4Cl$
 - b. $2KNO_3 \rightarrow 2KNO_2 + O_2$
 - c. $N_2O_4 \rightarrow 2NO_2$
 - d. $2Ag_2O \rightarrow 4Ag + O_2$
- 3. Choose single replacement reactions:
 - a. $2K + 2H_2O \rightarrow 2KOH + H_2$
 - b. $2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$
 - c. $KCl + AgNO_3 \rightarrow AgCl + KNO_3$
 - $d. \ Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$
- 4. Choose double replacement reactions:
 - a. $2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$
 - b. $CaO + 2HCl \rightarrow CaCl_2 + H_2O$
 - c. $N_2 + 3H_2 \rightarrow 2NH_3$
 - d. $ZnCl_2 + 2AgNO_3 \rightarrow 2AgCl + Zn(NO_3)_2$
- 5. Choose combustion reactions:
 - a. $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$
 - b. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
 - c. $Mg + S \rightarrow MgS$
 - d. $2\text{Fe} + \text{O}_2 \rightarrow 2\text{FeO}$
- 6. Which of the equations written above represent reduction-oxidation (redox) reactions?
 - a. $2HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + 2H_2O$
 - b. $2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O$
 - c. $Cl_2 + H_2O \rightarrow HCl + HClO$
 - d. $3CaO + P_2O_5 \rightarrow Ca_3(PO_4)_2$

- 7. In which reactions hydrogen atoms act as reducers?
 - a. $2H_2 + O_2 \rightarrow 2H_2O$
 - b. $H_2 + 2K \rightarrow 2KH$
 - c. $2HCl + Zn \rightarrow ZnCl_2 + H_2$
 - d. $HCl + NH_3 \rightarrow NH_4Cl$
- 8. In which reactions sulfur atoms act as oxidizers:
 - a. $H_2 + S \rightarrow H_2S$
 - b. $Ca + S \rightarrow CaS$
 - c. $H_2SO_{4 \text{ (dilute)}} + Zn \rightarrow ZnSO_4 + H_2$
 - d. $2H_2SO_4$ (concentrated) $+ Zn \rightarrow ZnSO_4 + SO_2 + 2H_2O$
- 9. Choose appropriate characteristics of the following reaction: $3S + 2H_2O \rightarrow 2H_2S + SO_2$
 - a. redox reaction
 - b. single displacement reaction
 - c. double displacement reaction
 - d. disproportioning reaction for sulfur atoms
- 10. Choose appropriate characteristics of the following reaction: $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$
 - a. redox reaction
 - b. single displacement reaction
 - c. double displacement reaction
 - d. composition reaction

TEST FOR HOMEWORK

- 1. Choose composition reactions:
 - a. $2Ca + O_2 \rightarrow 2CaO$
 - b. $2CaS + 3O_2 \rightarrow 2CaO + 2SO_2$
 - c. $CO_2 + H_2O + CaCO_3 \rightarrow Ca(HCO_3)_2$
 - d. $Zn + H_2S \rightarrow ZnS + H_2$
- 2. Choose decomposition reactions:
 - a. $NH_4OH \rightarrow NH_3 + H_2O$
 - b. $Ba(OH)_2 \rightarrow BaO + H_2O$
 - c. $2CH_4 \rightarrow C_2H_2 + 3H_2$
 - d. $2CO + O_2 \rightarrow 2CO_2$
- 3. Choose single replacement reactions:
 - a. $SiO_2 + CaCO_3 \rightarrow CaSiO_3 + CO_2$

- b. $Cl_2 + 2KI \rightarrow I_2 + 2KCl$
- c. $Mg + H_2O(t^\circ) \rightarrow MgO + H_2$
- d. $Al(OH)_3 + KOH(t^{\circ}) \rightarrow KAlO_2 + 2H_2O$
- 4. Choose double replacement reactions:
 - a. $NaCl_{(solid)} + H_2SO_{(concentrated)/(t^\circ)} \rightarrow NaHSO_4 + HCl$
 - b. NaOH + HCl \rightarrow NaCl + H₂O
 - c. $I_2 + H_2 \rightarrow 2HI$
 - d. $Zn(OH)_2 + HCl \rightarrow ZnOHCl + H_2O$
- 5. Choose combustion reactions:
 - a. $4\text{Fe} + 3\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3$
 - b. $2Mg + CO_2 \rightarrow 2MgO + C$
 - c. $CaO + H_2O \rightarrow Ca(OH)_2$
 - d. $2NO + O_2 \rightarrow 2NO_2$
- 6. Which of the equations written above represent reduction-oxidation (redox) reactions?
 - a. $H_2SO_3 \rightarrow SO_2 + H_2O$
 - b. $4HNO_3 \rightarrow 4NO_2 + O_2 + 2H_2O$
 - c. $K_2O + H_2O \rightarrow 2KOH$
 - d. $2NO_2 + 2KOH \rightarrow KNO_2 + KNO_3 + H_2O$
- 7. In which reactions nitrogen atoms act as reducers?
 - a. $3H_2 + N_2 \rightarrow 2NH_3$
 - b. $4NH_3 + 5O_{2 \text{ (catalyst)}} \rightarrow 4NO + 6H_2O$
 - c. $NH_3 + HNO_3 \rightarrow NH_4NO_3$
 - d. $(NH_4)_2Cr_2O_7(t^\circ) \rightarrow N_2 + 4H_2O + Cr_2O_3$
- 8. In which reactions oxygen atoms act as oxidizers:
 - a. $2H_2 + O_2 \rightarrow 2H_2O$
 - b. $3O_2 \rightarrow 2O_3$
 - c. $K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4 + H_2O$
 - d. $2H_2O_2 + S \rightarrow SO_2 + 2H_2O$
- 9. Choose appropriate characteristics of the following reaction: $NH_4NO_2 \rightarrow N_2 + 2H_2O$
 - a. redox reaction
 - b. composition reaction
 - c. decomposition reaction
 - d. conproportioning reaction for nitrogen atoms

	$Ca(HCO_3)_2 \rightarrow CaO + 2CO_2 + H_2O$
ć	a. redox reaction
ł	o. single displacement reaction
	e. double displacement reaction
	l. decomposition reaction
	EXERCISES FOR CLASSWORK
•	Write 3 samples of combination (composition) reaction for chlorides:
١	Write 3 samples of decomposition reaction for salts:
•	Write 3 samples of single displacement reaction with HCl:
_	
_	
١	Write 3 samples of double displacement reaction with AgNO ₃ :
	Write 3 samples of neutralization reaction with KOH:
_	
	Write 3 samples of combustion reaction in which CO ₂ is a product:
•	
	Write 2 samples of redox reaction in which hydrogen atoms are oxidizers:
Į	M/Pita / camples at paday pagatian in miniah hmakan atawa ana amakanan

10. Choose appropriate characteristics of the following reaction:

,	Write 3 samples of combination (composition) reaction for sulfides:
-	
\ -	Write 3 samples of decomposition reaction for acids:
_	
\	Write 3 samples of single displacement reaction with H ₂ SO ₄ :
-	
\ _	Write 3 samples of double displacement reaction with BaCl ₂ :
_	
1	Write 3 samples of neutralization reaction with Ba(OH) ₂ :
_	
1	Write 3 samples of combustion reaction in which SO_2 is a product:
_	
\	Write 2 samples of redox reaction in which hydrogen atoms are reducers:
-	
_	

LESSON 12. REDOX REACTIONS

1.	Balance the following redox reactions using electron balancing, provide half reactions of oxidation and reduction:
	$KBr + K_2Cr_2O_7 + H_2SO_4 \rightarrow Br_2 + Cr_2(SO_4)_3 + K_2SO_4 + H_2O$
	$KMnO_4 + HCl \rightarrow MnCl_2 + Cl_2 + KCl + H_2O$
	$NaBr + NaBrO_3 + H_2SO_4 \rightarrow Br_2 + Na_2SO_4 + H_2O$
	$KMnO_4 + KNO_2 + KOH \rightarrow K_2MnO_4 + KNO_3 + H_2O$
	$\overline{\text{KMnO}_4 + \text{N}_2\text{O} + \text{H}_2\text{SO}_4 \rightarrow \text{K}_2\text{SO}_4 + \text{MnSO}_4 + \text{Mn(NO}_3)_2 + \text{H}_2\text{O}}$
2	What is the coefficient before VMnO in the following reaction?
2.	What is the coefficient before KMnO ₄ in the following reaction? $KMnO_4 + H_2S + H_2SO_4 \rightarrow MnSO_4 + S + K_2SO_4 + H_2O$
	$KWIIO_4 + II_2S + II_2SO_4 \rightarrow WIISO_4 + S + K_2SO_4 + II_2O$
3.	What part of the total H ₂ SO ₄ amount participated in the following reaction really
	acted as an oxidizer?
	$Cu + H_2SO_4 \rightarrow CuSO_4 + SO_2 + H_2O$

1.	Balance the following redox reactions using electron balancing, provide half-
	reactions of oxidation and reduction: $Na + HNO_3 \rightarrow NH_4NO_3 + NaNO_3 + H_2O$
	${\text{KBr} + \text{K}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{SO}_4 \rightarrow \text{Br}_2 + \text{Cr}_2(\text{SO}_4)_3 + \text{K}_2\text{SO}_4 + \text{H}_2\text{O}}$
	$HI + H_2SO_4 \rightarrow I_2 + H_2S + H_2O$
	$K_2Cr_2O_7 + Zn + H_2SO_4 \rightarrow ZnSO_4 + Cr_2(SO_4)_3 + K_2SO_4 + H_2O$
	$Ca_{3}(PO_{4})_{2} + C + SiO_{2} \rightarrow CaSiO_{3} + P + CO$
•	
2.	What is the coefficient before $K_2Cr_2O_7$ in the following reaction? $K_2Cr_2O_7 + H_2S + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + S + K_2SO_4 + H_2O$
3.	What part of the total HNO ₃ participated in the following reaction really acted as an oxidizer?
	$Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$

LESSON 13. CHEMICAL EQUILIBRIUM

1.	Write how different stresses will affect the equilibrium of the given system.
	$2NOCl_{(g)} \leftrightarrow 2NO_{(g)} + Cl_{2(g)} + Q$
	NOCl concentration increase:
	NOCl concentration decrease:
	NO concentration increase:
	NO concentration decrease:
	Cl ₂ concentration increase:
	Cl ₂ concentration decrease:
	Increase in pressure:
	Decrease in pressure:
	Increase in volume:
	Decrease in volume:
	Increase in temperature:
	Decrease in temperature:
2.	Write the expression of the constant of chemical equilibrium for the following processes. $H_{2(g)}+F_{2(g)} \leftrightarrow 2HF_{(g)}$
	$CO_{2(g)} + C_{(s)} \leftrightarrow 2CO_{(g)}$
	$2NO_{(g)} + O_{2(g)} \leftrightarrow 2NO_{2(g)}$
	$N_2O_{(g)} + NO_{2(g)} \leftrightarrow 3NO_{(g)}$

1.

2.

Write how different stresses will affect the equilibrium of the given system.
$CO_{(g)} + 2H_{2(g)} \leftrightarrow CH_3OH_{(g)} + Q$
CO concentration increase:
CO concentration decrease:
H ₂ concentration increase:
H ₂ concentration decrease:
CH ₃ OH concentration increase:
CH ₃ OH concentration decrease:
Increase in pressure:
Decrease in pressure:
Increase in volume:
Decrease in volume:
Increase in temperature:
Decrease in temperature:
Write the expression of the constant of chemical equilibrium for the followi
processes.
$CH_{4(g)} + 2H_2S_{(g)} \leftrightarrow CS_{2(g)} + 4H_{2(g)}$
$SO_{2(g)} + NO_{2(s)} \leftrightarrow NO_{(g)} + SO_{3(g)}$
$(NH_4)_2CO_{3(s)} \leftrightarrow 2NH_{3(g)} + CO_{2(g)} + H_2O_{(l)}$
$2CO_{(g)} + O_{2(g)} \leftrightarrow 2CO_{2(g)}$

LESSON 14. CHEMICAL KINETICS

TEST FOR CLASSWORK

1.	Which actions can shift the equil $2H_2S_{(g)} + 3O_{2(g)} \leftrightarrow 2SO_{2(g)} + 2F_{g}$ a. pressure increase b. addition of O_2	ibrium of the following process towards reactants? $H_2O_{(g)}$ c. addition of SO_2 d. volume decrease
2.	The increase of pressure will shift a. towards reactants b. towards products c. it will not affect the equilibrium	ft the equilibrium of $N_{2(g)}+O_{2(g)}\leftrightarrow 2NO_{(g)}$ reaction:
3.	The decrease of the volume $2NO_{(g)} + O_{2(g)} \leftrightarrow 2NO_2$ process a. towards reactants b. towards products c. it will not affect the equilibrium	
4.	How many times the velocity of 3 times increase in CO ₂ conce a. 2 b. 3 c. 4	of $CO_{2 (g)} + CaO_{(s)} \leftrightarrow CaCO_{3 (s)}$ will grow in case ntration? d. 9
5.	Indicate the change of the velocity of 3 times increase in CO concerts. 3 times increase b. 9 times increase	ocity of 2CO $_{(g)}$ + O _{2 $_{(g)}$} \leftrightarrow 2CO _{2 $_{(g)}$} reaction in case stration: c. 3 times decrease d. 9 times decrease
6.	The velocity of endothermic read a. increase in temperature b. increase in pressure	
7.	The velocity of the reaction temperature from 30 to 50 °C. Find a. 2 b. 3 c. 4	has become 4 times higher due to the growth of nd out the Q_{10} coefficient.
8.	How the velocity of the forward in case of 2 times decrease in real a. decrease 2 times b. increase 4 times	rd reaction $C_2H_{2\ (g)}+2H_{2\ (g)}\rightarrow C_2H_{6\ (g)}$ will change ctants concentration: c. increase 16 times d. decrease 8 times

- 9. How the velocity of the forward reaction $N_{2(g)} + 6Li_{(s)} \rightarrow 2Li_3N_{(s)}$ will change in case of 3 times increase in pressure: a. increase 3 times c. increase 2187 times d. decrease 2187 times b. decrease 3 times 10. How the velocity of the forward reaction $2P_{(s)} + 3Cl_{2(g)} \rightarrow 2PCl_{3(g)}$ will change in case of 3 times increase of the volume of the gas container? a. increase 3 times c. increase 27 times b. decrease 3 times d. decrease 27 times **TEST FOR HOMEWORK** 1. Which actions can shift the equilibrium of the following process towards products? $2H_2S_{(g)} + O_{2(g)} \leftrightarrow 2S_{(s)} + 2H_2O_{(g)}$ a. pressure decrease c. addition of H₂S b. addition of O_2 d. volume decrease The decrease of pressure will shift the equilibrium of $2N_2O_{(g)} + O_{2(g)} \leftrightarrow 4NO_{(g)}$ reaction: a. towards reactants b. towards products c. it will not affect the equilibrium 3. The decrease of the volume of the gas container will shift the equilibrium of $P_{4 (l)} + 6Cl_{2 (g)} \leftrightarrow 4PCl_{3 (l)}$ process: a. towards reactants b. towards products c. it will not affect the equilibrium 4. How many times the velocity of $PCl_{3(g)} + Cl_{2(g)} \leftrightarrow PCl_{5(g)}$ will grow in case of 3 times increase in Cl₂ concentration? d. 9 a. 2 b. 3 c. 4 Indicate the change of the velocity of 2P $_{(s)}$ + 5O₂ $_{(g)} \leftrightarrow$ 2P₂O₅ $_{(s)}$ reaction in case of 2 times decrease in O_2 concentration: a. 4 times increase c. 32 times increase b. 4 times decrease d. 32 times decrease
- 6. The velocity of exothermic reaction increases in case of:
 - a. increase in temperature c. decrease in temperature
 - b. increase in pressure d. decrease in pressure

7. The velocity of the reaction has become 9 times higher due to the growth of temperature from 37 to 57 $^{\circ}$ C. Find out the Q₁₀ coefficient.

a. 2

b. 3

c. 4

d. 5

8. How the velocity of the forward reaction $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$ will change in case of 3 times increase in reactants concentration:

a. decrease 8 times

c. increase 27 times

b. increase 9 times

d. decrease 4 times

9. How the velocity of the forward reaction $F_{2(g)} + H_{2(g)} \rightarrow 2HF_{(g)}$ will change in case of 2 times increase in pressure:

a. increase 2 times

c. increase 4 times

b. decrease 2 times

d. decrease 4 times

10. How the velocity of the forward reaction $CO_{(g)} + Cl_{2(g)} \rightarrow COCl_{2(g)}$ will change in case of 2 times increase of the volume of the gas container?

a. increase 4 times

c. increase 2 times

b. decrease 4 times

d. decrease 2 times

LESSON 15. THE SAMPLE OF CONTROL TASK #2

1.	Determ	ine the oxidation	n state for each	atom in the fol	lowing compoun	ds:
	F_2O	$Zn(NO_3)_2$	$MgSiO_3$	$NaCrO_2$	K_2HPO_4	
2.	Write d	lown complete a	nd short electr	on configuratio	ns for:	
	Na:					
	S:					
	P:				_,(2)	
	Cu:					
3.	Balance	e chemical react	ions using elect	ron balance me	ethod:	
	FeSO ₄ -	+ KMnO ₄ + H ₂ SO	$O_4 \rightarrow MnSO_4 +$	$K_2SO_4 + Fe_2(SO_4)$	$(4)_3 + H_2O$	
	HClO ₃ -	$+ H_2SO_3 \rightarrow HCl$	$+ H_2SO_4$			
	NaOH -	$+ NO_2 \rightarrow NaNO_2$	$+ NaNO_3 + H_2O_3$	0		
4.	Q10 co	efficient for a g	iven chemical	reaction is equa	al to 3. How wil	l the rates of
	this rea	ction change in	case of 40 °C to	emperature inci	rease?	
5.	Given t	his equilibrium,	predict the di	ection of shift f	or each stress.	
		$+5O_{2(g)} \leftrightarrow 4NO$				
	_	l of NO:				
	decrease	e of the volume o	f a gas containe	er:		
	the incre	ease of the pressu	ıre:			

LESSON 16. OXIDES

Write 5 samples of absolutely basic oxides:
Write 5 samples of absolutely acidic oxides:
Write 5 samples of amphoteric oxides:
Arrange these oxides (MnO / Mn_2O_7 / MnO_2 / MnO_3 / Mn_2O_3) in the order of the increase of their acidic properties:
Finish chemical reactions and balance them:
$CaO + SO_2 \rightarrow$
$Na_2O + SO_3 \rightarrow$
$Al_2O_3 + P_2O_5 \rightarrow \underline{\hspace{1cm}}$
$CaO + H_2SO_4 \rightarrow$
$KOH + N_2O_5 \rightarrow \underline{\hspace{1cm}}$
$SrO + H_2O \rightarrow$
$SO_3 + H_2O \rightarrow$
Calculate the mass of a salt produced in the reaction between 10 g of calcium oxide and 4 L of carbon dioxide (in normal conditions).
Find the mass of a salt formed in the reaction between 5 L of sulfur IV oxide
(in normal conditions) and 2.3 g of barium oxide.

1.	Write 5 samples of basic anhydrides:
2.	Write 5 samples of acidic anhydrides:
3.	Write 5 samples of neutral oxides:
4.	Arrange these oxides (CrO / CrO $_6$ / Cr $_2$ O $_3$) in the order of the increase of their basic properties:
5.	Finish chemical reactions and balance them:
	$BaO + CO_2 \rightarrow \underline{\hspace{2cm}}$
	$K_2O + SiO_2 \rightarrow \underline{\hspace{1cm}}$
	$MgO + P_2O_5 \rightarrow $
	$Na_2O + HNO_3 \rightarrow$
	$\text{LiOH} + \text{N}_2\text{O}_3 \rightarrow \underline{\hspace{2cm}}$
	$CaO + H_2O \rightarrow$
	$SO_2 + H_2O \rightarrow$
6.	Calculate the mass of a salt produced in the reaction between 8 g of strontium oxide and 9 g of silicon IV oxide.
7.	Find the mass of a salt formed in the reaction between 3 L of sulfur VI oxide
	(in normal conditions) and 1.4 g of lithium oxide.

LESSON 17. BASES

	ite 5 samples of absolutely basic hydroxides:	7
Wri	ite 5 samples of alkalis:	, ,
Wr	ite 5 samples of amphoteric hydroxides:	
Fini	ish chemical reactions and balance them:	
NaC	$OH + CO_2 \rightarrow \underline{\hspace{1cm}}$	_
	$H + SO_2 \rightarrow$	_
	$+ H_2O \rightarrow $	_
K_2C	$O + H_2O \rightarrow$	_
Ba($OH)_2 + N_2O_5 \rightarrow \underline{\hspace{2cm}}$	_
Sr(C	$OH)_2 + HNO_3 \rightarrow $	_
	$OH + Al(OH)_3 \rightarrow$	_
Cal		sodium an
	culate the mass of an alkali produced in the reaction between 4 g of	sodium an
		sodium an
	culate the mass of an alkali produced in the reaction between 4 g of	
	culate the mass of an alkali produced in the reaction between 4 g of g of water.	
50 g	culate the mass of an alkali produced in the reaction between 4 g of g of water.	
50 g	culate the mass of an alkali produced in the reaction between 4 g of g of water. d the maximal mass of oxide that can be produced due	
50 g	culate the mass of an alkali produced in the reaction between 4 g of g of water.	
50 g	culate the mass of an alkali produced in the reaction between 4 g of g of water. d the maximal mass of oxide that can be produced due omposition of 200 g of magnesium hydroxide.	
50 g	culate the mass of an alkali produced in the reaction between 4 g of g of water. d the maximal mass of oxide that can be produced due omposition of 200 g of magnesium hydroxide.	
Find	culate the mass of an alkali produced in the reaction between 4 g of g of water. d the maximal mass of oxide that can be produced due omposition of 200 g of magnesium hydroxide.	to therm
Find deco	culate the mass of an alkali produced in the reaction between 4 g of g of water. d the maximal mass of oxide that can be produced due omposition of 200 g of magnesium hydroxide. at is the mass of a salt formed in the reaction between 5 g of soli	to therm
Find deco	culate the mass of an alkali produced in the reaction between 4 g of g of water. d the maximal mass of oxide that can be produced due omposition of 200 g of magnesium hydroxide.	to therm
Find deco	culate the mass of an alkali produced in the reaction between 4 g of g of water. d the maximal mass of oxide that can be produced due omposition of 200 g of magnesium hydroxide. at is the mass of a salt formed in the reaction between 5 g of soli	to therm

Write 5 samples of soluble metal hydroxides:
Write 5 samples of metal hydroxides which can be thermally decomposed:
Write 5 samples of diacidic metal hydroxides:
Finish chemical reactions and balance them:
$\text{LiOH} + \text{SiO}_2 \rightarrow$
$NaOH + P_2O_5 \rightarrow$
$Ca + H_2O \rightarrow$
$BaO + H_2O \rightarrow \underline{\hspace{2cm}}$
$Al(OH)_3 + SO_3 \rightarrow$
$Ca(OH)_2 + HNO_2 \rightarrow \underline{\hspace{2cm}}$
$KOH + Zn(OH)_2 \rightarrow \underline{\hspace{2cm}}$
oxide and 20 mi of water (density of water is 1 g/mi).
oxide and 20 ml of water (density of water is 1 g/ml).
Oxide and 20 iii of water (density of water is 1 g/iii).
Find the maximal mass of water that can be produced due to thern decomposition of 300 g of lithium hydroxide.
Find the maximal mass of water that can be produced due to thern
Find the maximal mass of water that can be produced due to thern
Find the maximal mass of water that can be produced due to thern
Find the maximal mass of water that can be produced due to thern decomposition of 300 g of lithium hydroxide.
Find the maximal mass of water that can be produced due to thern decomposition of 300 g of lithium hydroxide.
Find the maximal mass of water that can be produced due to therm decomposition of 300 g of lithium hydroxide. What is the mass of a salt formed in the reaction between 4 g of solid sodium.

LESSON 18. ACIDS

Write 5 samples of monoprotic acids:	
Finish chemical reactions and balance them:	
$Zn + H_2SO_4 \rightarrow$	
$KOH + HNO_3 \rightarrow \underline{\hspace{2cm}}$	
CaO + HCl →	
$Na_2CO_3 + CH_3COOH \rightarrow$	
$K_2SiO_3 + HBr \rightarrow $	
Calculate the volume of hydrogen (in normal conditions) released in the 1	reaction
between 6 g of zinc and 10 g of sulfuric acid.	
Detween og of zine and tog of suntificacia.	
between 0 g of zinc and 10 g of suntific acid.	
between o g of zinc and to g of suntific acid.	
between 0 g of zinc and 10 g of suntific acid.	
Find the volume of carbon dioxide (in normal conditions) produced in the 1	reaction
	reaction
Find the volume of carbon dioxide (in normal conditions) produced in the 1	reaction
Find the volume of carbon dioxide (in normal conditions) produced in the 1	reaction
Find the volume of carbon dioxide (in normal conditions) produced in the 1	reaction
Find the volume of carbon dioxide (in normal conditions) produced in the rebetween 5 g of sodium carbonate and 17 g of hydrochloric acid.	
Find the volume of carbon dioxide (in normal conditions) produced in the rebetween 5 g of sodium carbonate and 17 g of hydrochloric acid. What is the mass of a salt formed in the reaction between 13 g of	
Find the volume of carbon dioxide (in normal conditions) produced in the rebetween 5 g of sodium carbonate and 17 g of hydrochloric acid.	
Find the volume of carbon dioxide (in normal conditions) produced in the rebetween 5 g of sodium carbonate and 17 g of hydrochloric acid. What is the mass of a salt formed in the reaction between 13 g of	
Find the volume of carbon dioxide (in normal conditions) produced in the rebetween 5 g of sodium carbonate and 17 g of hydrochloric acid. What is the mass of a salt formed in the reaction between 13 g of	
Find the volume of carbon dioxide (in normal conditions) produced in the relative between 5 g of sodium carbonate and 17 g of hydrochloric acid. What is the mass of a salt formed in the reaction between 13 g of hydroxide and 8 g of hydrobromic acid?	sodium
Find the volume of carbon dioxide (in normal conditions) produced in the rebetween 5 g of sodium carbonate and 17 g of hydrochloric acid. What is the mass of a salt formed in the reaction between 13 g of	sodium

Write 5 samples of weak acids:
Write 5 samples of diprotic acids:
Finish chemical reactions and balance them:
$Al + H_2SO_4 \rightarrow$
$LiOH + HNO_2 \rightarrow \underline{\hspace{1cm}}$
BaO + HI →
$K_2CO_3 + H_2C_2O_4 \rightarrow$
$H_2SiO_3 + KOH \rightarrow$
Calculate the volume of hydrogen (in normal conditions) released in the reaction
between 3 g of aluminum and 6 g of hydrochloric acid.
Find the mass of a salt produced in the reaction between 4 g of potassium carbonate and $10\mathrm{g}$ of sulfuric acid.
What is the mass of a salt formed in the reaction between 11 g of lithium
hydroxide and 28 g of hydroiodic acid?
Find the mass of orthophosphoric acid produced from 6 g of phosphorus V oxide
in its reaction with water.
in its reaction with water.
m is reaction with water.

LESSON 19. SALTS

•	Write 5 samples of acidic salts:
	Write 5 samples of basic salts:
	Which metals from this line (Na / Fe / Zn / Ag / Ba / Ni) can substitute copper in CuCl ₂ in water solution?
	Finish chemical reactions and balance them, notice the coefficients: $2NaOH + 1H_2SO_3 \rightarrow \underline{\hspace{2cm}}$ $1NaOH + 1H_2SO_3 \rightarrow \underline{\hspace{2cm}}$ $1Zn(OH)_2 + 2HCl \rightarrow \underline{\hspace{2cm}}$ $1Zn(OH)_2 + 1HCl \rightarrow \underline{\hspace{2cm}}$ $1KHSiO_3 + 1KOH \rightarrow \underline{\hspace{2cm}}$ $1KHSiO_3 + 1HCl \rightarrow \underline{\hspace{2cm}}$ $Al(OH)_3 + 1KOH \rightarrow \underline{\hspace{2cm}}$
	Determine what kind of salt(s) is formed in the reaction between 2 g of sodium hydroxide and 25 g of phosphoric acid, find its mass.
	Find what kind of salt(s) is formed in the reaction between 4 g of potassium hydroxide and 3.5 L (normal conditions) of carbon dioxide.

•	Write 5 samples of acids which can form acidic salts:
•	Write 5 samples of bases salts which can form basic salts:
,	Which metals from this line (K / Cr / Zn / Ag / Sn / Ni) can substitute cobalt in CoCl ₂ in water solution?
•	Finish chemical reactions and balance them, notice the coefficients: $2NaOH + 1CO_2 \rightarrow \underline{\hspace{1cm}}$ $1NaOH + 1CO_2 \rightarrow \underline{\hspace{1cm}}$ $1Mg(OH)_2 + 2HNO_3 \rightarrow \underline{\hspace{1cm}}$ $1Mg(OH)_2 + 1HNO_3 \rightarrow \underline{\hspace{1cm}}$ $ZnOHCl_2 + 1NaOH \rightarrow \underline{\hspace{1cm}}$ $ZnOHCl_2 + 1HCl \rightarrow \underline{\hspace{1cm}}$ $Al(OH)_3 + 3KOH \rightarrow \underline{\hspace{1cm}}$
•	Determine what kind of salt(s) is formed in the reaction between 3 g of potassium hydroxide and 4 g of phosphoric acid, find its mass. Find what kind of salt(s) is formed in the reaction between 7 g of sodium hydroxide and 1.2 g of zinc hydroxide, find its mass.

LESSON 20. INORGANIC COMPOUNDS

TEST FOR CLASSWORK

1.	Choose basic ox	ides:		
	a. SiO ₂	b. K ₂ O	c. ZnO	d. SrO
2.	Choose acidic or	xides:		
	a. CO	b. CO ₂	c. BaO	d. SO ₂
3.	Choose amphote	eric oxides:		
	a. Al_2O_3	b. ZnO	c. SiO	d. Cr_2O_3
4.	Choose neutral of	oxides (those wh	ich cannot form	salts):
	a. NO	b. SiO ₂	c. MgO	$d. N_2O$
5.	Choose strong a	cids:		
	a. HCl	b. HBr	c. HI	d. HF
6.	Choose strong b	ases:		
	a. $Be(OH)_2$	b. $Sr(OH)_2$	c. KOH	d. LiOH
7.	Choose acidic sa	alts:		
	a. NH ₄ NO ₃	b. NH ₄ H ₂ PO ₄	c. KHCO ₃	d. (MgOH) ₂ CO ₃
8.	Choose bases w	hich cannot be fo	ormed in the read	ction between corresponding oxide and
	water:			
	a. $Al(OH)_3$	b. NaOH	c. KOH	d. $Zn(OH)_2$
9.	Choose salts wh	ich can react wit	h the acid contai	ning the same anion:
	a. KNO ₃	b. Na ₂ SO ₃	c. K ₃ PO ₄	d. KH_2PO_4
10.	Choose salts wh	ich can react wit	h alkali:	
	a. NaCl	b. KBr	c. MgCl ₂	d. AlPO ₄
		Tr	EST FOR HOMEW	/ORK
	0			
1.	Choose basic ox			
	a. CaO	b. Mn_2O_7	c. CrO ₃	$d. Cs_2O$
2.	Choose acidic or			
	a. SO ₂	b. BeO	c. N_2O_5	$d. H_2O_2$
3.	Choose amphote	eric oxides:		
	a Fe ₂ O ₂	h Mn Ω_2	$c P_2 O_2$	d Na ₂ O

	a. CO	b. SiO	c. CaO	d. SrO	
5.	Choose weak ac	ids:			
	a. H_2SO_4	b. HNO ₃	c. HNO ₂	d. H_2SO_3	
6.	Choose weak ba	ises:			
	a. $Fe(OH)_2$	b. Cu(OH) ₂	c. NaOH	d. NH ₄ OH	
7.	Choose basic sal	lts:			
	a. CaOHCl	b. (MgOH) ₂ SO	c. K[Al(C	OH) ₄] d. FeCl ₃	
8.	Choose bases w	hich cannot be fo	ormed in the rea	ction between corresponding	ng oxide and
	water:				
	a. $Fe(OH)_3$	b. LiOH	c. CsOH	d. Fe(OH) ₂	
9.	Choose salts wh	ich can react wit	h the acid conta	ining the same anion:	
	a. KCl	b. NaHCO ₃	c. K ₃ PO ₄	d. K ₂ HPO ₄	
10.	Choose salts wh	ich can react wit	h alkali:		
	a. NH ₄ Cl	b. ZnBr ₂	c. NaCl	d. BaCl ₂	
		Fyfd	CISES FOR CLAS	SSWORK	
		EXER	CISES FOR CLA	55 W OKK	
1.	Write four read	ctions according	g to the followin	g classic chains of chemic	al reactions
	and balance the	em:			
	$K \to KOH \to K$	$L_2SO_3 \rightarrow KOH -$	$\rightarrow K_2S$		
	1				_
					_
	3				_
	4				_
	$Al \rightarrow AlCl_3 \rightarrow AlCl_$	$AI(OH)_3 \rightarrow NaA$	$1O_2 \rightarrow Al_2(SO_4)$	3	
	1				_
	23.				_
		/			_
	$Mg(OH)_2 \rightarrow Mg$				_
		_			
					_
	4.				

Choose neutral oxides (those which cannot form salts):

$Zn(OH)_2 \rightarrow K_2[Zn(OH)]$	$[I]_4] \rightarrow ZnCl_2 \rightarrow Zn(OH)_2 \rightarrow ZnO$	
1		
2		
3		<u> </u>
4		
	with <u>sodium</u> containing compounds according to	the chair
chemical reactions		
	$3 \xrightarrow{+ cl_2} C \xrightarrow{+ AgNO_3} D$	
Calculate the sum of	molar masses for substances B and D:	
Write four reactions	with silicon containing compounds according to	the chair
chemical reactions		
$Si \xrightarrow{+o_2} A \xrightarrow{+2NaOH} \rightarrow$	$B \xrightarrow{+ H_2 SO_4} C \xrightarrow{+2KOH} D$	
1		
2		
3		
Calculate the sum of	molar masses for substances B and D:	
	EXERCISES FOR HOMEWORK	
	according to the following classic chains of chemi	ical reacti
and balance them:		
	$O_3)_2 \rightarrow Mg(OH)_2 \rightarrow MgSO_4$	
3		
4.		

$CaCO_3 \rightarrow Ca(HCO_3)_2 \rightarrow CaO \rightarrow CaSO_3 \rightarrow Ca(NO_3)_2$
1
2
3
4
$P \rightarrow P_2O_5 \rightarrow Na_3PO_4 \rightarrow Na_2HPO_4 \rightarrow Ba_3(PO_4)_2$
1
2
3
4
$K \to K_2O \to K_2S \to KCl \to KNO_3$ 1
2
3
4
chemical reactions $Zn \xrightarrow{+o_2} A \xrightarrow{+2HCl} B \xrightarrow{+2NaOH} C \xrightarrow{+2NaOH \ (in water solution)} D$ 1
chemical reactions $Zn \xrightarrow{+o_2} \to A \xrightarrow{+2HCl} \to B \xrightarrow{+2NaOH} \to C \xrightarrow{+2NaOH (in water solution)} \to D$ 1
chemical reactions $Zn \xrightarrow{+o_2} \to A \xrightarrow{+2HCl} \to B \xrightarrow{+2NaOH} \to C \xrightarrow{+2NaOH \ (in water solution)} \to D$ 1
chemical reactions $Zn \xrightarrow{+o_2} A \xrightarrow{+2HCl} B \xrightarrow{+2NaOH} C \xrightarrow{+2NaOH (inwater solution)} D$ 1. 2. 3. 4. Calculate the sum of molar masses for substances C and D:
$Zn \xrightarrow{+o_2} A \xrightarrow{+2HCl} B \xrightarrow{+2NaOH} C \xrightarrow{+2NaOH (inwater solution)} D$ 1. 2. 3. 4.
chemical reactions $Zn \xrightarrow{+o_2} A \xrightarrow{+2HCl} B \xrightarrow{+2NaOH} C \xrightarrow{+2NaOH \ (in water solution)} D$ 1. 2. 3. 4. Calculate the sum of molar masses for substances C and D: Write four reactions with $\underline{magnesium}$ containing compounds according the chain of chemical reactions
chemical reactions $Zn \xrightarrow{+O_2} \to A \xrightarrow{+2HCl} \to B \xrightarrow{+2NaOH} \to C \xrightarrow{+2NaOH \ (in water solution)} \to D$ 1. 2. 3. 4. Calculate the sum of molar masses for substances C and D: Write four reactions with $\underline{magnesium}$ containing compounds according the chain of chemical reactions $Mg \xrightarrow{+HCl} \to A \xrightarrow{+KOH \ (in \ excess)} \to B \xrightarrow{t} \to C \xrightarrow{P_2O_5} \to D$
chemical reactions $Zn \xrightarrow{+O_2} \to A \xrightarrow{+2HCl} \to B \xrightarrow{+2NaOH} \to C \xrightarrow{+2NaOH \ (in water \ solution)} \to D$ 1. 2. 3. 4. Calculate the sum of molar masses for substances C and D: Write four reactions with $\underline{magnesium}$ containing compounds according the chain of chemical reactions $Mg \xrightarrow{+HCl} \to A \xrightarrow{+KOH \ (in \ excess)} \to B \xrightarrow{t} C \xrightarrow{P_2O_5} D$ 1.
chemical reactions $Zn \xrightarrow{+O_2} \to A \xrightarrow{+2HCl} \to B \xrightarrow{+2NaOH} \to C \xrightarrow{+2NaOH \ (in water solution)} \to D$ 1. 2. 3. 4. Calculate the sum of molar masses for substances C and D: Write four reactions with $\underline{magnesium}$ containing compounds according the chain of chemical reactions $Mg \xrightarrow{+HCl} \to A \xrightarrow{+KOH \ (in \ excess)} \to B \xrightarrow{t} \to C \xrightarrow{P_2O_5} \to D$ 1. 2.
chemical reactions $Zn \xrightarrow{+O_2} \to A \xrightarrow{+2HCl} \to B \xrightarrow{+2NaOH} \to C \xrightarrow{+2NaOH \ (in water solution)} \to D$ 1
chemical reactions $Zn \xrightarrow{+O_2} \to A \xrightarrow{+2HCl} \to B \xrightarrow{+2NaOH} \to C \xrightarrow{+2NaOH \ (in water solution)} \to D$ 1. 2. 3. 4. Calculate the sum of molar masses for substances C and D: Write four reactions with $\underline{magnesium}$ containing compounds according the chain of chemical reactions $Mg \xrightarrow{+HCl} \to A \xrightarrow{+KOH \ (in \ excess)} \to B \xrightarrow{t} \to C \xrightarrow{P_2O_5} \to D$ 1. 2.

LESSON 21. THE SAMPLE OF CONTROL TASK #3

1. Write down equations of chemical reactions between the following substances

	(in case if they are possible) and balance them:
	$CuCl_2(solid) + H_2SO_4 (concentrated) \rightarrow $
	$FeCl_3 + AgNO_3 \rightarrow$
	$K_2CO_3 + Ca(OH)_2 \rightarrow$
	$K + H_2O \rightarrow$
	$Ag + H_2SO_4(diluted) \rightarrow $
2.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	$C \rightarrow CO_2 \rightarrow NaHCO_3 \rightarrow Na_2CO_3 \rightarrow CaCO_3$
	1
	2
	3
	4
3.	Write four reactions with <i>chlorine</i> containing compounds according to the chain of
	chemical reactions
	$Cl_2 \xrightarrow{+H_2} A \xrightarrow{+Al} B \xrightarrow{+3NaOH} C \xrightarrow{+AgNO_3} D$
	1
	2
	3
	4
4.	What salt (potassium sulfite, potassium hydrogen sulfite, or the mixture of them)
	will be formed from 16.8 g of potassium hydroxide and 6.7 L of sulfurous acid
	anhydride? Calculate the mass of that salt.

LESSON 22. SOLUBILITY

TEST FOR CLASSWORK

1.	Choose insoluble (solubility < 0.1 g per 100 g of H_2O) salts:
	a. KCl b. Na ₂ SO ₄ c. CaCO ₃ d. BaSO ₄
2.	Choose soluble (solubility > 1 g per 100 g of H_2O) salts: a. NaI b. $Zn(NO_3)_2$ c. AgCl d. $Zn_3(PO_4)_2$
3.	Slightly soluble salt (with solubility between 0.1 and 1 g per 100 g of H ₂ O) is considered to be insoluble in the written form of chemical reaction: a. if it is a reactant b. if it is a product c. always d. never
4.	Will there be a precipitate if we put 0.5 mg or 0.05 mg of $CaCO_3$ in 200 g of water ($CaCO_3$ solubility is 0.0006 g per 100 g of H_2O)? a. Yes / Yes b. Yes / No c. No / Yes d. No / No
5.	Which substances demonstrate good solubility in water? a. O_2 b. C_2H_5OH c. N_2 d. HCl
6.	Which substances demonstrate good solubility in benzene? a. CH ₄ b. C ₇ H ₈ c. H ₂ O d. C ₆ H ₁₄
7.	How can we dissolve a precipitate in water solution? a. increase the temperature b. decrease the temperature c. add more water d. add a substance which reacts with that precipitate
8.	Molarity is the ratio between: a. the mass of a solute and the mass of a solution b. the number of moles of a solute and the mass of a solvent c. the number of moles of a solute and the volume of a solution d. the volume of a solute and the volume of a solution
9.	Mass percentage is the ratio between: a. the mass of a solute and the mass of a solvent

b. the number of moles of a solute and the mass of a solution

- c. the mass of a solute and the mass of a solution d. the number of moles of a solute and the volume of a solution 10. Choose true statements about saturated solution: a. saturated solution exists upon the precipitate of a solute b. saturated solution cannot dissolve more solute c. saturated solution is always considered as concentrated solution d. saturated solution may have rather low concentration **TEST FOR HOMEWORK** Choose insoluble (solubility < 0.1 g per 100 g of H_2O) salts: a. MgSO₄ b. $(NH_4)_2SO_4$ c. SrCO₃ d. K₂SiO₃ Choose soluble (solubility > 1 g per 100 g of H_2O) salts: b. HNO₃ c. NiCl₂ d. KOH a. BaCl₂ Slightly soluble salt (with solubility between 0.1 and 1 g per 100 g of H₂O) is considered to be soluble in the written form of chemical reaction: a. if it is a reactant b. if it is a product c. always d. never 4. Will there be a precipitate if we put 100 g or 10 g of KBr in 100 g of water (KBr solubility is 70.7 g per 100 g of H_2O)? a. Yes / Yes b. Yes / No c. No / Yes d. No / No 5. Which substances demonstrate low solubility in water? b. CH₃COOH c. HCOOH a. H_2 d. H₂SiO₃ Which substances demonstrate low solubility in benzene?
- 7. How can we produce a precipitate in water solution?

b. NaOH

a. increase the temperature, dissolve high amount of solute, then cool down the solution

d. C_4H_8

b. increase the temperature and wait until sufficient amount of water will be evaporated, then cool down the solution

c. $Mg(OH)_2$

c. add more water

a. C_2H_2

d. add a substance which produces precipitate in reaction with a given solute

8. Molality is the ratio between:

- a. the mass of a solute and the mass of a solvent
- b. the number of moles of a solute and the mass of a solvent
- c. the number of moles of a solute and the mass of a solution
- d. the mass of a solute and the volume of a solution

9. Mole fraction is the ratio between:

- a. the mass of a solute and the mass of a solvent
- b. the number of moles of a solute and the number of moles of all components of a solution
 - c. the volume of a solute and the mass of a solution
 - d. the number of moles of a solute and the mass of a solution

10. Choose true statements about unsaturated solution:

- a. unsaturated solution always have rather low concentration
- b. unsaturated solution can dissolve more solute
- c. unsaturated solution can dissolve more solvent
- d. unsaturated solution may become saturated at lower temperature

LESSON 23. MASS PERCENTAGE AND MOLARITY

	Convert the molarity (0.001 mol/L) of the H_2SO_4 solution into the mass percentage
	The density is approximately equal to 1 g/ml.
-	
	Calculate the molarity of $Ba(OH)_2$ in the final volume of 750 ml, if the initial mas of $Ba(OH)_2$ was equal to 17 g.
	Calculate the mass percentage of KOH solution made from 30 g of KOH dissolved
	in water until the final volume of 300 ml. The density of the solution is equal to $0.92~\mathrm{g/ml}$.
	Calculate the mass of KOH needed to make 400 ml of solution with mas
	percentage of 15 % and density equal to 0.85 g/ml.
	Calculate the number of moles of Ba(OH) ₂ present in 950 ml of solution with
	the molarity equal to 0.03 mol/L
	Calculate the molarity of the water solution made from 40 g of Na ₂ SO ₄ , if the fina
	volume is 1200 ml.

3.	Find the mass of $CuSO_4\cdot 5H_2O$ which is needed to prepare 1 L of $CuSO_4$ water solution with the molarity equal to 0.02 mol/L.
).	Calculate the mass of a precipitate formed after the mixing of 20 ml of 0.02 M potassium chloride and 15 ml of 0.01 M silver nitrate solutions.
0.	Calculate the mass of a precipitate formed after the mixing of 40 ml of 0.01 M sodium sulfate and 35 ml of 0.02 M strontium chloride solutions.
	EXERCISES FOR HOMEWORK
1.	Convert the mass percentage (0.85 %) of the NaCl water solution into the molarity The density is approximately equal to 1 g/ml.
,	Calculate the molarity of LiOH in the final volume of 300 ml, if the initial mass o
4.	LiOH was equal of 7 g.
۷.	
۷.	
	Calculate the mass percentage of NaOH solution made from 23 g of NaOH dissolved in water until the final volume of 200 ml. The density of the solution is

Calculate the mass of KCl needed to make 200 ml of solution with mass percentage of 5 % and density equal to 0.95 g/ml.				
Calculate the number of moles of $Sr(OH)_2$ present in 650 ml of solution with the molarity equal to 0.09 mol/L				
Calculate the molarity of the water solution made from $10~g$ of H_2SO_4 , if the final volume is $2400~ml$.				
Calculate the mass percentage of potassium hydroxide in the water solution made from 15 g of KOH and 135 ml of pure water.				
Find the mass of Na ₂ SO ₄ ·10H ₂ O which is needed to prepare 1 L of Na ₂ SO ₄ water solution with the mass percentage equal to 0.5 %. The density is 1 g/ml.				
Calculate the mass of a precipitate formed after the mixing of 30 ml of 0.03 M barium chloride and 20 ml of 0.02 M lithium sulfate solutions.				
Calculate the mass of a precipitate formed after the mixing of 70 ml of 0.02 M				

LESSON 24. ELECTROLYTIC DISSOCIATION

Write 5 samples of stro	ong electrolytes:
Write 5 samples of wea	ak electrolytes:
Write equations of elec	ctrolytic dissociation for the following substances:
HCl:	
H ₂ SO ₄ :	
LiOH:	
Ca(OH) ₂ :	
Write equations of step	owise dissociation for the following substances:
H ₂ SO ₃ :	
H ₃ PO ₄ :	
NaHCO ₃ :	
ZnOHCl:	
	ons are formed in the process of electrolytic dissociation
the following substance	
K ₃ PO ₄ :	
K ₂ HPO ₄ :	
MgOHCl:	
What is the number of	of moles of ions formed after the dissociation of 1 mole
the following substance	
MgCl ₂ :	
Al ₂ (SO ₄) ₃ :	
Ba(OH) ₂ :	

7.	Calculate the molar concentration of chloride ions in the water solution prepared from 10 g of aluminum chloride. The final volume is 300 ml.					
8.	Calculate the molar concentration of sulfate ions in the water solution prepared from 15 g of potassium sulfate. The final volume is 400 ml.					
9.	Calculate the molar concentration of all ions in the water solution prepared from 20 g of barium chloride. The final volume is 2 L.					
10.	Calculate the molar concentration of hydrogen ions in the water solution prepared from 5 L of hydrogen chloride (in normal conditions). The final volume is 500ml .					
	EXERCISES FOR HOMEWORK					
1.	Write 5 samples of nonelectrolytes:					
2.	Write 5 samples of substances which have two steps of dissociation:					
3.	Write equations of electrolytic dissociation for the following substances: NaOH:					
	Ba(OH) ₂ :					
	HI:HClO ₄ :					
4.	Write equations of <u>stepwise</u> dissociation for the following substances:					
	H_2S :					
	Al(OH) ₃ :					

CuOHBr:
How many types of ions are formed in the process of electrolytic dissociation of
the following substances:
K ₂ SO ₄ :
KHSO ₄ :
KHSiO ₃ :
AlCl ₃ :
Al(OH) ₂ Cl:
What is the number of moles of ions formed after the dissociation of 1 mole of
the following substances:
KI:
Na ₂ SO ₄ :
CaI ₂ :
CH3COOK
CH ₃ COOK:
Sr(OH) ₂ :
Sr(OH) ₂ :
$Sr(OH)_2$:
$Sr(OH)_2$:
$Sr(OH)_2$:
Sr(OH) ₂ : Calculate the molar concentration of sodium ions in the water solution prepared from 13 g of sodium sulfate. The final volume is 200 ml. Calculate the molar concentration of potassium ions in the water solution
Calculate the molar concentration of sodium ions in the water solution prepared from 13 g of sodium sulfate. The final volume is 200 ml. Calculate the molar concentration of potassium ions in the water solution prepared from 3 g of potassium. The final volume is 100 ml.
Sr(OH) ₂ : Calculate the molar concentration of sodium ions in the water solution prepared from 13 g of sodium sulfate. The final volume is 200 ml. Calculate the molar concentration of potassium ions in the water solution
Calculate the molar concentration of sodium ions in the water solution prepared from 13 g of sodium sulfate. The final volume is 200 ml. Calculate the molar concentration of potassium ions in the water solution prepared from 3 g of potassium. The final volume is 100 ml. Calculate the molar concentration of hydrogen ions in the water solution prepared
Calculate the molar concentration of sodium ions in the water solution prepared from 13 g of sodium sulfate. The final volume is 200 ml. Calculate the molar concentration of potassium ions in the water solution prepared from 3 g of potassium. The final volume is 100 ml. Calculate the molar concentration of hydrogen ions in the water solution prepared
Calculate the molar concentration of sodium ions in the water solution prepared from 13 g of sodium sulfate. The final volume is 200 ml. Calculate the molar concentration of potassium ions in the water solution prepared from 3 g of potassium. The final volume is 100 ml. Calculate the molar concentration of hydrogen ions in the water solution prepared from 4 g of potassium hydrogen sulfate. The final volume is 200 ml.

LESSON 25. IONIC EQUATIONS

ionic equations for them:
$H_2SO_4 + NaOH \rightarrow$
$H_2S + KOH \rightarrow$
$Zn(OH)_2 + H_2SO_4 \rightarrow$
$BaCl_2 + K_2SO_4 \rightarrow \underline{\hspace{2cm}}$
$CaCl_2 + Na_2CO_3 \rightarrow$
Caci ₂ + Na ₂ CO ₃
Suggest a chemical reaction which can be expressed by the given short
Suggest a chemical reaction which can be expressed by the given short equation and write it down:
equation and write it down:
equation and write it down:
equation and write it down: $Ag^{+} + I^{-} = AgI$
equation and write it down: $Ag^{+} + I^{-} = AgI$ $H^{+} + OH^{-} = H_{2}O$
equation and write it down: $Ag^{+} + I^{-} = AgI$
equation and write it down: $Ag^{+} + I^{-} = AgI$ $H^{+} + OH^{-} = H_{2}O$
equation and write it down: $Ag^{+} + \Gamma = AgI$ $H^{+} + OH^{-} = H_{2}O$ $Al^{3+} + 3OH^{-} = Al(OH)_{3}$
equation and write it down: $Ag^{+} + I^{-} = AgI$ $H^{+} + OH^{-} = H_{2}O$
equation and write it down: $Ag^{+} + \Gamma = AgI$ $H^{+} + OH^{-} = H_{2}O$ $Al^{3+} + 3OH^{-} = Al(OH)_{3}$ Exercises for homework
equation and write it down: $Ag^{+} + \Gamma = AgI$ $H^{+} + OH^{-} = H_{2}O$ $AI^{3+} + 3OH^{-} = Al(OH)_{3}$

 $K_{2}S + HCl \rightarrow \underline{\hspace{2cm}}$ $Ba(NO_{3})_{2} + H_{2}SO_{4} \rightarrow \underline{\hspace{2cm}}$ $NH_{4}Cl + AgNO_{3} \rightarrow \underline{\hspace{2cm}}$ $CaCl_{2} + Na_{2}SO_{4} \rightarrow \underline{\hspace{2cm}}$

2. Suggest a chemical reaction which can be expressed by the given short ionic equation and write it down:

$$Ca^{2+} + 2F^{-} = CaF_{2}$$

$$CO_3^{2-} + 2H^+ = CO_2 + H_2O$$

$$Zn^{2+} + 4OH^{-} = [Zn(OH)_4]^{2-}$$

LESSON 26. HYDROLYSIS OF INORGANIC SALTS

TEST FOR CLASSWORK

1.	Which ions are present in NaH ₂ PO ₄ solution?							
	a. Na ⁺	b. H ₂ PO ₄ ⁻	c. HI	PO_4^{2-}	d. NaH ₂ ³⁺			
2.	Choose strong electrolytes:							
	a. NaCl	b. KNO ₂	c. C ₆	$H_{12}O_6$	d. HNO ₂			
3.	Choose weak ele	Choose weak electrolytes:						
	a. C_2H_5OH	b. CH ₃ COOH	c. Ag	gNO_3	d. $Zn(OH)_2$			
4.	Which reactions can be expressed by the same ionic equation? a. 2NaOH + H ₂ SO ₄ → Na ₂ SO ₄ + 2H ₂ O b. Na ₂ O + H ₂ SO ₄ → Na ₂ SO ₄ + H ₂ O c. 2Na ₃ PO ₄ + 3Li ₂ SO ₄ → 3Na ₂ SO ₄ + 2Li ₃ PO ₄ d. KOH + HNO ₃ → KNO ₃ + H ₂ O							
5.	Choose the correct ionic equation for the following reaction: $Na_2CO_3 + Ca(OH)_2 \rightarrow CaCO_3 + 2NaOH$ a. $CO_3^{2^-} + Ca(OH)_2 \rightarrow CaCO_3 + 2OH^-$ b. $CO_3^{2^-} + Ca^{2^+} \rightarrow CaCO_3$ c. $Na^+ + OH^- \rightarrow NaOH$ d. $Na_2CO_3 + Ca^{2^+} \rightarrow CaCO_3 + 2Na^+$							
6.	In water solution	ns of which subst	ances there	is acidic n	nedium (pH < 7)?			
	a. HCl	b. H ₂ S	c. ZnCl ₂	d. Ko	Cl			
7.	. In water solutions of which substances there is basic medium $(pH > 7)$?							
	a. H_2SO_4	b. K ₃ PO ₄	c. NH ₃	d. Nl	H ₄ Cl			
8.	What substances a. H ₂ S	will be formed i b. Cl ₂	If we mix so $c. Al_2S_3$		K ₂ S and AlCl ₃ together?			
9. Dissolving HCl in water includes such steps, as:								
	a. ionization and dissociation			c. just ionization				
	b. just dissociation	0 n		d. neither	ionization, nor dissociation			
10.	Dissolving ZnCl	_	es such ste	•				
	a. ionization and			c. just diss				
	b. dissociation a	nd partial hydroly	ys1s	d. just con	nplete hydrolysis			

TEST FOR HOMEWORK

1. Which ions are present in NH₄Cl solution?

	a. N^{3+}	b. NH ₄ ⁺	c. H ⁺	d. (Cl			
2.	Choose strong ela. NaOH	lectrolytes: b. NO ₂	c. HClO ₄	d.]	$ m H_2O_2$	6		
3.	Choose weak ele	ectrolytes:			-	7///		
	a. C ₃ H ₇ OH	b. CH ₃ NH ₂	c. HI	d. (Ca(OH) ₂			
4.	Which reactions can be expressed by the same ionic equation? a. $Ba(OH)_2 + H_2SO_4 \rightarrow BaSO_4 + 2H_2O$ b. $Ba + H_2SO_4 \rightarrow BaSO_4 + H_2$ c. $BaCl_2 + Na_2SO_4 \rightarrow BaSO_4 + 2NaCl$ d. $Ba(NO_3)_2 + K_2SO_4 \rightarrow 2KNO_3 + BaSO_4$							
5.	Choose the correspond to the corresponding to the	$KCl + H_2O$ $Cl^- + H_2O$ Cl H_2O	n for the foll	lowing re	eaction:			
6.	In water solution a. CO ₂	b. AlCl ₃	tances there c. FeBr ₂		c medium (pH < K_2SO_3	< 7)?		
7. In water solutions of which substances there is basic medium $(pH > 7)$?								
	a. NO ₂	b. KNO ₂	c. Na ₂ SiO ₃	d.]	NaCl			
8.	What substances	will be formed	if we mix so	olutions	of Na ₂ SO ₃ and	CrCl ₃ together?		
	a. SO ₂	b. Cr	c. Cr(OH) ₃	d.]	NaCl			
9. Dissolving NaCl in water includes such steps, as:								
	a. ionization and dissociation		c. just ionization					
	b. just dissociation	on		d. neithe	er ionization, no	or dissociation		
10. Dissolving Na ₃ PO ₄ in water includes such steps, as:								
	a. ionization and	dissociation		c. just di	issociation			
	b. dissociation ar	nd partial hydrol	ysis	d. just co	omplete hydroly	ysis		

short ionic forms.	
$RNO_2 + \Pi_2O \leftrightarrow $	
$NH_4NO_3 + H_2O \leftrightarrow $	
CH₂COONa + H₂O ↔	
Write the equation of step	owise hydrolysis for given substances, provide
complete and short ionic form	ns.
$Na_2CO_3 + H_2O \leftrightarrow $	
2 3 2	
$FeCl_2 + H_2O \leftrightarrow$	
2 2	
0-	
	
Exp	ERCISES FOR HOMEWORK
	ACISES FOR HOWE WORK
Write the equation of hydro	olysis for given substances, provide its complete
short ionic forms.	
$I iF + H_0O \leftrightarrow$	

CH ₃ COOK + H ₂ O ←	→				
					\
Write the equation	on of stepwise	hydrolysis fo	or given	substances,	provide
complete and short	ionic forms.				
$K_2SO_3 + H_2O \leftrightarrow $					
				V	
		2			
		1			
$\text{MgC}_{12} + \text{H}_2\text{O} \leftrightarrow \underline{\hspace{1cm}}$					

LESSON 27. THE SAMPLE OF CONTROL TASK #4

	aggest a chemical reaction which can be expressed by the given short in
_	quation and write it down:
30	$Ca^{2+} + 2PO_4^{3-} \rightarrow Ca_3(PO_4)_2$
-	
	ontinue equations of chemical reactions, balance and write complete and shape and shape for them.
	nic equations for them:
C	$a(OH)_2 + H_3PO_4 \rightarrow \underline{\hspace{2cm}}$
co	Vrite the equation of stepwise hydrolysis for given substances, provide complete and short ionic forms. $nSO_4 + H_2O \leftrightarrow \underline{\hspace{2cm}}$
_	
_	
_	
_	
_	
In	dicate the pH level in water solutions of the following substances:
C	aCl_2
	${ m eBr}_3$
Li	i ₃ PO ₄
N	H_4NO_2
C	alculate the mass of sulfate ions formed after the addition of 3L of sulfur (
	xide into 2L of liquid water.
U.	and into 22 of inquite water.
-	0.5
-	
-	

LESSON 28. HYDROGEN AND WATER

Write four reactions according to the following classic chain of chemical reactions
and balance them:
$H_2 \rightarrow H_2O \rightarrow NaOH \rightarrow H_2O \rightarrow HCl$
1
2
3
4
Write the third reaction in the complete and short ionic forms:
Write four reactions according to the following classic chain of chemical reactions
and balance them:
$H_2O \rightarrow H_2SO_4 \rightarrow H_2 \rightarrow NH_3 \rightarrow NH_4Cl$
1
2
3
4.
Write the fourth reaction in the complete and short ionic forms:
Calculate the mass of water produced from 10 L of hydrogen and 20 g of copper
(II) oxide.
Calculate the mass of sulfuric acid produced in the reaction between 20 L of sulfur
Calculate the mass of sulfuric acid produced in the reaction between 20 L of sulfur (VI) oxide and 30 g of water.
Calculate the mass of sulfuric acid produced in the reaction between 20 L of sulfur (VI) oxide and 30 g of water.

	Calculate the molarity of sodium hydroxide water solution formed after dissolven
,	2 g of sodium in 300 g of water. The density of the final solution is approxima equal to 1 g/ml.
,	The mass of an alloy made from sodium and potassium was equal to 5 g. The n
]	percentage of sodium in that alloy was equal to 40 %. Calculate the volum
]	hydrogen produced after that alloy had been put into water.
-	
	EXERCISES FOR HOMEWORK
	Write four reactions according to the following classic chain of chemical react and balance them:
	$KH \to KOH \to H_2O \to H_2 \to H_2S$
	1
,	2
	3
4	4
,	Write the second reaction in the complete and short ionic forms:
-	
	Write four reactions according to the following classic chain of chemical react and balance them:
	$H_2O \rightarrow NaOH \rightarrow NaHCO_3 \rightarrow H_2O \rightarrow HNO_3$

4	
Write t	he second reaction in the complete and short ionic forms:
Calcula	te the mass of water produced from 5 L of hydrogen and 10 g of tin (II)
	te the mass of barium hydroxide produced in the reaction between 8 g m oxide and 20 g of water.
	te the mass of calcium hydroxide produced in the reaction between 5 g
of calci	um and 30 g of water.
of calcu	um and 30 g of water.
Calcula dissolvi	te the molarity of orthophosphoric acid water solution formed after ng 2 g of phosphorus (V) oxide in 200 g of water. The density of the final
Calcula dissolvi	te the molarity of orthophosphoric acid water solution formed after
Calcula dissolvi	te the molarity of orthophosphoric acid water solution formed after ng 2 g of phosphorus (V) oxide in 200 g of water. The density of the final
Calcula dissolvi solution	te the molarity of orthophosphoric acid water solution formed after ng 2 g of phosphorus (V) oxide in 200 g of water. The density of the final is approximately equal to 1 g/ml.
Calcula dissolvi solution	te the molarity of orthophosphoric acid water solution formed after ng 2 g of phosphorus (V) oxide in 200 g of water. The density of the final
Calcula dissolvi solution The mato 7 g.	te the molarity of orthophosphoric acid water solution formed aftering 2 g of phosphorus (V) oxide in 200 g of water. The density of the final is approximately equal to 1 g/ml. ass of a mixture made from magnesium oxide and calcium oxide was equal

LESSON 29. HALOGENS

TEST FOR CLASSWORK

- 1. In which reactions hydrogen atoms act as reducers?
 - a. $H_2 + Cl_2 \rightarrow 2HCl$
 - b. $2K + H_2 \rightarrow 2KH$
 - c. $CuCl_2 + H_2 \rightarrow Cu + 2HCl$
 - d. $3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$
- In which reactions hydrogen atoms act as oxidizers?
 - a. $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$
 - b. $2CH_4 + O_2 \rightarrow 2CO + 4H_2$
 - c. $2Na + 2H_2O \rightarrow 2NaOH + H_2$
 - d. $3H_2 + N_2 \rightarrow 2NH_3$
- 3. In which reactions hydrogen gas is released?
 - a. $H_2O + K \rightarrow b. HCl + Zn \rightarrow$
- c. $H_2SO_4 + Cu$
- d. HNO₃ + Fe \rightarrow
- Choose ions represented as H⁺ in ionic equations:
 - a. H₃O⁺
- b. $H_3O_2^-$
- c. $H_5O_2^+$
- d. OH
- Bromine (Br_2) in normal conditions is a:
 - a. gas
- b. liquid
- c. solid substance
- d. plasma
- Which substance is used in qualitative analysis of solutions for the presence of halogens anions?
 - a. NaNO₃
- b. H₂SO₄
- c. AgNO₃
- d. KOH

- 7. Which reactions are possible?
 - a. $KI + Cl_2 \rightarrow$
- b. $KBr + I_2 \rightarrow$
- c. NaBr + Cl₂ \rightarrow d. NaCl + I₂ \rightarrow
- Calculate the sum of all coefficients in the redox reaction:
 - $LiOH + Cl_2(t^{\circ}) \rightarrow LiCl + LiClO_3 + H_2O$
 - a. 9
- b. 10
- c. 17
- d. 18
- 9. Which reactions can be expressed by the ionic equation: $Ca + 2H^+ \rightarrow Ca^{2+} + H_2$
 - a. $Ca + 2HF \rightarrow CaF_2 + H_2$
 - b. $Ca + 2HCl \rightarrow CaCl_2 + H_2$
 - c. $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$
 - d. $Ca + H_2 \rightarrow CaH_2$
- 10. Choose formulas of hydrates:
 - a. BaH₂
- b. NaOH
- c. $CuSO_4 \cdot 5H_2O$ d. $H_2C_2O_4 \cdot 2H_2O$

TEST FOR HOMEWORK

In which reactions chlorine atoms act as oxidizers?

a. $KOH + HCl \rightarrow KCl + H_2O$

c. $KCl + AgNO_3 \rightarrow KNO_3 + AgCl$

b. $3Cl_2 + 2P \rightarrow 2PCl_3$

d. $3Cl_2 + 2Fe \rightarrow 2FeCl_3$

2. In which reactions iodine atoms act as reducers?

a. $2KI + Cl_2 \rightarrow 2KCl + I_2$

c. $2Na + I_2 \rightarrow 2NaI$

b. $I_2 + H_2 \rightarrow 2HI$

d. $6KI + 2KMnO_4 + 4H_2O \rightarrow 3I_2 + 2MnO_2 + 8KOH$

3. In which reactions chlorine gas is released?

a. $MnO_2 + HCl \rightarrow$

c. BaCl₂ + H₂SO₄ \rightarrow

b. $KMnO_4 + HCl \rightarrow$

d. $FeCl_3 + H_2O \rightarrow$

4. Choose ions formed in water solution of I_2 in the presence of KI:

a. I_3^-

b. I₂

c. I₃³⁻

d. I_2^{2-}

5. Iodine (I_2) in normal conditions is a:

a. gas

b. liquid

c. solid substance

d. plasma

6. Indicate the colors of AgCl, AgBr and AgI:

a. white / yellow / red

b. white / pale yellow / yellow

c. yellow / pale yellow / white

d. red / yellow / white

7. Which reactions are possible?

a. NaBr + $Cl_2 \rightarrow$

c. HBr + Cl₂ \rightarrow

b. NaBr + $I_2 \rightarrow$

d. NaCl + $I_2 \rightarrow$

Calculate the sum of all coefficients in the redox reaction:

 $KI + CO_2 + O_2 \rightarrow K_2CO_3 + I_2$

a. 11

b. 10 c. 9

d. 8

Which reactions can be expressed by the ionic equation:

 $2Br^- + Cl_2 \rightarrow 2Cl^- + Br_2$

a. $2AgBr + CaCl_2 \rightarrow CaBr_2 + 2AgCl$

b. $2HBr + Cl_2 \rightarrow 2HCl + Br_2$

c. $2NaBr + CaCl_2 \rightarrow CaBr_2 + 2NaCl$

d. $2KBr + Cl_2 \rightarrow 2KCl + Br_2$

10. Choose formulas of hydrides:

a. CaH₂

b. LiH

c. FeSO₄·5H₂O

d. H₂C₂O₄

1.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	$NaCl \rightarrow Cl_2 \rightarrow FeCl_3 \rightarrow KCl \rightarrow AgCl$
	1
	2
	3
	4
	Write the third reaction in the complete and short ionic forms:
	Write the fourth reaction in the complete and short ionic forms:
2.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	$K \to KI \to KBr \to KCl \to KNO_3$
	1
	2
	3
	4
	Write the third reaction in the complete and short ionic forms:
	Write the fourth reaction in the complete and short ionic forms:
3.	Calculate the volume of hydrogen chloride that can be produced from 100 g of
	solid sodium chloride with the help of concentrated sulfuric acid.

	simplest formula of a substance if in 200 g of it there are
of calcium, 24	g of carbon and 96 g of oxygen.
The mass of t	he mixture made from iron and copper is 15 g. That mixture rea
with 7.75 L	of chlorine gas. Find the mass percentage of copper in the in
mixture.	
	EXERCISES FOR HOMEWORK
Write four re	actions according to the following classic chain of chemical reac
and balance t	hem:
$Br_2 \rightarrow ZnBr_2$ -	\rightarrow NaBr \rightarrow Br ₂ \rightarrow KBrO ₃
1.	
2.	
3	
4.	
Write the firs	t reaction in the complete and short ionic forms:
ville the ms	treaction in the complete and short forms.

2.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	$F_2 \rightarrow HF \rightarrow NiF_2 \rightarrow ZnF_2 \rightarrow CaF_2$
	1
	2
	3
	4
	Write the second reaction in the complete and short ionic forms:
	Write the fourth reaction in the complete and short ionic forms:
3.	Calculate the mass of 5 % hydrochloric acid that can be produced from 100 g of solid potassium chloride with the help of concentrated sulfuric acid.
1.	Find the simplest formula of a compound. The mass percentages of elements
	in the compound are as follows: 18.78 % of sodium, 28.98 % of chlorine and
	52.24 % of oxygen.
_	
5.	Find out the simplest formula of a substance if in 699 g of it there are 411 g of barium, 96 g of sulfur and 192 g of oxygen.
5.	The mass of the mixture made from iron and copper is 30 g. That mixture reacted
•	with hydrochloric acid and produced 0.5 L of hydrogen. Find the mass percentage
	with hydrochioric acid and produced 0.5 L of hydrogen. Find the mass percentage
	of copper in the initial mixture.

LESSON 30. OXYGEN AND ITS COMPOUNDS

Write four reactions according to the following classic chain of chemical and balance them:	reactions
$O_2 \rightarrow Na_2O_2 \rightarrow Na_2O \rightarrow NaNO_3 \rightarrow O_2$	
1	
2	
3.	
4	
Write the third reaction in the complete and short ionic forms:	
Write the fourth reaction in the complete and short ionic forms:	
Write four reactions according to the following classic chain of chemical and balance them:	reactions
$O_3 \rightarrow O_2 \rightarrow Na_2O_2 \rightarrow H_2O_2 \rightarrow O_2$	
1.	
2	
3	
4	
Write the kinetic equation for the first reaction, and the equation for the	e constant
of equilibrium for that process:	
Write the third reaction in the complete and short ionic forms:	
Calculate the volume of oxygen needed to burn 10 g of potassium.	Consider

The mass o	f oxygen atoms i	n the sample of	barium sulfate is o	equal to 11.7 g.
out the mas	s of the whole sa	mple.		7/1
			-40	
The mass o	f the mixture ma	nde from gold a	nd zinc is 30 g. Th	at mixture has
burnt. The	mass of the resul	ting mixture is o	qual to 40 g. Find	the mass percen
of gold in tl	e initial mixture	•		
				
			,	
	Ex	ERCISES FOR HO	MEWORK	
VV 7 : 4 - C		4 . 4b . 6 . II	ll	£ alamaiaala
write four and balanc		ing to the follow	ing classic chain o	i chemicai reac
	$\rightarrow \text{Na}_2\text{SO}_3 \rightarrow \text{BaS}_3$	0. \\$0.		
3				
4.				
			d short ionic form	
		- 		~ •

2.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	$O_2 \rightarrow KO_2 \rightarrow K_2O_2 \rightarrow KOH \rightarrow KBr$
	1
	2
	3
	4.
	Write the third reaction in the complete and short ionic forms:
	Write the fourth reaction in the complete and short ionic forms:
3.	Calculate the volume of oxygen needed to burn 3 g of sodium. Consider sodium peroxide as the only one product of this reaction.
4.	Find the volume percentage of acetylene in its mixture with nitrogen. 20 L of that
	mixture reacted with 7 L of oxygen (in normal conditions).
5.	The mass of oxygen atoms in the sample of copper sulfate pentahydrate is equal to
	21.7 g. Find out the mass of the whole sample.
6.	The mass of the mixture made from platinum and aluminum is 25 g. That mixture
	has been burnt. The mass of the resulting mixture is equal to 30 g. Find the mass
	percentage of platinum in the initial mixture.

LESSON 31. SULFUR AND ITS COMPOUNDS

TEST FOR CLASSWORK

1	Chance	formula	c of	ovides
1.	CHOOSE	TOTTILLIA	S OI	OXIUES.

a. H₂O

b. H₂O₂

c. BaO

d. BaO₂

a. K₂O

b. K_2O_2

c. KO₂

d. CaO₂

3. Choose formulas of superoxides:

a. Na₂O

b. NaO₂

c. PbO₂

d. KO₂

4. Oxygen will be released in reactions:

a. Na + H₂O \rightarrow

c. KClO₃ (t°) \rightarrow

b. NaNO₃ (t°) \rightarrow

d. CaCO₃ (t°) \rightarrow

5. In which reactions sulfur atoms act as reducers:

a. $Na_2S + 2HCl \rightarrow 2NaCl + H_2S$

c. $2H_2S + O_2 \rightarrow 2S + 2H_2O$

b. $2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O$

d. $Cu + S \rightarrow CuS$

6. Choose substances which react with concentrated H₂SO₄:

a. NaCl (solid)

b. KCl (water solution)

c. Ag

d. Au

7. Which reactions are possible?

a. Fe + H_2SO_4 (dilute) \rightarrow

b. Fe + H_2SO_4 (concentrated / low temperature) \rightarrow

c. Al + H_2SO_4 (concentrated / high temperature) \rightarrow

d. Pt + $H_2SO_4 \rightarrow$

8. Calculate the sum of all coefficients in the redox reaction:

 $C + H_2SO_4$ (concentrated) $\rightarrow CO_2 + SO_2 + H_2O$

a. 5

b. 6

c. 7

d. 8

9. Which reactions can be expressed by the following ionic equation:

 $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$

a. $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$

b. $Ba + H_2SO_4 \rightarrow BaSO_4 + H_2$

c. $Ba(NO_3)_2 + K_2SO_4 \rightarrow BaSO_4 + 2KNO_3$

d. $Ba(OH)_2 + H_2SO_4 \rightarrow BaSO_4 + 2H_2O$

10. Choose formulas of sulfites:

a. BaS

b. K_2S

c. K_2SO_3

d. Na₂SO₃

TEST FOR HOMEWORK

c. FeS₂

 $d.\ Fe_{3}S_{4}$

1. Choose formula of iron sulfide used in industrial sulfuric acid production:

b. Fe_2S_3

a. FeS

2.	Choose correct statements about 1	nydrogen sulfide (H ₂ S):
	a. it has an odor of rotten eggs	
	b. it is solid in normal conditions	
	c. it is weak electrolyte	
	d. its water solution is acidic	
3.	Choose substances which cannot	react with dilute sulfuric acid (H ₂ SO ₄):
	a. NaOH b. NaCl _(solid)	c. Cu d. CuO
4.	Oxygen will be released in reaction	ons:
	a. $H_2O_2(t^\circ) \rightarrow c. Na$	$OH(t^{\circ}) \rightarrow$
	b. $AgNO_3(t^\circ) \rightarrow d. Ca$	$(OH)_2 (t^{\circ}) \rightarrow$
5.	In which reactions sulfur atoms a	ct as oxidizers:
	a. $SO_2 + C \rightarrow CO_2 + S$	$c. 5SO_3 + 2P \rightarrow 5SO_2 + P_2O_5$
	b. $2H_2SO_3 + O_2 \rightarrow 2H_2SO_4$	d. $Mg + S \rightarrow MgS$
6.	Choose substances which react w	ith concentrated H ₂ SO ₄ :
	a. BaCl _{2 (solid)}	c. Pt
	b. BaCl _{2 (water solution)}	d. P
7.	Which reactions are possible?	
	a. $FeSO_3 + H_2SO_4 \rightarrow$	c. $C + H_2SO_4 \rightarrow$
	b. $Al_2S_3 + H_2O \rightarrow$	d. $Na_2SO_4 + K_2S \rightarrow$
8.	Calculate the sum of all coefficie	nts in the redox reaction:
	$S + H_2SO_4$ (concentrated) $\rightarrow SO_2 + H_2$	O
	a. 5 b. 6 c. 7	d. 8
9.	Which reactions can be expressed	by the following ionic equation:
	$2H^+ + S^{2-} \longrightarrow H_2S$	
	a. $2HCl + K_2S \rightarrow 2KCl + H_2S$	
	b. $H_2SO_4 + BaS \rightarrow BaSO_4 + H_2S$	
	c. $2HNO_3 + Na_2S \rightarrow 2NaNO_3 + Na_2S \rightarrow 2Na_2S \rightarrow$	H_2S
	$d. H_2 + S \rightarrow H_2S$	
10.	Choose formulas of sulfides:	
	a. ZnS b. Na_2S c. K_2	S d. Na_2SO_3

1.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	$S \rightarrow SO_2 \rightarrow SO_3 \rightarrow ZnSO_4 \rightarrow K_2SO_4$
	1
	2
	3.
	4.
	Write the third reaction in the complete and short ionic forms:
	Write the fourth reaction in the complete and short ionic forms:
2.	Write four reactions according to the following classic chain of chemical reactions and balance them:
	$CuS \rightarrow SO_2 \rightarrow S \rightarrow H_2S \rightarrow CoS$
	1.
	2
	3.
	4.
	Write kinetic equation for the third reaction, and the equation for the constant
	of equilibrium for that process:
	Write the fourth reaction in the complete and short ionic forms:
3.	Find the mass percentage of copper in its mixture with zinc. 20 g of that mixture
	reacted with the excess of dilute sulfuric acid and produced 1.1 L of a gas.

in the initial mixture.
The mass percentage of sulfur VI oxide in oleum is 20 %. What mass of that ole is required to prepare 1 kg of pure sulfuric acid?
The mass of the mixture made from copper and silver is 4 g. That mixture rea
with concentrated sulfuric acid and produced 0.9074 L of sulfur dioxide. It is mass percentage of silver in the initial mixture.
EXERCISES FOR HOMEWORK
Write four reactions according to the following classic chain of chemical reactions
and balance them:
$H_2SO_4 \rightarrow H_2S \rightarrow KHS \rightarrow K_2S \rightarrow SO_2$
1
2
3
4
Write the second reaction in the complete and short ionic forms:
White the third reaction in the complete and short ionic forms:
Write the third reaction in the complete and short ionic forms:
Write four reactions according to the following classic chain of chemical reactions

ne first reaction in the complete and short ionic forms:
ne first reaction in the complete and short ionic forms:
ne first reaction in the complete and short ionic forms:
ne fourth reaction in the complete and short ionic forms:
zinc reacted with 70 g of concentrated sulfuric acid. Calculate the volunr (IV) oxide released in this process.
acid and produced 68 g of salts. Find the mass percentage of zinc all mixture.
gg percentage of gulfur (VI) avide in cloum is 10 0/. What mass of the
ss percentage of sulfur (VI) oxide in oleum is 10 %. What mass of the required to prepare 1 kg of sulfuric acid with the mass percentage of 3
ss of the mixture made from potassium and sodium sulfides is 5 g. The reacted with hydrochloric acid and produced 1.2688 L of hydroger Find the mass percentage of potassium sulfide in the initial mixture.
a is

LESSON 32. NITROGEN AND ITS COMPOUNDS

d balance them: $_{2} \rightarrow \mathrm{NH_{3}} \rightarrow \mathrm{NH_{4}NO_{3}} \rightarrow \mathrm{N_{2}O} \rightarrow \mathrm{NO_{2}}$ rite the second reaction in the complete and short ionic forms: rite the kinetic equation for the fourth reaction, and the equation for e constant of equilibrium for that process:
rite the second reaction in the complete and short ionic forms: rite the kinetic equation for the fourth reaction, and the equation for e constant of equilibrium for that process:
rite the second reaction in the complete and short ionic forms: rite the kinetic equation for the fourth reaction, and the equation for econstant of equilibrium for that process:
rite the second reaction in the complete and short ionic forms: rite the kinetic equation for the fourth reaction, and the equation for econstant of equilibrium for that process:
rite the second reaction in the complete and short ionic forms: rite the kinetic equation for the fourth reaction, and the equation for econstant of equilibrium for that process:
rite the second reaction in the complete and short ionic forms: rite the kinetic equation for the fourth reaction, and the equation for econstant of equilibrium for that process:
rite the kinetic equation for the fourth reaction, and the equation for econstant of equilibrium for that process:
e constant of equilibrium for that process:
e constant of equilibrium for that process:
rite four reactions according to the following classic chain of chemical reactions
rite four reactions according to the following classic chain of chemical reactions
ad balance them: $a(NO_3)_2 \rightarrow NO_2 \rightarrow HNO_3 \rightarrow KNO_3 \rightarrow KNO_2$
rite the second reaction in the complete and short ionic forms:
rite the third reaction in the complete and short ionic forms:
alculate the mass of nitric acid produced from $12\ L$ of nitrogen (IV) oxiden normal conditions) and $25\ g$ of water in the presence of oxygen.

droxide solution and 200 g of 10 % nitric acid?
nass percentage of potassium nitrate in its mixture with iron (III) nit
nass percentage of potassium nitrate in its mixture with iron (III) nit at mixture has been heated up and produced 2 L of a brown gas.
at mixture has been heated up and produced 2 L of a brown gas.
EVED CIGES FOR HOMEWORK
EXERCISES FOR HOMEWORK
r reactions according to the following classic chain of chemical reac
ce them:
$HNO_3 \rightarrow Zn(NO_3)_2 \rightarrow NO_2 \rightarrow NaNO_3$
first reaction in the complete and short ionic forms:

2.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	$Zn(NO_3)_2 \rightarrow Ba(NO_3)_2 \rightarrow HNO_3 \rightarrow AgNO_3 \rightarrow KNO_3$
	1
	2
	3
	4
	Write the first reaction in the complete and short ionic forms:
	Write the second reaction in the complete and short ionic forms:
3.	Calculate the mass of nitric acid produced from 10 L of nitrogen (IV) oxide (in normal conditions) and 7 g of water in the absence of oxygen.
4.	What is the volume of nitrogen (in normal conditions) formed after
	the decomposition of 6 g of ammonium nitrite?
5.	Calculate the volume of nitrogen released in the reaction between 18 g of nitric acid and 3 g of zinc.
6.	Find the mass percentage of copper (II) nitrate decomposed during the heating.
	The initial mass was equal to 20 g. The final mass of the mixture of solid
	substances after the heating is equal to 18 g.

LESSON 33. PHOSPHORUS AND ITS COMPOUNDS

TEST FOR CLASSWORK

1. Choose formulas of compounds in which nitrogen has negative oxidation state:

a. Na₃N

b. NaN₃

c. NH₄Br

d. NO₂

2. During NH₄⁺ cation formation nitrogen atom behaves as:

a. electron pair donor

c. proton donor

b. electron pair acceptor

d. proton acceptor

3. Choose redox reactions:

a. $N_2O_3 + H_2O \rightarrow$

c. $N_2O_5 + H_2O \rightarrow$

b. $NO_2 + H_2O \rightarrow$

d. $NH_3 + O_2 \rightarrow$

4. NO₂ will be released in reactions:

a. KNO₃ (t°) \rightarrow

c. AgNO₃ (t°) \rightarrow

b. $Zn(NO_3)_2(t^\circ) \rightarrow$

d. $Cu + HNO_3$ (concentrated) \rightarrow

5. Which substances react with HNO₃:

a. Hg

b. KOH

c. KCl

d. Au

6. Choose molecular compounds:

a. white phosphorus

c. ammonia

b. red phosphorus

d. ammonium chloride

7. Gas will be released in the reaction:

a. Fe + HNO₃ \rightarrow

c. FeO + HNO₃ \rightarrow

b. $NH_4Cl + H_2SO_4 \rightarrow$

d. $NH_4NO_3(t^\circ) \rightarrow$

8. Calculate the sum of all coefficients in the redox reaction:

 $Zn + HNO_3 \rightarrow Zn(NO_3)_2 + N_2O + H_2O$

a. 10

b. 13

c. 24

d. 20

9. Which reactions can be expressed by the following ionic equation:

 $3Ca^{2+} + 2PO_4^{3-} \rightarrow Ca_3(PO_4)_2$

a. $3CaCl_2 + 2H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 6HCl$

b. $3CaCl_2 + 2Na_3PO_4 \rightarrow Ca_3(PO_4)_2 + 6NaCl$

c. $3CaSO_4 + 2K_3PO_4 \rightarrow Ca_3(PO_4)_2 + 3K_2SO_4$

 $d. \ 3Ca + 2H_3PO_4 \longrightarrow Ca_3(PO_4)_2 + 3H_2$

10.	Dihydrogen phosphate will	be produced in the reaction between:
	a. 2 mol NaOH and 1 mol I	H_3PO_4
	b. 1 mol NaOH and 1 mol I	H_3PO_4
	c. 3 mol NaOH and 1 mol I	H_3PO_4
	d. 1 mol NaOH and 3 mol I	H_3PO_4
		TEST FOR HOMEWORK
1.	Choose formulas of compo	unds in which nitrogen has positive oxidation state:
	a. NaNO ₃ b. NaNO ₂	c. NH_3 d. N_2
2.	Describe pH level in the wa	ter solution of ammonia?
	a. slightly acidic	c. strongly acidic
	b. slightly basic	d. strongly basic
3.	Choose redox reactions:	
	a. $NH_3 + HCl \rightarrow$	c. NO + $O_2 \rightarrow$
	b. $N_2 + H_2 \rightarrow$	d. $AgNO_3 + KCl \rightarrow$
4.	O ₂ will be released in reacti	ons:
	a. NaNO ₃ (t°) \rightarrow	c. NH_4NO_3 (t°) \rightarrow
	b. $Cu(NO_3)_2(t^\circ) \rightarrow$	d. $NH_4NO_2(t^\circ) \rightarrow$
5.	Which substances react with	h AgNO ₃ :
	a. KF b. KCl	c. KBr d. KI
6.	Choose ionic compounds:	
	a. phosphine	c. ammonium phosphate
	b. phosphorus (III) chloride	d. potassium dihydrogen phosphate
7.	Water will be produced in t	he reaction:
	a. $Zn + HNO_3 \rightarrow$	c. CuO + HNO ₃ \rightarrow
	b. $NH_4Cl + H_3PO_4 \rightarrow$	d. $NH_4Cl + KOH \rightarrow$
8.	Calculate the sum of all coe	efficients in the redox reaction:
	$Ca + HNO_3 \rightarrow Ca(NO_3)_2 +$	$N_2 + H_2O$
	a. 12 b. 17	c. 27 d. 29
9.	Which reactions can be exp	pressed by the ionic equation: $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$
	a. $NH_4NO_3 + LiOH \rightarrow LiN$	$O_3 + NH_3 + H_2O$
	b. $(NH_4)_2SO_4 + Ba(OH)_2 -$	$\Rightarrow BaSO_4 + 2NH_3 + 2H_2O$
	c. $NH_4Cl + NaOH \rightarrow NaCl$	$1 + NH_3 + H_2O$
	d. $NH_4H_2PO_4 + 3KOH \rightarrow I$	$C_{3}PO_{4} + NH_{3} + 3H_{2}O$

b. 1 mol NaOH and 2 mol H ₃ PO ₄ d. 1 mol NaOH and 3 mol H ₃ PO ₄
EXERCISES FOR CLASSWORK
Write four reactions according to the following classic chain of chemical reactions
and balance them:
$P \rightarrow P_2O_3 \rightarrow P_2O_5 \rightarrow H_3PO_4 \rightarrow Ca_3(PO_4)_2$
1
2
3
4
Write the fourth reaction in the complete and short ionic forms:
Write four reactions according to the following classic chain of chemical reactions
and balance them:
$H_3PO_4 \rightarrow K_3PO_4 \rightarrow K_2HPO_4 \rightarrow KH_2PO_4 \rightarrow Na_3PO_4$
1
2
3
4
Write the second reaction in the complete and short ionic forms:
Calculate the mass of phosphorus (V) oxide that is needed to make 300 ml of
orthophosphoric acid solution with the molarity of 0.1 mol/L.
7

10. Monohydrogen phosphate will be produced in the reaction between:

a. 2 mol NaOH and 1 mol H_3PO_4

c. 4 mol NaOH and 1 mol H_3PO_4

_	
-	
-	
-	
-	What salt will be formed in the reaction between 17 g of sodium hydroxide
	What salt will be formed in the reaction between 17 g of sodium hydroxide 90 g of phosphoric acid? Calculate the mass of a salt(s).
_	g of phosphoric acid: Calculate the mass of a sait(s).
-	
-	
-	
	2
_	
	EXERCISES FOR HOMEWORK
	Write four reactions according to the following classic chain of chemical react and balance them:
í	
l	and balance them:
]	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$
1 1	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$
1 2 3	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$.
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$ \vdots g_1 g_2 g_3 g_4 g_4 g_4 g_4 g_5 g_6 g_6
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$ \vdots \vdots
1 2 3	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$ \vdots \vdots
2 3 4 Y	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$ \vdots \vdots \vdots $Write the fourth reaction in the complete and short ionic forms:$
2 3 2 1	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$ Write the fourth reaction in the complete and short ionic forms: Write four reactions according to the following classic chain of chemical reactions.
2 3 4 1 1 2 3	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$
2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$ \vdots
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$ \vdots
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	and balance them: $H_3PO_4 \rightarrow Ca(H_2PO_4)_2 \rightarrow NaH_2PO_4 \rightarrow Na_3PO_4 \rightarrow Li_3PO_4$ \vdots

Write the fourth reaction in the complete and short ionic forms:
Calculate the mass of phosphorus that is needed to make 200 ml o orthophosphoric acid solution with the molarity of 0.05 mol/L.
Calculate the mass of a product of the reaction between 2 g of sodium oxide and 8 g of phosphorus (V) oxide.
Calculate the mass of a salt(s) produced in the reaction between 4 g of potassiun
hydroxide and 10 g of phosphoric acid.
What salt will be formed in the reaction between 11 g of calcium hydroxide and 3 g of phosphoric acid? Calculate the mass of a salt(s).

LESSON 34. CARBON AND ITS COMPOUNDS

1.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	$C \rightarrow CO_2 \rightarrow Na_2CO_3 \rightarrow CaCO_3 \rightarrow CO_2$
	1
	2
	3
	4
	Write the third reaction in the complete and short ionic forms:
	Write the fourth reaction in the complete and short ionic forms:
2.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	$Al_4C_3 \rightarrow CH_4 \rightarrow CO_2 \rightarrow CO \rightarrow CO_2$
	1
	2.
	3
	4.
	Write the kinetic equation for the second reaction, and the equation for the constant of equilibrium for that process:
	Write the kinetic equation for the third reaction, and the equation for the constant
	of equilibrium for that process:
3.	Calculate the volume of carbon (IV) oxide produced after the addition of
	the excess of hydrochloric acid to 100 ml of 0.2M solution of sodium carbonate.

Calculate the mass of a salt(s) produced in the reaction between 5 L of ca dioxide and 30 g of potassium hydroxide solution with the mass percentage of
The mass of the mixture of calcium carbonate and barium carbonate is 5
The mass of the mixture after the complete thermal decomposition is 345 g.
the mass percentage of calcium carbonate in the initial mixture.
EXERCISES FOR HOMEWORK
Write four reactions according to the following classic chain of chemical reac
$K_2CO_3 \rightarrow CO_2 \rightarrow CaCO_3 \rightarrow Ca(HCO_3)_2 \rightarrow Na_2CO_3$
1
2
3
4
Write the third reaction in the complete and short ionic forms:
Write the fourth reaction in the complete and short ionic forms:

 $CaC_2 \rightarrow C_2H_2 \rightarrow CO_2 \rightarrow (NH_4)_2CO_3 \rightarrow CO_2$

of the excess of sulfuric acid to 200 m	olete and short ionic forms:
Write the third reaction in the comp Write the fourth reaction in the com Calculate the volume of carbon of the excess of sulfuric acid to 200 m Calculate the mass of a product of	plete and short ionic forms: upplete and short ionic forms: u (IV) oxide produced after the addition
Write the third reaction in the comp Write the fourth reaction in the com Calculate the volume of carbon of the excess of sulfuric acid to 200 m Calculate the mass of a product of	plete and short ionic forms: upplete and short ionic forms: upplete and short ionic forms:
Write the fourth reaction in the com Calculate the volume of carbon of the excess of sulfuric acid to 200 m Calculate the mass of a product of	nplete and short ionic forms:
Calculate the volume of carbon of the excess of sulfuric acid to 200 m	n (IV) oxide produced after the addition
Calculate the volume of carbon of the excess of sulfuric acid to 200 m	n (IV) oxide produced after the addition
Calculate the mass of a product of	
-	
-	
	f the reaction between 3 g of strontium oxide
	duced in the reaction between 6 L of carbon de solution with the mass percentage of 3 %.
The mass of the mixture of sodium	n carbonate and potassium carbonate is 10 g
	er the reaction with the excess of hydrochloric
	the mass percentage of sodium carbonate
in the initial mixture.	till inner problems of sources our sources.

LESSON 35. SILICON AND ITS COMPOUNDS

TEST FOR CLASSWORK

	TEST FOR CLASSWORK
1.	In which kind of hybridization electron orbitals of the outer shell of carbon atoms exist in diamond?
	a. sp b. sp^2 c. sp^3 d. no hybridization
2.	In which kind of hybridization electron orbitals of the outer shell of carbon atoms exist in graphite?
	a. sp b. sp ² c. sp ³ d. no hybridization
3.	Which substances should we add to CaCO ₃ precipitate in water solution to dissolve it? a. HCl b. KOH c. CO ₂ d. HNO ₃
4.	What gas is produced in CaC ₂ hydrolysis reaction?
	a. CO_2 b. O_2 c. C_2H_2 d. H_2
5.	What gas is produced in Al ₄ C ₃ hydrolysis reaction?
	a. H_2 b. CH_4 c. CO_2 d. H_2S
6.	In which reactions precipitate is formed?
	a. $Ca(OH)_2 + HCl \rightarrow c. Na_2SiO_3 + HCl \rightarrow$
	b. $CaCl_2 + Na_2CO_3 \rightarrow$ d. $KHCO_3 + HCl \rightarrow$
7.	Which reactions are possible?
	a. $K_2SiO_3 + CO_2 \rightarrow$ c. $K_2CO_3 + SiO_2 \rightarrow$
	b. $Mg_2Si + HCl \rightarrow d. Na_2SiO_3 + K_2CO_3 \rightarrow$
8.	Calculate the sum of all coefficients in the redox reaction:
	$SiH_4 + NaOH + H_2O \rightarrow Na_2SiO_3 + H_2$
	a. 9 b. 10 c. 11 d. 12
9.	In which reactions a gas is formed:
	a. $CaCO_3 + HCl \rightarrow$
	b. $CaCO_3 + CO_2 + H_2O \rightarrow$
	c. $Ca(HCO_3)_2 + H_2SO_4 \rightarrow$
	d. $Ca(HCO_3)_2(t^\circ) \rightarrow$

10. In which reactions carbon atoms behave as oxidizers?

a.
$$C + CuO \rightarrow Cu + CO$$

b.
$$C + 4HNO_{3 \text{ (concentrated)}} \rightarrow CO_2 + 4NO_2 + 2H_2O$$

$$c.\ C_2H_2+H_2 \to C_2H_4$$

d.
$$2C + Ca \rightarrow CaC_2$$

TEST FOR CLASSWORK

1.	a. molecular	b. ionic	c. atomic	d. metallic
2.	With which che	mical element h	ydrogen atoms fo	Form the most stable compounds?
3.				ater solution to cause precipitation?
4.	-		t be decomposed	d at high temperature: d. MgCO ₃
5.	Choose formula a. NaHCO ₃		s:	d. (MgOH) ₂ CO ₃
6.	In which reaction a. Ca(HCO ₃) ₂ + b. Ca(HCO ₃) ₂ + c. KHSiO ₃ + HO d. KHSiO ₃ + KO	HCl → KOH → Cl →	formed?	
7.	Which reactions a. SiO ₂ + H ₂ O - b. Si + NaOH + c. CaCO ₃ + SiO d. Na ₂ SO ₄ + K ₂ O	$ \begin{array}{c} $		
8.	Calculate the su a. 6 b. 7		ents in the redox d. 9	x reaction: $Ca_2Si + HCl \rightarrow CaCl_2 + SiH_2$
9.	In which reaction a. CaC ₂ + HCl - b. K ₂ SiO ₃ + CO c. Li ₂ CO ₃ (t°) - d. NaHCO ₃ (t°)		ed:	
10.	In which reaction a. $2C + O_2 \rightarrow 2$ b. $C + O_2 \rightarrow CO$ c. $CH_4 + 2O_2 \rightarrow CO$ d. $3C + 4A1 \rightarrow 2$	CO O_2 $O_2 + CO_2 + 2H_2O$	s behave as reduc	cers?

1.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	$K_2SiO_3 \rightarrow H_2SiO_3 \rightarrow Na_2SiO_3 \rightarrow CaSiO_3 \rightarrow SiO_2$
	1
	2
	3
	4
	Write the second reaction in the complete and short ionic forms:
	Write the third reaction in the complete and short ionic forms:
2.	Write four reactions according to the following classic chain of chemical reactions and balance them: $SiH_4 \rightarrow SiO_2 \rightarrow Na_2SiO_3 \rightarrow H_2SiO_3 \rightarrow BaSiO_3$ $1. \underline{\hspace{1cm}}$ $2. \underline{\hspace{1cm}}$ $3. \underline{\hspace{1cm}}$ $4. \underline{\hspace{1cm}}$ Write the third reaction in the complete and short ionic forms:
	Write the fourth reaction in the complete and short ionic forms:
3.	Calculate the volume of carbon (IV) oxide produced after the reaction between 20 g of sodium carbonate and the excess of silicon (IV) oxide.

	f a precipitate produced in the reaction between 4 g of sod
silicate and 50 g of hy	drochloric acid solution with the mass percentage of 12 $\%$
TI 641 .4	
	ure of silicon (IV) oxide and solid potassium silicate was 2
	en put into the solution of hydrochloric acid. Find the result of the initial mixture if the mass of a precipitation of the mass o
percentage of socium after the reaction was	
arter the reaction was	s equal to 12.0 g.
	.()
	EXERCISES FOR HOMEWORK
Write four reactions	according to the following classic chain of chemical react
and balance them:	
$SiO_2 \rightarrow Si \rightarrow Na_2SiO_3$	$_{3} \rightarrow H_{2}SiO_{3} \rightarrow SiO_{2}$
1	
2	
3	
4	
	ction in the complete and short ionic forms:
Write the second reac	
Write the second reac	

2.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	$Ca_2Si \rightarrow SiH_4 \rightarrow SiO_2 \rightarrow CaSiO_3 \rightarrow SiO_2$
	1
	2
	3
	4
	Write the third reaction in the complete and short ionic forms:
	Write the fourth reaction in the complete and short ionic forms:
3.	Calculate the volume of carbon (IV) oxide produced after the reaction between 30 g of calcium carbonate and the excess of silicon (IV) oxide.
4.	Calculate the mass of a product of the reaction between 2 g of potassium oxide and 4 g of silicon (IV) oxide.
5.	Calculate the mass of a precipitate produced in the reaction between 7 g of potassium silicate and 55 g of nitric acid solution with the mass percentage of 22 %.
6.	The mass of the mixture of silicon (IV) oxide and silicic acid was 40 g. The mixture
	has been heated until the constant mass of 36 g. Find the mass percentage of sodium (IV) oxide in the initial mixture.
	soulum (1 v) oxide in the initial mixture.

LESSON 36. ALKALI METALS

1.	Write four reactions with <u>potassium</u> containing compounds according to the chain
	of chemical reactions
	$K \xrightarrow{+s} A \xrightarrow{+HCl} B \xrightarrow{+AgNO_s} C \xrightarrow{t^s} D$
	1
	2
	3.
	4.
	Write the second reaction in the complete and short ionic forms:
	Write the third reaction in the complete and short ionic forms:
2.	Write four reactions with <u>sodium</u> containing compounds according to the chain of chemical reactions $Na \xrightarrow{+H_2O} A \xrightarrow{+HI} B \xrightarrow{+Cl_2} C \xrightarrow{+AgNO_3} D$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	2.
	3
	4.
	Write the second reaction in the complete and short ionic forms:
	Write the third reaction in the complete and short ionic forms:
3.	10 g of sodium has been dissolved in 400 g of water. Find the minimal mass of sulfuric acid solution with the mass percentage of 15 % needed to neutralize that sodium hydroxide solution.

Which substance can you a	add to the solution containing lithium and soc
hydroxides to remove lithiu	um cations from it (in form of precipitate)? V
the reaction and its complete	and short ionic forms:
How can you confirm the nr.	esence of iodide ions in the solution of sodium iod
_	mplete and short ionic forms:
ville the reaction and its con	imprete und Short Tome Torms.
Exi	ERCISES FOR HOMEWORK
	SKEIDES FOR HOME WORKE
Write four reactions with <i>li</i>	thium containing compounds according to the c
of chemical reactions	
$\text{Li} \xrightarrow{+o_2} A \xrightarrow{+H_2o} B \xrightarrow{+Ho}$	$C \xrightarrow{+AgNO_3} D$
	, C , B
1	<u> </u>
2 3	
	
4.	
Write the third reaction in th	e complete and short ionic forms:
\sim	

Write four reactions with <u>potassium</u> containing compounds according to the chain of chemical reactions
$1KOH \xrightarrow{+H_8PO_4} A \xrightarrow{+1KOH} B \xrightarrow{+1KOH} C \xrightarrow{+LiCl} D$
1
2
3
4
Write the first reaction in the complete and short ionic forms:
Write the second reaction in the complete and short ionic forms:
$12~\rm g$ of lithium has been dissolved in $300~\rm g$ of water. Find the minimal mass of sulfuric acid solution with the mass percentage of $8~\%$ needed to neutralize that lithium hydroxide solution.
Find the difference between mass percentages of sodium in its oxide and peroxide.
Which substance can you add to the solution containing sodium chloride and
sodium fluoride to remove fluoride anions from it (in form of precipitate)? Write
the reaction and its complete and short ionic forms:
How can you confirm the presence of sulfate ions in the solution of sodium sulfate?
J

LESSON 37. ALKALINE-EARTH METALS

$Ca \xrightarrow{+o_2} A \xrightarrow{+H_2o} \to B \xrightarrow{+1So_2} \to C \xrightarrow{+2Hcl} \to D$
$Ca \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow D$
1
2
3
4
Write the third reaction in the complete and short ionic forms:
Write the fourth reaction in the complete and short ionic forms:
Write four reactions with magnesium containing compounds accordi
Write four reactions with <u>magnesium</u> containing compounds according to the chain of chemical reactions
Mg $\xrightarrow{+HCl\ (in\ excess)}$ \rightarrow A $\xrightarrow{+KOH\ (in\ excess)}$ \rightarrow B \xrightarrow{t} C $\xrightarrow{p_20_5}$ \rightarrow D
$Mg \xrightarrow{\longrightarrow} A \xrightarrow{\longrightarrow} B \xrightarrow{\longrightarrow} C \xrightarrow{225} D$
1
2
3
4
Write the first reaction in the complete and short ionic forms:
Write the second reaction in the complete and short ionic forms:
Calculate the volume of carbon dioxide which will be enough to make the maxin
amount of precipitate in 1 L of the solution of calcium hydroxide with the molar
equal to 0.05 mol/L.
equal to 0.05 moi/L.

chloride. W	wo tubes: one contains magnesium chloride, another contains strown which substance can you add to both of them to find out which agnesium chloride. Write the reaction and its complete and shown
_	You confirm the presence of barium ions in the solution of lawrite the reaction and its complete and short ionic forms:
	EXERCISES FOR HOMEWORK
Write four	reactions with <u>barium</u> containing compounds according to the c
	$A \xrightarrow{+ H_2 O} \rightarrow B \xrightarrow{+ 2HNO_3} \rightarrow C \xrightarrow{+ H_2 SO_4} \rightarrow D$
1 2	
_	
3 4.	nird reaction in the complete and short ionic forms:
4	m'u reaction in the complete and short fome forms.

,	Write four reactions with <u>strontium</u> containing compounds according to the chain of chemical reactions
	Sr $\xrightarrow{+ O_2}$ \rightarrow A $\xrightarrow{+ H_2 O}$ \rightarrow B $\xrightarrow{+ 1CO_2}$ \rightarrow C $\xrightarrow{+ 2HCl}$ \rightarrow D
	$Sr \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow D$
	1
	2
	3
	4
	Write the third reaction in the complete and short ionic forms:
	Write the fourth reaction in the complete and short ionic forms:
	Calculate the mass of solid substances left after the heating of 200 g of magnesium
	hydroxide if the yield of the decomposition was 70 %.
	Find the difference between mass percentages of barium in its oxide and peroxide.
	You have two tubes: one contains potassium hydroxide, another contains barium
	hydroxide. Which substance can you add to both of them to find out which one
	contains barium hydroxide. Write the reaction and its complete and short ionic
	forms:
	
	How can you test the amphoteric properties of beryllium hydroxide? Write
	the reaction and its complete and short ionic forms:

LESSON 38. ALUMINUM AND IRON

TEST FOR CLASSWORK

1. Choose metals which react with water at normal temperature and produce alkali:

	a. Li	b. Na	c. Zn	d. Al
2.	Choose hydroxic	des which can be	e decomposed at	high temperature:
	a. $Ca(OH)_2$	b. KOH	c. LiOH	d. NaOH
3.	Which cations ar	_		
	a. Mg ²⁺	b. Ca ²⁺	c. Na ⁺	d. K ⁺
4.	Choose compour	nd that will be	formed in the rea	action between AlCl ₃ and the excess of
	KOH water solu			
	a. $Al(OH)_3$	c. K	$A_3[Al(OH)_6]$	
	b. $K[Al(OH)_4]$	d. K	CAIO ₂	7
5.	In which reaction	ns iron is oxidiz	ed to Fe ³⁺ ?	
	a. Fe + HCl	c. F	$e + H_2SO_4$ (dilute)	
	b. $Fe + Cl_2$	d. F	$e + H_2O + O_2 \rightarrow$	
6.	Which reactions	are possible?		
	a. $CuCl_2 + Zn \rightarrow$	c. A	$l_2O_3 + H_2O \rightarrow$	
	b. $ZnCl_2 + Cu -$	d. A	$J_2O_3 + NaOH + J_3$	$H_2O \rightarrow$
7.	Which reactions	can be describe	d by the followir	ng ionic equation?
	$Al^{3+} + 4OH^{-} \rightarrow $	[Al(OH) ₄] ⁻		
	a. $Al(OH)_3 + KO$	$OH \rightarrow K[Al(OH)]$	[) ₄]	
	b. $AlCl_3 + 4KOI$	$H \to K[Al(OH)]$	₄] + 3KCl	
	c. $AlCl_3 + 6KOI$	$H \to K_3[Al(OH)]$	0_{6}] + 3KCl	
	d. $Al(NO_3)_3 + 41$	$NaOH \rightarrow Na[A]$	$(OH)_4] + 3NaNO$	O_3
8.	Calculate the sur	n of all coeffici	ents in the redox	reaction: $K + KNO_3 \rightarrow K_2O + N_2$
	a. 12	b. 18	c. 19	d. 20
9.	Which metals ha	ve a color diffe	rent from gray?	
	a. gold	b. copper	c. silver	d. cesium
10.	In which reaction	ns aluminum ato	oms behave as re	ducers?
	a. $4A1 + 3O_2 \rightarrow$	$2Al_2O_3$		
	b. $2A1 + Fe_2O_3 -$	\rightarrow Al ₂ O ₃ + 2Fe		
	c. $AlCl_3 + 3NaC$	$OH \rightarrow Al(OH)_3$	+ 3NaCl	
	d. 2Al(OH) ₃ (t°)	\rightarrow Al ₂ O ₃ + 3H ₂	$_{2}$ O	
			114	

TEST FOR HOMEWORK

1.	Choose metals which react with water at high temperature and produce an oxide:
	a. Mg b. Na c. Fe d. K
2.	Choose reactions in which metal melts before the completion:
	a. $\text{Li} + \text{H}_2\text{O} \rightarrow$ c. $\text{K} + \text{H}_2\text{O} \rightarrow$
	b. Na + $H_2O \rightarrow$ d. Cs + $H_2O \rightarrow$
3.	Which salts are associated with temporary water hardness?
	a. $MgCl_2$ b. $Ca(HCO_3)_2$ c. $Mg(HCO_3)_2$ d. K_2SO_4
4.	Choose compound that will be formed in the reaction between solid AlCl ₃ and solid
	NaOH at high temperature:
	a. $Al(OH)_3$ b. $Na[Al(OH)_4]$ c. $Na_3[Al(OH)_6]$ d. $NaAlO_2$
5.	In which conditions iron turns to rust?
	a. in the presence of water
	b. in the presence of oxygen
	c. in the presence of water and oxygen
	d. in the presence of water and nitrogen
6.	Which reactions are possible?
	a. $NaCl + KOH \rightarrow$ c. $KOH + HCl \rightarrow$
	b. $NaCl + AgNO_3 \rightarrow$ d. $FeCl_2 + Cl_2 \rightarrow$
7.	Which reactions can be described by the following ionic equation?
	$Al^{3+} + 6OH^{-} \rightarrow \left[Al(OH)_{6}\right]^{3-}$
	a. $Al(OH)_3 + NaOH \rightarrow Na[Al(OH)_4]$
	b. $AlCl_3 + 4NaOH \rightarrow Na[Al(OH)_4] + 3KCl$
	c. $AlCl_3 + 6LiOH \rightarrow Li_3[Al(OH)_6] + 3LiCl$
	d. $Al_2(SO_4)_3 + 12NaOH \rightarrow 2Na_3[Al(OH)_6] + 3Na_2SO_4$
8.	Calculate the sum of all coefficients in the redox reaction: $CaSO_4$ (t°) \rightarrow $CaO + SO_2 + O_2$
	a. 5 b. 6 c. 7 d. 8
9.	What particles can be found in metallic solids?
	a. neutral atoms c. anions
	b. cations d. free electrons
10.	In which reactions iron atoms behave as reducers?
	a. $4\text{Fe} + 3\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3$ c. $2\text{Fe} + 3\text{Cl}_2 \rightarrow 2\text{Fe}\text{Cl}_3$
	b. $2Al + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe$ d. $Fe(OH)_3 + 3HCl \rightarrow FeCl_3 + 3H_2O$

	$A1 \xrightarrow{+O_2} A \xrightarrow{+HCl} B \xrightarrow{+3NaOH} C \xrightarrow{+3NaOH} D$
1	$AI \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow D$
]	
2	
1	Write the third reaction in the complete and short ionic forms:
_	
_	
1	Write the fourth reaction in the complete and short ionic forms:
•	Vuita form montions with increased initial common and according to the ol
	Write four reactions with <u>iron</u> containing compounds according to the cl
	of chemical reactions
I	$FeO \xrightarrow{+2HNO_3} \rightarrow A \xrightarrow{+1KOH} \rightarrow B \xrightarrow{+1KOH} \rightarrow C \xrightarrow{+H_2SO_4} \rightarrow D$
]	
2	
3	
2	
,	Write the second reaction in the complete and short ionic forms:
_	
,	Write the third reaction in the complete and short ionic forms:
-	
-	
	Calculate the mass of a salt produced after the heating together ${\bf 5}$ g of solid sod
ŀ	ydroxide and 2 g of aluminum hydroxide.
-	

	Calculate the volume of nitrogen released in the reaction between 18 g of nacid and 3 g of aluminum at high temperature.
	Calculate the volume of sulfur (IV) oxide released in the reaction between of concentrated sulfuric acid and 4 g of iron at high temperature.
_	
-	EXERCISES FOR HOMEWORK
•	Write four reactions with <u>iron</u> containing compounds according to the close chemical reactions
	$Fe(OH)_3 \xrightarrow{+ 2HCl} \rightarrow A \xrightarrow{+ 1HCl} \rightarrow B \xrightarrow{+ AgNO_3} \rightarrow C \xrightarrow{+ H_3PO_4} \rightarrow D$ 1
	2.
1	3
	4
1	Write the second reaction in the complete and short ionic forms:
_	
1	Write the fourth reaction in the complete and short ionic forms:
-	
1	Write four reactions with <u>aluminum</u> containing compounds according to the cl
	of chemical reactions
	of chemical reactions
•	Al $\xrightarrow{+ HNO_3}$ \rightarrow A $\xrightarrow{+ 4NaOH}$ \rightarrow B $\xrightarrow{+ 1HCl}$ \rightarrow C $\xrightarrow{+ 3HCl}$ \rightarrow D

2	
3	
4	
Write	the second reaction in the complete and short ionic forms:
Write	the fourth reaction in the complete and short ionic forms:
chlori	ate the mass of a complex salt produced after putting 6 g of aluminum le in 200 g of the solution with the mass percentage of sodium hydroxide o 25 $\%$.
That p	s the mass percentage of aluminum oxide on the surface of aluminum plate? late had a mass of 10 g. Complete dissolving in hydrochloric acid produced of hydrogen (in normal conditions).
That p	late had a mass of 10 g. Complete dissolving in hydrochloric acid produced
That p	late had a mass of 10 g. Complete dissolving in hydrochloric acid produced
That I	late had a mass of 10 g. Complete dissolving in hydrochloric acid produced of hydrogen (in normal conditions).
That p	late had a mass of 10 g. Complete dissolving in hydrochloric acid produced
That p	late had a mass of 10 g. Complete dissolving in hydrochloric acid produced of hydrogen (in normal conditions). ate the mass of ammonium nitrate formed in the reaction between 12 g
That p	late had a mass of 10 g. Complete dissolving in hydrochloric acid produced of hydrogen (in normal conditions). ate the mass of ammonium nitrate formed in the reaction between 12 g
That p	late had a mass of 10 g. Complete dissolving in hydrochloric acid produced of hydrogen (in normal conditions). ate the mass of ammonium nitrate formed in the reaction between 12 g

LESSON 39. THE SAMPLE OF CONTROL TASK #5

Write four reactions according to the following classic chain of chemical reactions
and balance them:
$C \rightarrow CO_2 \rightarrow KHCO_3 \rightarrow K_2CO_3 \rightarrow BaCO_3$
1
2
3
4
Write the third reaction in the complete and short ionic forms:
Write the fourth reaction in the complete and short ionic forms:
Write four reactions with <u>sulfur</u> containing compounds according to the chair
of chemical reactions
$S \xrightarrow{+o_2} A \xrightarrow{+NaOH \ (in \ excess)} \to B \xrightarrow{+HCl \ (in \ excess)} \to C \xrightarrow{+cao} D$
1
2
3
4.
Write the second reaction in the complete and short ionic forms:
Write the third reaction in the complete and short ionic forms:
Find the volume percentage of ammonia in its mixture with nitrogen. 5 L of that
mixture reacted with 2 g of hydrogen chloride.

4.	Find the simplest formula of a compound. The mass percentages of elements in the compound are as follows: 62.22 % of iron, 35.56% of oxygen and 2.22 % of hydrogen.
5.	The mass of the mixture made from zinc nitrate and cobalt (II) nitrate is 12 g
	That mixture has been thermally decomposed and produced 2.914 L of nitrogen
	dioxide. Find the mass percentage of zinc nitrate in the initial mixture.

LESSON 40. SATURATED HYDROCARBONS

TEST FOR CLASSWORK

d. IV

1. What is the valence of carbon in all organic compounds?

c. III

a. I

b. II

2.		mmon formula			-4	
	a. C_nH_{2n-2}	b. C_nH_{2n}	c. C_nH_{2n+2}	d. C_nH_{2n-6}		
3.	How many iso	mers can you su	aggest for butane	molecule?	Θ .	
	a. 1 b. 1	c. 3	d. 4			
4.	Choose isomera. 2-methyl-bub. 3-methyl-pec. 2,2-dimethyd. 2,2-dimethyd.	tane ntane l-propane	described by the	same C ₅ H ₁₂ formu	la:	
5.	Choose alkane a. C ₂ H ₆	s existing in gas b. CH ₄	seous state in not $c. C_6H_{12}$	rmal conditions: d. C ₃ H ₈		
6.	Describe the ty a. addition b. substitution c. decompositi d. composition	on	reaction betwee	a C ₂ H ₆ and Cl ₂ :		
7.	Which reactanta. potassium b. potassium cl. c. sodium d. sodium hydr	hloride	o synthesize \mathbf{C}_{10}	H ₂₂ from C ₅ H ₁₁ Cl?		
8.		um of all coeffi 10 c. 7	cients in the redo	ox reaction: C ₃ H ₈ +	$O_2 \rightarrow CO_2 + H_2O$	
9.	Choose the fin a. CO ₂ and H ₂ O b. CO and H ₂ O	O c.	C_4H_{10} combustion C_2H_6 and C_2H_4 C_4H_9OH	n in the excess of ox	xygen:	
10.	Which substances can be produced in the reaction between three substances: $C_2H_5C_3$ C_3H_7Cl and Na?					
	a. C_4H_{10}	b. C_6H_{14}	c. C_5H_{12}	d. C_7H_{16}		
			121			

TEST FOR HOMEWORK

1.	Choose the type of hybridization state for outer shell electron orbitals of each carbon					
1.	atom in saturated hydrocarbons?					
	a. sp b. sp^2 c. sp^3 d. no hybridization					
2.	Cracking of alkanes results in formation of:					
	a. shorter alkanes c. longer alkanes					
	b. shorter alkenes d. longer alkenes					
3.	How many isomers can you suggest for pentane molecule?					
	a. 1 b. 2 c. 3 d. 4					
4.	Choose isomers which can be described by the same C ₆ H ₁₄ formula:					
	a. 2-methyl-butane					
	b. 2-methyl-pentane					
	c. 3-methyl-pentane					
	d. 2,3-dimethyl-pentane					
5.	Choose alkanes existing in solid state in normal conditions					
	a. C_5H_{12} b. C_6H_{14} c. $C_{16}H_{34}$ d. $C_{23}H_{48}$					
6.	Describe the type of the following chemical reaction: $2CH_4(t^\circ) \rightarrow C_2H_2 + 3H_2$					
	a. composition c. decomposition					
	b. dehydration d. dehydrogenation					
7.	Which reactants can be used to synthesize $C_{12}H_{24}$ from $C_6H_{13}Br$?					
	a. potassium c. lithium					
	b. potassium carbonate d. potassium permanganate					
8.	Calculate the sum of all coefficients in the redox reaction:					
	$C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$					
	a. 15 b. 18 c. 25 d. 33					
9.	Choose the products of the reaction between HNO ₃ and C ₄ H ₁₀ :					
	a. C ₄ H ₉ NO ₂ and H ₂ O					
	b. C ₄ H ₉ NH ₃ and H ₂ O					
	c. C ₃ H ₉ NO ₂ and H ₂ O					
	d. $C_4H_{11}NO_3$					
10.	Which substances can be produced in the reaction between tree substances: C ₃ H ₇ Br,					
	C ₄ H ₉ Br and K?					
	a. C_8H_{18} b. C_6H_{14} c. C_5H_{12} d. C_7H_{16}					

EXERCISES FOR CLASSWORK

1.	Draw structural formulas of the following compounds:
	3-ethyl-3-methyl-hexane
	2,2-dimethylbutane
	3-ethyl-4-propylheptane
	1,2-dimethylcyclopentane
2.	Find the formula of a hydrocarbon. Combustion of that hydrocarbon resulted
	in the formation of 2 L of carbon dioxide and 1.205 g of water. The relative density
	of the hydrocarbon per helium is 13.5.
	3
3.	The mixture made from ethane and butane has a volume of 4 L. That mixture has
J.	been completely burnt. The volume of carbon dioxide was equal to 12 L. Find
	the volume percentage of ethane in the initial mixture of gases.
	the volume personnings of comment in the matter of general
4.	The mixture made from methane and propane has a volume of 6 L. That mixture
	has been completely burnt. The volume of oxygen used in this process was equal to
	24 L. Find the volume percentage of propane in the initial mixture of gases.
	EXERCISES FOR HOMEWORK
1.	Draw structural formulas of the following compounds:
	2-methyl-4-propyl-octane

123

3,3-diethylhexane

2,3,4-trimethylpentane

2,4-dimethylhexane

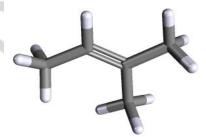
2.	The products of the complete combustion of a hydrocarbon are: 40 L of carbon					
	dioxide and 32.143 g of water. The relative density of this compound per oxygen is					
	1.75. Find the formula of a hydrocarbon.					
3.	The mixture made from methane and butane has a volume of 5 L. That mixture					
•	has been completely burnt. The volume of oxygen used in this process was equal to					
	28 L. Find the volume percentage of methane in the initial mixture of gases.					
	20 L. Find the volume percentage of methane in the initial mixture of gases.					
4.	The mixture made from propane and butane has a volume of 6 L. That mixture					
	has been completely burnt. The volume of carbon dioxide produced in this process					
	was equal to 19 L. Find the volume percentage of butane in the initial mixture of					
	gases.					

LESSON 41. NOMENCLATURE OF UNSATURATED HYDROCARBONS

EXERCISES FOR CLASSWORK

1. Draw structures of all the isomers (including interclass ones) of hexene:

2. Draw structures of the following compounds:


5-methyl-trans-2-hexene

3-methyl-1-pentyne

3,4-dimethyl-cis-3-hexene

1,3-hexadiene

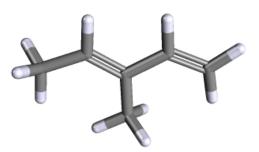
3. Name the following compounds:

EXERCISES FOR HOMEWORK

1. Draw structures of all the isomers (including interclass ones) of heptyne:

2. Draw structures of the following compounds:

2-methyl-2-pentene


3-ethyl-4-octyne

4,4-dimethyl-cis-2-pentene

2-methyl-1,3-butadiene

3. Name the following compounds:

LESSON 42. CHEMICAL PROPERTIES OF UNSATURATED HYDROCARBONS

What volume is occupied by 33 g of ethylene in normal conditions?
Determine the volume of acetylene which can be produced from 1 kg of calcium
carbide containing 30 % of impurities.
The mixture of methane and acetylene had a volume of 6 L. That mixture has been
passed through the bromine water solution. The mass of the solution increased by
5 g. Find the volume percentage of methane in the initial mixture.
The mixture of propane and propyne had a volume of 6 L (in normal conditions)
The mixture reacted with 1.2 L of hydrogen. Calculate the volume percentage
of propane in the initial mixture.

There	is a mixture of ethene, propyne and propadiene. 2 L of that mixture rea
with 3	3.5 L of hydrogen until the complete saturation. Find the volume percer
of eth	ene in the mixture.
	EXERCISES FOR HOMEWORK
How 1	nany molecules are there in 13 L of propylene in normal conditions?
Deter	mine the volume of methane which can be produced from 1 kg of alumi
	le containing 12 % of impurities.
0002 824	g = 70 01 111 p 111 111 111
	<u> </u>

•	3 g. Find the volume percentage of methane in the initial mixture.
٠	
	The mixture of butane and ethene had a volume of 3 L (in normal condition
	The mixture reacted with 1.4 g of hydrogen chloride. Calculate the volu
	percentage of butane in the initial mixture.
	A T
	2 L of an alkene added 7.2321 g of hydrogen bromide and produced 10.9822 of an alkyl bromide. Find the formula of that alkene.
	2 L of an alkene added 7.2321 g of hydrogen bromide and produced 10.9822 of an alkyl bromide. Find the formula of that alkene.
	of an alkyl bromide. Find the formula of that alkene.
	of an alkyl bromide. Find the formula of that alkene. There is a mixture of propene, butyne and 1,3-butadiene. 2 L of that mixture.
	of an alkyl bromide. Find the formula of that alkene. There is a mixture of propene, butyne and 1,3-butadiene. 2 L of that mixture of with 21.429 g of bromine until the complete saturation. Find the volu
	of an alkyl bromide. Find the formula of that alkene. There is a mixture of propene, butyne and 1,3-butadiene. 2 L of that mixture of with 21.429 g of bromine until the complete saturation. Find the volu
	of an alkyl bromide. Find the formula of that alkene. There is a mixture of propene, butyne and 1,3-butadiene. 2 L of that mixture of with 21.429 g of bromine until the complete saturation. Find the volu
	of an alkyl bromide. Find the formula of that alkene. There is a mixture of propene, butyne and 1,3-butadiene. 2 L of that mixture of with 21.429 g of bromine until the complete saturation. Find the volu

LESSON 43. POLYMERS OF UNSATURATED HYDROCARBONS

1.	Write four reactions with organic compounds according to the chain of chemical
	reactions
	$Al_4C_3 \xrightarrow{H_2O} A \xrightarrow{+1Cl_2} B \xrightarrow{+2K} C \xrightarrow{+1Br_2} D$
	1
	2
	3
	4
2.	Write four reactions according to the following classic chain of chemical reactions and balance them:
	octane \rightarrow 1-butene \rightarrow 2-chlorobutane \rightarrow 2-butene \rightarrow 2,3-dichlorobutane
	1
	2
	3
	4
3.	Write four reactions according to the following classic chain of chemical reactions and balance them:
	methane \rightarrow methylchloride \rightarrow ethane \rightarrow ethylbromide \rightarrow hexane
	1.
	2
	3
	4
4.	Calculate the volume of 1,3-butadiene that is needed to make 200 g of
	polybutadiene.

Find the mass of chlorine in 500 g of polyvinylchloride.
EXERCISES FOR HOMEWORK
Write four reactions with <u>organic</u> compounds according to the chain of chen
reactions
$CaC_2 \xrightarrow{+H_2 o} A \xrightarrow{+1H_2} B \xrightarrow{+HCl} C \xrightarrow{+Na} D$
1
2
3
4
Write four reactions according to the following classic chain of chemical react
and balance them:
decane \rightarrow pentane \rightarrow 1-pentene \rightarrow 2-chloropentane \rightarrow 4,5-dimethyloctane
1
2.
3
4.

,	Write four reactions according to the following classic chain of chemical reaction
	and balance them:
	ethane \rightarrow ethylchloride \rightarrow ethene \rightarrow polyethylene \rightarrow carbon dioxide
	1
	2
	3
	4
	Calculate the volume of ethylene that is needed to make 300 g of polyethylene.
	Calculate the number of monomers in 150 g of natural rubber.
	Find the mass of chlorine in 400 g of polychloroprene.

LESSON 44. BENZENE AND ITS HOMOLOGS

TEST FOR CLASSWORK

1.	Which reactant can be use ones?	ed to distinguish unsaturated hydrocarbons from saturated			
	C	c. bromine water d. silver nitrate			
2.	Choose the common formula	a for alkenes and cyclic alkanes:			
	a. C_nH_{2n-2} b. C_nH_{2n}	c. $C_n H_{2n+2}$ d. $C_n H_{2n-6}$			
3.	Are there cis- and trans- iso	mers for 1-butene and 2-butene, respectively?			
	a. yes / no b. no / yes	c. yes / yes d. no / no			
4.	Choose the product of acety	elene trimerization:			
	a. vinyl acetylene	c. methane			
	b. benzene	d. toluene			
5.	Choose the most abundant p	product of 1-propene reaction with HCl:			
	a. 1-chloropropane	c. propyne			
	b. 2-chloropropane	d. propane			
6.	Describe the type of chemic	cal reaction between C ₂ H ₄ and Br ₂ :			
	a. addition	c. decomposition			
	b. substitution	d. composition			
7.	Choose the formula of poly	vinylchloride:			
	a. [-CHCl=CH ₂ -] _n	c. [-CHCl-CH ₂ -] _n			
	b. [-CH ₂ -CH ₂ -] _n	d. [-CHCl=CHCl-] _n			
8.	Calculate the sum of all coe	fficients in the redox reaction:			
	$C_5H_{10} + O_2 \rightarrow CO_2 + H_2O$				
	a. 17 b. 20 c. 37	d. 48			
9.	Choose the hybridization s	state of outer shell electron orbitals in carbon atoms from			
	benzene:				
	a. sp b. sp^2 c. sp	d. no hybridization			
10.	What type of compound is j	produced in alkene hydration reaction?			
	a. alkane	c. aldehyde			
	b. diene	d. alcohol			

TEST FOR HOMEWORK

1.	Choose formulas	s of benzene hor	nologues (arene	rs)?	
	a. C_6H_6	b. C ₈ H ₁₀	c. C ₈ H ₁₈	$d. C_2H_2$	
2.	Choose the com	mon formula for	alkynes and die	enes:	
	a. C_nH_{2n-2}		•		
3.	Are there cis- an	d trans- isomers	for 2-pentene a	and 2-pentyne, respectively?	
	a. yes / no	b. no / yes	c. yes / yes	d. no / no	
4. Choose the product of acetylene dimerization:					
	a. toluene	c. methan	ie		
	b. benzene	d. vinyl a	cetylene		
5.	Choose the mos	st abundant pro	duct of 2-propa	anol dehydration at temperature higher	
	than 170 °C in th	ne presence of H	I_2SO_4 :		
	a. propene	c. 2-propy	yne		
	b. 1-butene	d. propan	e		
6.	Describe the typ	e of chemical re	action between	C_2H_2 and H_2O :	
	a. addition	c. compos	sition		
	b. redox reaction	d. one ste	p reaction		
7.	Choose the form	ula of polyethyl	ene:		
	a. [-CHCl=CH ₂ -] _n c. [-CHC]	l-CH ₂ -] _n		
	b. [-CH ₂ -CH ₂ -] _n	d. [-CHC	l=CHCl-] _n		
8.	8. Calculate the sum of all coefficients in the redox reaction:				
	$C_4H_6 + O_2 \rightarrow CO_2 + H_2O$				
	a. 13 b. 14	c. 27	d. 30		
9.	Choose correct statements about benzene molecule:				
a. it is prone to substitution reactions more than to addition reactions				to addition reactions	
	b. it is prone to addition reactions more than to substitution reactions				
	c. three bonds between carbon atoms in the molecule are shorter than three other bonds				
	d. lengths of all	six bonds betwe	en carbon atom	s are equal to each other	
10. Choose the most abundant product of CH_2 = CH - CH = $CH_2 + H_2$			H-CH=CH ₂ + H ₂ reaction? The molar		
	ration between r	eactants is 1:1.			
a. 1-butene c. butane					
	b. 2-butene	d. 1,2-but	adiene		

1.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	methane \rightarrow acetylene \rightarrow benzene \rightarrow cyclohexane \rightarrow cyclohexene
	1
	2
	3
	4
2.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	propane \rightarrow 1-bromopropane \rightarrow hexane \rightarrow benzene \rightarrow styrene
	1
	2
	3
	4.
	Draw the structural formula for the last compound:
3.	Draw structures of all isomers for trimethylbenzene and name them:
4	
4.	Find the volume of hydrogen needed for complete saturation of 7 g of benzene.

	rmine the mass of the organic product of the reaction between 15 g of toluen the excess of bromine water.
	ulate the volume of oxygen which is required to burn down 34 L of benzendensity of benzene is 0.89 g/ml.
	EXERCISES FOR HOMEWORK
and h	e four reactions according to the following classic chain of chemical reaction balance them: ane \rightarrow acetylene \rightarrow benzene \rightarrow bromobenzene \rightarrow ethylbenzene
2 3	
. Write	e four reactions according to the following classic chain of chemical reaction balance them: $ne o benzene o chlorobenzene o toluene o trinitrotoluene$
2 3	

 $\label{eq:compound:equal} \textbf{Draw the structural formula of the last compound:}$

Jian su	uctures of all isomers for di	chiorobenzene and na	ame tnem:
			A
Find the	e volume of chlorine gas	(in normal condition	ns) needed for comp
	on of 9 g of benzene (up to he		
			V
	e the mass of calcium carbi		
) 	
Calculat	e the volume of air which is	required to burn dov	vn 15 g of benzene.
		•	
	Chi		
	70		

LESSON 45. ALCOHOLS

1.	Write four reactions according to the following classic chain of chemical reactions and balance them:		
	glucose \rightarrow ethanol \rightarrow 1,3-butadiene \rightarrow 2-butene \rightarrow 2,3-dibromobutane		
	1		
	2		
	3		
	4		
2.	Write four reactions according to the following classic chain of chemical reactions		
	and balance them:		
	ethane \rightarrow 1-chloroethane \rightarrow ethanol \rightarrow diethyl ether \rightarrow carbon dioxide		
	1		
	2.		
	3.		
	4		
	Draw the structural formula of the third compound:		
3.	Draw structures of all isomers for butanol and name them:		
<i>J</i> .	Draw structures of an isomers for butanot and name them.		
4.	Calculate the mass of methanol which has been burned down. The volume of		
	carbon dioxide produced is equal to 56 L.		

5.	What is the mass of carbon dioxide formed in the reaction between 15 ml o ethanol (density is 0.8 g/ml) and the excess of oxygen?
6.	What is the mass of diethyl ether formed from 12 g of ethanol?
	EXERCISES FOR HOMEWORK
l .	Write four reactions according to the following classic chain of chemical reaction and balance them:
	methane \rightarrow chloromethane \rightarrow ethane \rightarrow bromoethane \rightarrow ethanol 1
	2
2.	4 Write four reactions according to the following classic chain of chemical reaction
	and balance them: chloroethane \rightarrow ethene \rightarrow ethanol \rightarrow 1,3-butadiene \rightarrow 2-butene
	1
	3
	4 Draw the structural formula of the fourth compound:

3.	Draw structures of all isomers for pentanol and name them:
4.	Calculate the mass of 1,2-ethanediol (ethylene glycol) which has been burned
	down. The volume of carbon dioxide produced is equal to 26 L.
5.	What is the mass of carbon dioxide formed in the reaction between 15 ml of
	glycerol (density is 1.3 g/ml) and the excess of oxygen?
6.	What is the mass of polybutadiene that can be produced from 1 L of ethanol
	(density is 0.8 g/ml). The yield of the process is 40 %.

LESSON 46. ALDEHYDES AND KETONES

1.	Write four reactions according to the following classic chain of chemical reactions and balance them:
	calcium carbide \rightarrow acetylene \rightarrow acetaldehyde \rightarrow ethanol \rightarrow ethene
	1
	2
	3
	4
	Draw the structural formula of the intermediate product of the second reaction:
2.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	propane \rightarrow 1-chloropropane \rightarrow propanol \rightarrow propanal \rightarrow propionic acid
	1
	2
	3
	4
3.	Draw structures of all isomers for pentanal and name them:
	(7)
4.	Calculate the mass of silver produced in the silver mirror test with 4 ml of 0.02 M
	solution of propanal.

	is the mass of acetaldehyde that can be produced from 5 L of acety
(in no	ormal conditions) if the yield of the process is 66 %?
	EXERCISES FOR HOMEWORK
	EXERCISES FOR HOME WORK
Write	e four reactions according to the following classic chain of chemical react
	valance them:
	\rightarrow chloromethane \rightarrow methanol \rightarrow methanal \rightarrow formic acid
3	
3 4	a four reactions according to the following classic chain of chemical react
3 4 Write	e four reactions according to the following classic chain of chemical react
3 4 Write and b	e four reactions according to the following classic chain of chemical react
3 4 Write and b butane	e four reactions according to the following classic chain of chemical reactional reactions them: one \rightarrow 2-butanol \rightarrow 2-butane \rightarrow butane \rightarrow ethane
3 4 Write and b butane	e four reactions according to the following classic chain of chemical reactional reactions them: one \rightarrow 2-butanol \rightarrow 2-butane \rightarrow butane \rightarrow ethane
3 4 Write and b butand 1 2	e four reactions according to the following classic chain of chemical react

3.	Draw structures of all isomers for hexanone and name them:
4.	Calculate the mass of silver produced in the silver mirror test with 200 g of a solution containing 4 % of ethanal and 3 % of butanal by mass.
5.	The mass of an alcohol formed by the way of hydrogenation of a corresponding aldehyde is 4.45 % higher than the mass of that aldehyde. Find the formula of an aldehyde.
6.	200 g of the solution of propanal and propanone produced 3 g of silver in the silver mirror test. The total mass percentage of organic substances (propanal and
	propanone) in the initial solution was equal to 15 %. Find the mass percentage of propanone in the initial solution.

LESSON 47. CARBOXYLIC ACIDS

1.	Write four reactions according to the following classic chain of chemical reactions and balance them:			
	chloromethane \rightarrow methanol \rightarrow methanal \rightarrow formic acid \rightarrow methyl formiate			
	1			
	2			
	3			
	Write the same reaction as the first one but in the alcoholic solution:			
2.	Write four reactions according to the following classic chain of chemical reactions			
	and balance them:			
	propionic acid \rightarrow ethyl propionate \rightarrow sodium propionate \rightarrow ethane \rightarrow ethene			
	1			
	2			
	3.			
	4			
	Write the same reaction as the second one in acidic medium:			
•	Draw the structural formula of oxalic acid:			
ļ.	Calculate the volume of carbon dioxide produced in the reaction between 20 g			
	of 9 % acetic acid solution and 5 g of sodium bicarbonate.			

The volume of hydrogen released in the reaction between 10 g of a satura
monoprotic carboxylic acid and potassium is equal to 1.273 L. Find the form
of that acid.
EXERCISES FOR HOMEWORK
Write four reactions according to the following classic chain of chemical react
and balance them:
ethanal \rightarrow ethanol \rightarrow acetaldehyde \rightarrow acetic acid \rightarrow acetic acid anhydrate
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1
ethanal → ethanol → acetaldehyde → acetic acid → acetic acid anhydrate 1

Э.	Draw the structural formula of butanoic acid:
4.	Calculate the volume of carbon dioxide produced in the reaction between 30 g
	of 9 % acetic acid solution and 15 g of potassium carbonate.
	and the second s
5.	Find the mass of acetic acid anhydride needed to prepare 250 g of acetic acid
	solution with the mass percentage of 15 %.
6.	The volume of hydrogen released in the reaction between 8 g of a saturated
	monoprotic carboxylic acid and sodium is equal to 1.211 L. Find the formula
	of that acid.

LESSON 48. ESTERS AND FATS

TEST FOR CLASSWORK

1. Esters may be described as products of the reaction between:

a. alcohols and aldehydes

b. carboxylic acids and aldehydes

	c. carboxylic acids and alcohols d. alcohols and alkanes				
2.	Choose the common a. $C_nH_{2n-1}OH$ b. $C_nH_{2n}OH$	formula for c. C_nH_{2n+2} d. C_nH_{2n+1}	ОН	ic saturated a	llcohols:
3.	Ethers are isomers of a. esters b. aldehydes	of: c. alcohols d. carboxy		36	
4.	·	of 1-propan	ol dehydra l ether	tion reaction	at the temperature lower than
5.	Acetic acid reacts was a. K b. KOH			d. Cl ₂	
6.	Fat can be described a. ether b. ester	l as: c. aldehyd d. carboxy			
7.	Silver mirror test (rea. aldehyde b. ketone	eaction with A c. glucose d. fructose		be used to app	prove the presence of:
8.	Calculate the sum of all coefficients in the reaction between formic acid aldehyde (H_2CO) and the excess of Tollen's reactant (Ag_2O): a. 9 b. 5 c. 10 d. 4				
9.	How many isomers a. 2 b. 4	can you sugg	est for buta d. 7	anol molecule	e?
10.	oxidizers and condit	•	·	cess of ethano	ol oxidation (consider different $d. C_2H_6$

TEST FOR HOMEWORK

1.	Ethers may be described as products of the reaction between: a. alcohols					
	b. carboxylic acids and alco	phols				
	c. carboxylic acids					
	d. alkenes					
2.	Choose the common formula for monoprotic saturated carboxylic acids:					
	a. $C_nH_{2n+1}COOH$	c. C _n H _{2n+2} COOH				
	b. $C_nH_{2n+2}O_2$	d. $C_nH_{2n-1}COOH$				
3.	Esters are isomers of:					
	a. esters	c. alcohols				
	b. aldehydes	d. carboxylic acids				
4.	Which substances react with	h both phenol and ethanol?				
	a. NaOH b. Na	c. HCl d. H ₂				
5.	Choose the final products of glucose alcoholic fermentation:					
	a. H_2O b. CO_2	c. C ₂ H ₅ OH d. CH ₃ COOH				
6.	Methylacetate is:					
	a. ether	c. salt				
	b. ester	d. carboxylic acid				
7.	Reaction with Fehling's solution (usually written as Cu(OH)2) can be used to approve					
	the presence of:					
	a. aldehyde	c. glucose				
	b. glycerol	d. fructose				
8.	Calculate the sum of all co and the excess of Fehling's	perficients in the reaction between acetaldehyde (CH_3CHO) solution ($Cu(OH)_2$):				
	a. 6 b. 7 c. 8	d. 9				
9.	How many isomers can you	suggest for butanal molecule?				
	a. 2 b. 3 c. 4	d. 5				
10.	Choose the product of propa	anal reduction by hydrogen:				
	a. propane	c. propyne				
	b. propene	d. propanol				

EXERCISES FOR CLASSWORK

l .	Write four reactions according to the following classic chain of chemical reactions and balance them:
	ethanol \rightarrow diethyl ether \rightarrow ethanol \rightarrow ethyl propionate \rightarrow sodium propionate
	1
	2
	3
	4
	Write the first reaction at higher temperature (higher than 170 °C):
	Draw a structure of a fat molecule made from two residues of palmitic acid and one residue of stearic acid:
	Write the reaction of saponification (with sodium hydroxide) for this fat:
3.	Find the mass of sodium stearate that can be obtained in the reaction
	of saponification of 500 g of the fat from the previous exercise.

Ethyl butanoate has been hydrolyzed with the help of sodium hydroxide. I sodium butanate has been decarboxylized. The mass of propane is 4 g. 1
the mass of ethyl butanoate used in this process. The yield of the first step is 85
the yield of the second step is 55 %.
EXERCISES FOR HOMEWORK
Write four reactions according to the following classic chain of chemical react
and balance them:
1-bromopropane → 1-propanol → propanal → propionic acid → ethyl propanoate
2.
3
4.
Write the third reaction with another oxidizer:

3.	Find the mass of potassium oleate that can be obtained in the reaction
	of saponification of 300 g of the fat from the previous exercise.
4.	What is the mass of an ester produced in the reaction between 7 g of propionic acid and 9 g of ethanol?
5.	Propyl propionate has been hydrolyzed with the help of potassium hydroxide.
	Find the yield of this process if the mass of propanol is 24 g, while the mass
	of an ester was 50 g.

Write the reaction of saponification (with potassium hydroxide) for this fat:

LESSON 49. CARBOHYDRATES

EXERCISES FOR CLASSWORK

1.	Write four reactions according to the following classic chain of chemical reactions and balance them:				
	glucose \rightarrow ethanol \rightarrow ethene \rightarrow 1,2-dichloroethane \rightarrow ethylene glycol				
	1				
	2				
	3				
	4				
	Write the process of lactic acid and not alcoholic fermentation (the first reaction):				
2.	Write four reactions according to the following classic chain of chemical reactions and balance them:				
	$starch \rightarrow glucose \rightarrow sucrose \rightarrow fructose \rightarrow sorbitol$				
	1				
	2.				
	3				
	4.				
	Which substance from this chain shows a positive silver mirror test? Write				
	the corresponding reaction:				
3.	Draw the structural formula of ribose:				
4.	Calculate the mass of glucose produced from 20 g of sucrose in the hydrolysis reaction.				

-	
-	
_	
_	
١	What mass of silver will be formed in the silver mirror test with 15 ${f g}$ of glucose
_	
	EXERCISES FOR HOMEWORK
1	Write four reactions according to the following classic chain of chemical react
	and balance them:
٤	glucose \rightarrow ethanol \rightarrow ethanal \rightarrow acetic acid \rightarrow sodium acetate
	l
	2.
	3.
	1.
	Write the last reaction with another reactant:
	with the last reaction with another reactant.
	Write four reactions according to the following classic chain of chemical react
	and balance them:
S	sucrose \rightarrow glucose \rightarrow ethanol \rightarrow diethyl ether \rightarrow carbon dioxide
]	
4	2.
-	3
•	

3.	Draw the structural formula of deoxyribose:
4.	Calculate the mass of glucose produced from $300\ \mathrm{g}$ of starch in the hydrolysis reaction.
5.	Find the mass of grape needed to make 300 g of ethanol in the alcoholic fermentation process if the yield is 75 %, the mass percentage of starch in grape is 19 %.
5.	What mass of silver will be formed in the silver mirror test with 20 g of the mixture of glucose and sucrose, if the mass percentage of sucrose is 40 %?

LESSON 50. AMINES, AMINO ACIDS AND PROTEINS

TEST FOR CLASSWORK

1.	a. there are no subproducts of polycondensation	on?				
	b. there are no subproducts of polymerization					
	c. polymerization and polycondensation are synonyms					
	d. synthesis of a polysaccharide is polycondensation, synthesis	s of polyethylene is				
pol	polymerization					
2.	2. Nucleotide is a monomer of:					
	a. RNA b. protein c. glycogen d. DNA					
3.	3. What is the difference between cellulose and starch?					
	a. in starch molecules of glucose are connected by $\alpha(1\rightarrow 4)$ and $\alpha(1\rightarrow 4)$	$\alpha(1\rightarrow 6)$ bonds, while				
in (in cellulose they are connected by $\beta(1\rightarrow 4)$ bonds					
	b. cellulose is unbranched, while starch is branched					
	c. starch is unbranched, while cellulose is branched					
	d. in starch molecules of glucose are connected by $\alpha(1\rightarrow 4)$ bond	ls, while in cellulose				
the	they are connected by $\beta(1\rightarrow 4)$ and $\beta(1\rightarrow 6)$ bonds					
4.	4. Choose the pathway to synthesize alanine from CH ₃ COOH:					
	a. $+ Cl_2 / + NH_3$ c. $+ Br_2 / + NH_3$					
	b. + NH_3 / + H_2O d. + H_2 / + N_2					
5.	5. Amino acids in proteins are connected with each other by:	Amino acids in proteins are connected with each other by:				
	a. ionic bonds c. peptide bonds					
	b. covalent bonds d. hydrogen bonds					
6.	6. Choose the products of glycine combustion:					
	a. CO_2 b. H_2O c. N_2 d. H_2					
7.	7. How many atoms are connected to the nitrogen atom of serine in the	e state of zwitterion?				
	a. 1 b. 2 c. 3 d. 4					
8.	8. Two strands of DNA are connected together by:					
	a. covalent bonds c. peptide bonds					
	b. ionic bonds d. hydrogen bonds					
9.	9. DNA molecule is made from the following chemical elements:					
	a. C, N, O, P, H c. C, N, O, H					
	b. C, N, O, S, H d. C, N, O, P, S, H					

10.	Human proteins are n	nade from the	following	chemical	elements	(ignore
	posttranslational modifications):					
	a. C, N, O, H c. C, N, O, S, H					
	b. C, N, O, P, H	d. C, N, O, P, S	, H			
		TEST FOR HO	MEWORK			
1.	Choose amino acids with h	ydrophilic side cl	hains:	.5	7	
	a. alanine c. g	lutamic acid				
	b. aspartic acid d. g	lycine				
2.	Glucose is a monomer of:				•	
	a. starch c. g	lycogen				
	b. cellulose d. D	NA	1.			
3.	What is the difference bety	ween DNA and R	NA?			
	a. nucleotides of DNA cor	tain deoxyribose,	while nucleo	otides of RN	VA contain	ribose
	b. uracil is normally include	led in RNA, but n	ot in DNA			
	c. RNA is more stable than	n DNA				
_	d. in all forms of life, exc		of viruses, D	NA and no	ot RNA is	used for
the	storage of genetic informati	on				
4.	Choose the pathway to syn	thesize ethyl ami	ne from C_2H_0	5 :		
	a. + Cl2 / + NH3	$c. + Br_2 / + NH_3$				
	$b. + HNO_3 / + H_2$	d. + $HNO_3 / + O_3 /$	\mathbf{D}_2			
5.	Nucleotides in a single stra	nd of DNA or RI	NA are conne	cted with e	ach other by	y:
	a. ionic bonds	c. phosphodiest				
	b. hydrogen bonds	d. covalent bon	ds			
6.	Choose the products of me	thylamine chloric	le reaction wi	ith alkali:		
	a. CO_2 b. H_2O c. N	$d. CH_3NH$	2			
7.	How many atoms are conn	ected to the carbo	on atom of ca	rboxylic gro	oup?	
	a. 1 b. 2 c. 3	d. 4				
8.	Amino acids can react with	n:				
	a. alkalis b. acids	c. oxygen	d. nitro	ogen		
9.	Glycogen is made from the	following chemi	cal elements	:		
	a. C, N, O, P	c. C, H, O				
	b. C, N, O, S	d. C, N, O, P, S				

10.	Human proteins are made from the following chemical elements (consider
	the possibility of posttranslational modifications):
	a. C, N, O, H c. C, N, O, S, H
	b. C, N, O, P, H d. C, N, O, P, S, H
	EXERCISES FOR CLASSWORK
1.	Write four reactions according to the following classic chain of chemical reactions and balance them:
	calcium carbide → acetylene → benzene → nitrobenzene → aniline 1
	2.
	3
	4
	Write the second reaction with another product:
2.	Write four reactions according to the following classic chain of chemical reactions
	and balance them:
	butane \rightarrow ethane \rightarrow nitroethane \rightarrow ethylamine \rightarrow ethylamine chloride
	1
	2
	3
	4
	Write the backward process for the fourth reaction:
3.	Draw the structural formula of glycyl serinate:

-	
-	
	Find the simplest formula of an organic substance. Complete combus
	0.5 L of nitrogen and 2 g of water.
-	
_	
-	
1	Calculate the volume of methylamine (in normal conditions) produced the reaction between 10 g of methylamine chloride and the excess of potass
J	hydroxide.
-	
-	
-	
-	
	EXERCISES FOR HOMEWORK
7	Write four reactions according to the following classic chain of chemical reacti
;	and balance them:
(ethane → chloroethane → ethylamine → ethylamine chloride → ethylamine
	1
	2
•	3
4	4
٦	Write the first reaction with another halogen:
-	Write four reactions according to the following classic chain of chemical reactions and balance them:

	2
	3. 4.
	Write the second reaction if the product is propane:
•	Draw the structural formula of alanyl aspartate:
1.	Determine the mass of sodium hydroxide required for the reaction with 20 of glycine.
•	The products of the combustion of 20 g of organic substance are 23.172 of carbon dioxide and 18.621 g of water. Determine the simplest formula of the compound.
•	Calculate the volume of propylamine (density is 0.72 g/ml) produced the reaction between 20 g of propylamine chloride and the excess of sodiu
	hydroxide.

LESSON 51. THE SAMPLE OF CONTROL TASK #6

	e four reactions according to the following classic chain of chemical reaction
	palance them:
	$e \rightarrow ethene \rightarrow bromoethane \rightarrow ethanol \rightarrow chloroethane$
4	
Writ	e four reactions according to the following classic chain of chemical reaction
and l	palance them:
meth	anol \rightarrow chloromethane \rightarrow propane \rightarrow bromopropane \rightarrow propene
1	
2	
Acet	aldehyde reacted with Tollens' reagent and produced 6.48 g of silver rmine the mass of acetaldehyde.
Acet	
Acet	
Acet Dete	
Acet Dete	rmine the mass of acetaldehyde.
Acet Dete	t is the volume of carbon dioxide produced in the process of alcoholi
Acet Dete	t is the volume of carbon dioxide produced in the process of alcoholi
Acet Dete	t is the volume of carbon dioxide produced in the process of alcoholi
Acet Dete	t is the volume of carbon dioxide produced in the process of alcoholi
Acet Dete	t is the volume of carbon dioxide produced in the process of alcoholientation of 38 g of glucose. The yield of the reaction was equal to 60 %.
Acet Dete	t is the volume of carbon dioxide produced in the process of alcoholientation of 38 g of glucose. The yield of the reaction was equal to 60 %.

ĺ.	Find the mass of	of alanine prod	luced after the co	mplete hydroly	rsis of 25 g of alany
	glutamate.				
					A

LITERATURE

- 1. *Khrustalev, V. V.* Pre-University Chemistry / V. V. Khrustalev, E. V. Barkovsky, T. A. Khrustaleva. Minsk: Vitposter, 2015. 160 p.
- 2. *Атрахимович*, Г. Э. Химия : практикум для подготовки к централизованному тестированию / Г. Э. Атрахимович. Минск : БГМУ, 2013. 228 с.
- 3. *Барковский, Е. В.* Современный курс химии элементов : учеб.-метод. пособие. В 2 ч. / Е. В. Барковский, А. И. Врублевский. Минск : МГМИ, 2000. Ч. І. 184 с.
- 4. *Барковский*, *E. В.* Современный курс химии элементов : учеб.-метод. пособие. В 2 ч. / Е. В. Барковский, А. И. Врублевский. Минск : МГМИ, 2000. Ч. II. 159 с.
- 5. *Барковский, Е. В.* Неорганическая химия: пособие-репетитор : теоретические основы. Примеры решения типовых задач. Тесты для самоконтроля / Е. В. Барковский. Минск : Аверсэв, $2008,\,416$ с.
- 6. *Ткачёв*, *С. В.* Основы общей и неорганической химии : учеб.-метод. пособие / С. В. Ткачёв. 12-е изд. Минск : БГМУ, 2014. 136 с.
- 7. $\mathit{Ткачёв}$, $\mathit{C. B.}$ Основы органической химии : учеб.-метод. пособие / С. В. Ткачёв. 8-е изд. Минск : БГМУ, 2014. 106 с.
- 8. *Ball*, *D. W.* Introductory Chemistry, v. 1.0. / D. W. Ball. Washington : Flat World Education, Inc., 2014. 352 p.
- 9. Wilson, D. Chemistry 2014–2015 / D. Wilson, A. P. Kaplan. New York : Kaplan Publishing, 2014. 396 p.

PERIODIC TABLE OF THE ELEMENTS

	GROUPS OF ELEMENTS																	
Period	IA																	VIIIA
	1 2,1		Aton	nic num	ber of	element			Electr	onegat	ivity							2 -
1	H Hydrogen		 \		-,0 0 - 0 -	`	79	1,42						ı				He Helium
	1.00794	IIA		Symb	ol of element Au Gold Name of element								IIIA	IVA	VA	VIA	VIIA	4.0026
	3 0,97	4 1,47 D c		·									5 2,01 B	6 2,50	7 3,07 N	8 3,50	9 4,10 F	10 –
2	Li Lithium	Be Beryllium				196,967							B Boron	C Carbon	IN Nitrogen	O Oxygen	F Fluorine	Ne Neon
	6,941	9,01218					Ť	10,811	12,011	14,007	15,9994	18,9984	20,1797					
	Na Na	12 1,23 Mg				Re	lative at	omic n	ass		1		13 1,47 Al	14 1,74 Si	15 2,10 P	16 2,60 S	17 2,83 Cl	\mathbf{Ar}^{18}
3	Sodium	Magnesium	TIID											Silicon	⊥ Phosphorus		Chlorine	Argon
	22,9898 19 0,91	24,305 20 1,04	21 1,20	IVB	VB	VIB 24 1,56	VIIB 25 1,60	26 1,64	VIIIB 27 1,70	28 1,75	IB	IIB	26,9815 31 1,82	28,086 32 2,02	30,9738 33 2,20	32,066 34 2,48	35,452 35 2,74	39,948 36 –
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Z n	Ga	Ge	$\mathbf{A}\mathbf{s}$	Se	Br	Kr
4	Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
	39,0983 37 0,89	40,078 38 0.99	44,956 39 1.11	47,87 40 1,22	50,942 41 1,23	51,996 42 1,30	54,938 43 1,36	55,845 44 1,42	58,933 45 1,45	58,693 46 1,35	63,546 47 1,42	65,39 48 1.46	69,723 49 1.49	72,61 50 1,72	74,922 51 1.82	78,96 52 2.01	79,904 53 2,21	83,80 54 –
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
5	Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
	85,468 55 0,86	87,62 56 0,97	88,906 57 1,08	91,224 72 1,23	92,906 73 1,33	95,94 74 1,40	[98] 75 1,46	101,07 76 1,52	102,905 77 1,55	106,42 78 1,44	107,868 79 1,42	112,411 80 1,44	114,82 81 1,44	118,71 82 1,55	121,76 83 1,67	127,60 84 1,76	126,904 85 1,90	131,29 86 –
6	Cs	Ba	*La	Hf	Ta	${f W}$	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0	Cesium 132,905	Barium 137,327	Lanthanum 138,906	Hafnium 178,49	Tantalum 180,948	Tungsten 183,84	Rhenium 186,207	Osmium 190,23	Iridium 192,22	Platinum 195,08	Gold 196,967	Mercury 200,59	Thallium 204,383	Lead 207,2	Bismuth 208,980	Polonium [209]	Astatine [210]	Radon [222]
	87 0,86	88 0,97	89 1,00	104 -	105 –	106 -	107 -	108 -	109 -	110 -	111 -	112 -	113 -	114 -	115 -	116 -	117 -	118 -
7	\mathbf{Fr}	Ra	♦ Ac	Rf	Db	Sg	Bh	Hs	Mt	[Uun]	[Uuu]	[Uub]	[Uut]	[Uug]		[Uuh]		[Uuo]
/	Francium [223]	Radium 226,025	Actinium [227]	Rutherfor- dium	Dubnium [262]	Seaborgium [266]	Bohrium [264]	Hassium [265]	Meitne- rium	[271]	[272]	[277]	[282]	[285]		[289]		[293]
	[220]	220,020	[227]	[261]	. ,	,			[268]						-0 111	-0.111	-0.10-	
					58 1,08 Ce	59 1,07 Pr	60 1,07 Nd	61 1,07 Pm	62 1,07 Sm	63 1,01 Eu	64 1,11 Gd	65 1,10 Tb	D v	67 1,10 Ho	68 1,11 Er	69 1,11 Tm	70 1,06 Yb	71 1,14 Lu
	*Lant	thanide	Series	3	Cerium	II I Praseody-	1 4U Neodymium	Promet-	Samarium	Europium	Gadoli-	Terbium	Dyspro-	Holmium	I ∠I Erbium	# ### Thulium	1 D Ytterbium	Lu Lutetium
					140,115	mium 140,907	144,24	hium 144,913	150,36	151,965	nium 157,25	158,925	sium 162.5	164,93	167,26	168,934	173,04	174,967
					90 1,11	91 1,14	92 1,22	93 1,22	94 1,22	95 1,20	96 1,20	97 1,20	98 1,20	99 1,20	100 1,20	101 1,20	102 1,20	103 1,20
	A A a	tinide S	Sorios		Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	VAC	umue s)CI 168		Thorium 232,038	Protactinium 231,035	Uranium 238,028	Neptu- nium	Plutonium 244,064	Ameri- cium	Curium 247,07	Berkelium 247,07	Colifor- nium	Einsteinium 252,083	Fermium 257,095	Mendele- vium	Nobelium 18,9984	Lawren- cium
1				_		·		237,048		243,061		•	251,079			258,099		260,105

SOLUBILITY OF INORGANIC SUBSTANCES IN WATER

		Na^+	\mathbf{K}^{+}	Li^+	Ca ²⁺	Ba ²⁺	Sr ²⁺	NH_4^+	\mathbf{Ag}^{+}	Mg ²⁺	Mn ²⁺	Zn ²⁺	Cu ²⁺	Fe ²⁺	Hg ²⁺	Pb ²⁺	Fe ³⁺	Al ³⁺	Cr ³⁺	\mathbf{H}^{+}
	\mathbf{Cl}^-	S	S	S	S	S	S	S	I	S	S	S	S	S	S	M	S	S	S	S
Ī	Br ⁻	S	S	S	S	S	S	S	I	S	S	S	S	S	M	M	S	S	S	S
-	Γ	S	S	S	S	S	S	S	M	S	S	S	_	S	I	I	_	S	S	S
	NO ₃	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
	NCS ⁻	S	S	S	S	S	S	S	I	S	S	S	_	S	I	I	S	S	S	S
	$\mathrm{SO_4}^{2-}$	S	S	S	M	I	I	S	M	S	S	S	S	S	S	I	S	S	S	S
	\mathbf{F}^{-}	S	S	M	I	M	S	S	S	Ι	S	S	S	M	_	Ι	M	M	S	S
	CH ₃ COO ⁻	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
	S ²⁻	S	S	S	M	Ι	I	S	I	I	I	I	I	I	I	I	_	_	_	S
	$\mathrm{SO_3}^{2-}$	S	S	S	I	Ι	I	\mathbf{S}	I	M	Ι	Ι	I	I	_	I	_	_	_	S
	CO_3^{2-}	S	S	M	Ι	I	I	S	Ι	Ι	Ι	Ι	I	Ι	I	Ι	_	_	_	S
<u>.</u> [SiO ₃ ²⁻	S	S	S	I	I	I		I	I	I	Ι	Ι	I	_	I	_	_	_	I
163	PO ₄ ³⁻	S	S	I	I	I	I	S	I	I	I	Ι	Ι	I	I	I	I	I	Ι	S
	NO_2^-	S	S	S	S	S	S	S	M	S	_	_	_	_	_	_	_	_	_	S
	HS^-	S	S	S	S	S	S	S	_	S	_	_	_	_	_	_	_	_	_	S
	HSO ₃	S	S	S	S	S	S	S	_	S	_	_	_	_	_	_	_	_	_	S
	HPO_4^{2-}	S	S	_	I	I	I	S	S	M	I	_	_	I	_	M	_	_	_	S
	$\mathrm{H_2PO_4}^-$	S	S	S	S	S	S	S	S	S	S	S	_	S	_	_	_	_	_	S
	OH^-	S	S	S	M	S	S	S	_	I	I	I	I	I	_	I	I	I	I	

S — Soluble; I — Insoluble; M — Marginally soluble

ELECTROCHEMICAL SERIES OF METALS

$\frac{Me^{n+}}{Me^0}$	$\frac{\mathrm{Li}^{\scriptscriptstyle{+}}}{\mathrm{Li}^{\scriptscriptstyle{0}}}$	$\frac{\mathbf{K}^+}{\mathbf{K}^0}$	$\frac{\mathrm{Sr}^{2+}}{\mathrm{Sr}^{0}}$	$\frac{Ba^{2+}}{Ba^0}$	$\frac{\mathrm{Ca}^{2+}}{\mathrm{Ca}^{0}}$	$\frac{\text{Na}^+}{\text{Na}^0}$	$\frac{\mathrm{Mg}^{2+}}{\mathrm{Mg}^{0}}$	$\frac{\mathrm{Al}^{3+}}{\mathrm{Al}^{0}}$	$\frac{Zn^{2+}}{Zn^0}$	$\frac{\mathrm{Cr}^{2+}}{\mathrm{Cr}^{0}}$	$\frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{0}}$	$\frac{\mathrm{Ni}^{2+}}{\mathrm{Ni}^{0}}$	$\frac{\mathrm{Sn}^{2+}}{\mathrm{Sn}^{0}}$	$\frac{\mathbf{Pb}^{2+}}{\mathbf{Pb}^{0}}$	$\frac{2H^+}{H_2^{\ 0}}$	$\frac{\mathrm{Bi}^{3+}}{\mathrm{Bi}^{0}}$	$\frac{Cu^{2+}}{Cu^0}$	$\frac{\mathbf{A}\mathbf{g}^{+}}{\mathbf{A}\mathbf{g}^{0}}$	$\frac{\mathrm{Hg}^{2+}}{\mathrm{Hg}^{0}}$
e ⁰ ,V	-3.04	-2.92	-2.89	-2.90	-2.87	-2.71	-2.37	-1.70	-0.76	-0.74	-0.44	-0.25	-0.14	-0.13	0	+0.21	+0.34	+0.80	+0.85

163

CONTENTS

PREFACE	_
LESSON 1. Introduction to the general chemistry	. 4
LESSON 2. Molar mass	. 7
LESSON 3. Valence	
LESSON 4. Stoichiometric calculations	
LESSON 5. Molar volume of gases	
LESSON 6. The sample of control task #1	
LESSON 7. The periodic table	
LESSON 8. Electron configurations	
LESSON 9. Chemical bonds	
LESSON 10. Oxidation state	
LESSON 11. Classification of chemical reactions	
LESSON 12. Redox reactions	
LESSON 13. Chemical equilibrium	
LESSON 14. Chemical kinetics	42
LESSON 15. The sample of control task #2	
LESSON 16. Oxides	
LESSON 17. Bases	
LESSON 18. Acids	
LESSON 19. Salts	
LESSON 20. Inorganic compounds	
LESSON 21. The sample of control task #3	
LESSON 22. Solubility	
LESSON 23. Mass percentage and molarity	62
LESSON 24. Electrolytic dissociation	
LESSON 25. Ionic equations	
LESSON 26. Hydrolysis of inorganic salts	
LESSON 27. The sample of control task #5	
LESSON 28. Hydrogen and water	. 75
LESSON 29. Halogens	. 78
LESSON 30. Oxygen and its compounds	
LESSON 31. Sulfur and its compounds	86
LESSON 32. Nitrogen and its compounds	91
LESSON 33. Phosphorus and its compounds	. 94
LESSON 34. Carbon and its compounds	. 99
LESSON 35. Silicon and its compounds	
LESSON 36. Alkali metals	
LESSON 37. Alkaline-earth metals	
LESSON 38. Aluminum and iron	
LESSON 39. The sample of control task #5	
LESSON 40. Saturated hydrocarbons	
LESSON 41. Nomenclature of unsaturated hydrocarbons	
LESSON 42. Chemical properties of unsaturated hydrocarbons	
LESSON 43. Polymers of unsaturated hydrocarbons	
LESSON 44. Benzene and its homologs	
LESSON 45. Alcohols	
LESSON 46. Aldehydes and ketones	
LESSON 47. Carboxylic acids	
LESSON 48. Esters and fats	
LESSON 49. Carbohydrates	
LESSON 50. Amines, amino acids and proteins	
LESSON 51. The sample of control task #6	
LITERATURE	
APPENDIX	162