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PREFACE 

 

The textbook is intended for the international students of the preparatory 

departments of institutions of higher education studying physics in English  

in order to enter the medical universities of the Republic of Belarus.  

This textbook contents information on elementary mathematics and  

the basics of differential calculus, as well as the main sections of a school 

physics course — mechanics, molecular physics and thermodynamics, 

electricity and magnetism, optics, atomic and nuclear physics, which are 

required for the study of medical and biological physics. The problems and 

examples have been selected for the distinct purpose of illustrating the principles 

taught in the text and for their practical applications. A list of problems and tests 

is placed at the end of every topic. They are in sufficient number to permit 

testing at many points and of a teacher‘s choice of problems. The order  

of topics, illustrations, and problems have been also selected with the purpose  

of leading the student into a clear understanding of the physical phenomena 

concerning to biology and medicine. Duly made selection of problems and 

examples, conciseness and simplicity of presentation of different topics 

contribute to the successful study of the proposed material. 
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THE BASICS OF ELEMENTARY MATHEMATICS  

AND DIFFERENTIAL CALCULUS 
 

1. THE BASIC MATHEMATICAL CONCEPTS  

AND FORMULAS 
 

1.1. FRACTION. OPERATIONS WITH FRACTIONS.  

EXPONENTS AND RADICALS. FACTORING AND EXPANDING 
 

A fraction is an expression of the following form: 
a

b
 (a over b), where a — 

numerator, b — denominator. 

A proper fraction is one whose numerator is less than denominator. For 

example, 
1
/2; 

1
/4; 

1
/7; 

2
/3; 

2
/100 and 

36
/81 are proper fractions. An improper fraction 

is a fraction, whose numerator is equal to or larger than the denominator. Thus, 
21

/5, 
100

/37 and 
8
/8 are improper fractions.  

Operations with fractions. 

To reduce a fraction to its lowest terms, divide numerator and denominator 

by their highest common factor (or: measure, or: divisor: 
ar a

br b
). 

To reduce a fraction to higher terms, multiply the numerator and  

the denominator by the same number: 
a ar

b br
. 

To find the sum (the difference) of two unlike fractions, change them to 

like fractions (fractions having their least common denominator) and combine 

the numerators: 
a c ad cb

b d bd
.
 

To find the product of two fractions, multiply the numerators together and 

the denominators together: 
a c ac

b d bd
. 

To find the quotient of two fractions, multiply the dividend by the inverted 

divisor: 
a c ad

b d bc
. 

Equivalent fractions are known as proportions: 

a c

b d
 ad = bc 

a b c d d b

c d a b c a
. 

Exponents and Radicals (Roots). 

In the expression (a
n
) = с (a to the n-th power is equal to c) the quantity a 

is called the base and n is the exponent of the power.  



6 

A quantity a to the power of m over n is called the n-th root of a  

to the m-th power. 
m

n mna a  

The following rules are useful in manipulations with exponents and roots. 

a
0
 = 1 

a
1
 = a

 

(a
n
)(a

m
) = a

n+m 
 

(a
n
)(b

n
) = (ab)

n
  

(a
n
)

m
 = a

nm 

(a
n
)(a

–n
) = a

0
 = 1

 

n n

n

a a

b b  

( )
n

n m

m

a
a

a  

1 n

n
a

a  
n n na b ab  

1

n na a  
n

n
n

a a

bb  
 

Factoring and Expanding. 

In many cases one needs the inverse operations — Factoring or Expanding. 

We can obtain another form of the algebraic expression due to expanding of 

powers or a product of items and write down the result as a sum of terms.  
Table 1.1 

Expanding formulas 

1 (a + b)
2
 = a

2
 + 2ab + b

2 
 

2 (a – b)
2
  a

2
 – 2ab + b

2 
 

3 (a + b)  (a – b) = a
2
 – b

2 
 

4 (a + b)
3
  a

3
 + 3a

2
b + 3ab

2
 + b

3 
 

5 (a – b)
3
  a

3
 – 3a

2
b + 3ab

2
 – b

3 
 

6 (a + b)(a
2
 – ab + b

2
)  a

3
 + b

3 
 

7 (a – b) (a
2
 + ab + b

2
)  a

3
 – b

3
 

 

Examples: 
2 2 2 2 2 2( ) ( ) 2 2 4

4
a b a b a ab b a ab b ab

.
ab ab ab
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5 5 5

1 1 1 1 1

x x x

y y y y y
 

6 6 6

3 3 3 3 3

a a a

c c c c c
 

2 2 2 2 2 2 2( )
2

m n m n m n m n

m n n m m n m n m n m n
 

5 10 5 10 5 10 5( 2 )
5

2 2 2 2 2 2

p q p q p q p q

q p p q q p q p q p q p
 

2 2 2 216 8 16 8 8 16 ( 4)
4

4 4 4 4 4 4

a a a a a a a
a

a a a a a a
 

2 2 2 2 2 2 29 6 9 6 6 9 ( 3 )
3

3 3 3 3 3 3

x y xy x y xy x xy y x y
x y

x y y x x y x y x y x y  

EXERCISES 

1. Reduce fractions: 
3

2

9 4 1
;      ;      

54 116

x y
.

yx
 

2. Perform operations with fractions: 

5 2 1 2 3 15 4 12
;      ;      ;      :

7 7 2 3 5 21 7 21
. 

3. Simplify expression: 3·(5x + 2) – 10x =  

4. Perform factoring operations: a
3
 – b

3
 = 

       b
2
 – 9 = 

(a – b)
2
 = 

a
3
 – 125 = 

5. Perform operations: a
4
 × a

3
 = 

b
8
 : b

2
 = 

b
9
 : b

–2
 = 

 

1.2. FUNCTIONAL DEPENDENCE. BASIC FUNCTIONS  

AND THEIR GRAPHS 

 

Function is the dependence of variable y on the variable x from some set 

D, where each variable value x corresponds a single value of the variable y:  

y = f(x). The equation above is the mainly used representation of a function; it is 

called the function notation. 

The variable x is called independent variable or argument. The variable y is 

the dependent variable and says that variable y is a function of the variable x. All 
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values of the independent variable x (the set D) are called the domain of 

definition. The set of all the values taken by the dependent variable y is called 

the range of the function 

The graph of the function is the set of all points in the coordinate plane, 

the abscissa of which is equal to the argument values, and the ordinate is  

the corresponding function values.  

Zeros of the function are the values of the argument at which the function 

vanishes.  

The function is called increasing on some interval I if for any x1, x2 ∈ I  

the inequality x1 < x2 corresponds to inequality f(x1) < f(x2). The function is 

called decreasing on some interval I if for any x1, x2 ∈ I the inequality x1 < x2 

corresponds to inequality f(x1) > f(x2). 

The function can be represented in analytical form by formula, in tabular 

form by means of tables and in graphical form by graph.  

Example: 

1) analytical form : y = 
1

3
x  + 2 

2) tabular form: 

x 0 3 6 etc. 

y = f(x) 2 3 4 etc. 

3) graphical form: 

 
 

1.2.1. LINEAR FUNCTION AND ITS GRAPH 

A linear function is a function defined by a formula of the form y = kx +b, 

where x is the argument, k, b ∈ R. The graph of a linear function is a straight 

line (fig. 1.1). 

The coefficient k is called the angular coefficient of the straight line.  
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Zero of a linear function: x = −
b

k
 

 

b > 0    b < 0 

 
 

Fig. 1.1. The graph of a linear function 

 

Direct proportionality is a particular case of a linear function (fig. 1.2). 

Direct proportionality is a function that can be set by the formula y = kx, 

where x — independent variable, k ≠ 0. Coefficient k is called the coefficient of 

direct proportionality.  

 

Fig. 1.2. The graph of a direct proportionality function 

EXERCISES 

a. Create the graph of the function: 

1) y = 3x  2) y = 2x – 1  3) y = –3x + 2 

b. Find the x-intercept and the y-intercept for the following linear function 

(zeros of a functions). Find the points of functions intersection:  

1) y = 4x – 6    and    y = –2x 

2) y = 2x – 1    and    y = –4x + 5 

3) y = 3x – 1    and    y = –3x + 11 

c. Find a linear function that passes through the origin and forming with  

the x-axis the following angles:  

1) 30º  2) 45º  3) 135º  4) 0º 
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1.2.2. INVERSE PROPORTIONALITY FUNCTION AND ITS GRAPH 

An inverse proportionality function is a function defined by a formula of 

the form y = 
k

x
, where x is the argument, k ∈ R, k ≠ 0.  

The domain of this function: x ≠ 0. 

The graph of an inverse proportionality function is a hyperbola (fig. 1.3). 

 
Fig. 1.3. The graph of an inverse proportionality function 

 

There is no zeros of the function y = k/x! 

If k > 0, the function y = k/x decreases throughout the domain of definition, 

when k < 0, the function y = k/x increases in all the field definitions. For a curve 

that is the graph of this function, the x-axis and y-axis play the role of 

asymptotes.  

Asymptote — a straight line which is closer to the points of the curve as 

they remove into infinity. 

EXERCISES 

a. Create the graph of the function: 

1) 
3

y
x

  2) 
2

y
x

 

 

1.2.3. QUADRATIC FUNCTION AND ITS GRAPH 

A quadratic function is a function defined by a formula of the form: 

y = ax
2
 + bx + с, 

where x is the argument, a, b, c ∈ R, a ≠ 0.  

The graph of a quadratic function is a parabola (fig. 2.4). 

The vertex of the parabola is the point of intersection of the parabola with 

its axis of symmetry. The vertex of the parabola y = ax
2
 + bx + c has coordinates 

(
2

4
; 

2 4

b b ac

a a
). 
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Fig. 1.4. The graph of a quadratic function 

 

Let‘s consider the function defined by the formula y = ax
2
 (a ≠ 0) as  

a particular case of a quadratic function (fig. 1.5). 

 

Fig. 1.5. The graph of the function defined by the formula y = ax
2
 (a ≠ 0) 

 

The properties of the function y = ax
2
: 

If x = 0, y = 0, i. e. the graph of the function passes through the origin.  

The function graph is symmetrical about the y-axis. 

If a >  0, the function decreases on the interval (–∞; 0] and increases on  

the interval [0; +∞). 

If a < 0, the function increases on the interval (–∞; 0] and decreases on  

the interval [0; + ∞). 

If a > 0, ymin = 0; if a < 0, ymax = 0.  
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1.2.4. QUADRATIC EQUATIONS. QUADRATIC FORMULA 

The quadratic equation can be presented in the following form: 

ax
2
 + bx + c = 0, 

where x is a variable, a, b, c are some constants (a ≠ 0). 

If a = 1 (i. e., the equation of the form x
2
 + bx + c = 0), the quadratic 

equation is called monic quadratic equation. 

Quadratic Formula: If ax
2
 + bx + c = 0, then x = 

2
b b 4ac

2a
. 

In the general form of a quadratic equation ax
2
 + bx + c = 0.  

The expression D = b
2
– 4ac called the discriminant of the quadratic equation  

ax
2
 + bx + c = 0. 

If D < 0, the quadratic equation has no roots. 

When D = 0, the quadratic equation has two of the same root: x = 
b

2a
.  

If D > 0, the quadratic equation has two roots x1,2 = 
b D

2a
. 

It is useful to remember the following factoring formula for practical use:  

ax
2
 + bx + c = a (x – x1) ⋅ (x – x2). 

Viete Theorem: If x1 and x2 are the roots of the monic quadratic equation 

x
2
 + px + q = 0, then x1 + x2 = –p; x1⋅x2 = q.  

 

Example:  
Find the roots of the quadratic equation х

2
 – 2х – 3 = 0. 

Solution: D = (–2)
2
 – 4⋅1⋅(–3) = 4 + 12 = 16 = 4

2
      x1,2 = 

2( 2) 4

2 1
 

x1 = 
2 4

2
= –1;  x2 = 

2 4

2
= 3. 

Answer: –1; 3. 

EXERCISES 

a. Create the graph of the function: 

1) y = 3x
2
 + 2x – 1;  2) y = –x

2
 + 2;   3) y = –4x

2
. 

b. Find the roots of the quadratic equation: 

1) x
2
 + x – 20 = 0;  2) x

2
 – 8x – 9 = 0;  3) 16x

2
 – 40x + 25 = 0. 

4) x
2
 – 6x + –6 = 0;  5) x

2
 + 

1 2

3 3
x  = 0;  6) 2x

2
 – 5x – 7 = 0. 

1.2.5. CUBIC FUNCTION AND ITS GRAPH 

Cubic function in mathematics is a numerical function of the following 

form    f(x) = ax
3
 + bx

2
 + cx + b, x ∈ R,   where a ≠ 0. 
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Generally speaking, a cubic function is a polynomial of the third degree. 

The graph of a full cubic function is the following (fig. 1.6). 

 

Fig. 1.6. The graph of a full cubic function 
 

Let‘s consider the function defined by the formula y = ax
3
 (a ≠ 0). In this 

case the graph of the cubic function is a cubic parabola (fig. 1.7). 

 

Fig. 1.7. The graph of the function defined by the formula y = ax
3
 (a ≠ 0) 

 

Cubic parabola — a plane algebraic curve of the third order. Its canonical 

equation in rectangular Cartesian coordinates has the form y = ax
3
, where a ≠ 0.  

The cubic parabola has a center of symmetry at the origin, this point  

is the inflection point of the curve. The x-axis is the tangent to the cubic 

parabola at that point.  

For a > 0 cubic parabola is located in the first and third quarters  

of the coordinate, it is an increasing function. 

For a < 0 the curve runs in the second and fourth quarters and decreases. 

Cubic parabola exists at least one the x-intercept but no more than three  

x-intercepts. Axis from 1 to 3 times. Sit means, that the cubic equation  

ax
3
 + bx

2
 + cx + b = 0 has at least one up to three roots. 
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EXERCISES 

a. Create the graph of the function: 

1) y = 2x
3
; 2) y = 3x

3
. 

1.2.6. THE EXPONENTIAL FUNCTION AND ITS GRAPH 

An exponential function is a function defined by a formula of the form  

y = a
x
, 

where a > 0, a ≠ 1 (fig. 1.8). 

 

Fig. 1.8. The graph of an exponential function 
 

In contexts where the base a is not specified, especially in more theoretical 

contexts, the term exponential function is almost always understood to mean 

the natural exponential function y = e
x
 (fig. 1.9). 

 

Fig. 1.9. The graph of the natural exponential function y = e
x
 

 

Let‘s consider the function defined by the formula y = e
x
 (where e is 

Euler‘s or irrational number, e = 2.71828) as a particular case of an exponential 

function. 

The exponential function is used to model a relationship in which  

a constant change in the independent variable gives the same proportional 
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change (i. e. percentage increase or decrease) in the dependent variable.  

The function is often written as exp(x). The exponential function is widely used 

in physics, biology and mathematics. 

Example: Radioactivity is one very frequently given example of 

exponential decay. The law describes the statistical behavior of a large number 

of nuclides, rather than individual atoms. 

N(t) = N
0
 e

–λt
. 

Here N(t) is the quantity at time t, and N0 = N(0) is the initial quantity,  

i. e. the quantity at time t = 0, and λ (lambda) is a positive rate called  

the exponential decay constant. 

1.2.7. LOGARITHM. COMMON AND NATURAL LOGARITHMS.  

THE PROPERTIES OF LOGARITHMS. LOGARITHMIC FUNCTION AND ITS GRAPH 

If at an exponential function y = a
x
 change the places of x and y we will 

have a function x = a 
y
. So y is the power of base a to calculate value x, it means 

that y = logax, y is the logarithm of x on base a. 

That is, the logarithm of a number x to the base a is that number y which, 

as the exponent of a, gives back the number x. 

For common logarithms, the base is 10, so if x = 10
y
, then y = lgx or log x. 

The subscript 10 on log10 is usually omitted when dealing with common logs. 

Another important base is the exponential base e = 2.71828..., where e is 

natural number (or Euler‘s or irrational number). Such logarithms are called 

natural logarithms and are written ln.  

Thus, if x = e
y
, then y = lnx. 

For any number y, the two types of logarithm are related by the equality: 

ln x = 2.3026 log x. 

Some simple rules for logarithms: 

1. log (xz) = log x + log z, 

which is true because if x = 10
n
 and z = 10

m
, then xz = 10

n+m
. From  

the definition of logarithm, log x = n, log z = m, and log (xz) = n + m; hence, 

log(xz) = n + m = log x + log z.  

In a similar way, we can show that. 

2. log 
x

z
= log x – log z. 

3. log x
n
 = n log x. 

These three rules apply to any kind of logarithm. The function that 

assigns to y its logarithm is called logarithm function or logarithmic function  

(or just logarithm) y = loga x, if a > 0, a ≠ 1, x > 0.  

The graph of a classical logarithmic function y = logax will be  

the following (fig. 1.10). 

Let‘s consider the graph of a natural logarithmic function y = ln x as  

a particular case of a logarithmic function (fig. 1.11). 
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Fig. 1.10. The graph of a classical     Fig. 1.11. The graph of a natural logarithmic 

logarithmic function      function 

EXERCISES 

a. Find the logarithms: 

1) log62 + log618;  2) lg4 + lg25;  3) lg3000 – lg3; 4) ln e
5
. 

b. Find x:  

1) 3 = log2(15 – x);  2) 5 = lg(100
–x

); 3) 6 = ln(e
2x

). 

1.2.8. TRIGONOMETRIC FUNCTIONS AND THEIR GRAPHS.  

PROPERTIES OF TRIGONOMETRIC FUNCTIONS 

Trigonometric functions — math functions of an angle. They are certainly 

important when studying geometry, and in the study of periodic processes. 

Typically trigonometric functions are defined as the relationship of sides  

of a right triangle or the length of certain segments in the unit circle. 

An angle can be set in radians (1 rad) and degrees (1º). One radian is equal 

to 180/π degrees. Thus, to convert from radians to degrees, multiply by 180/π. 

1 rad = 1·
180

π
 ≈ 57.2958°  1° = 1·

π

180
 ≈ 0,0175 rad. 

Correspondence between the main trigonometric functions presented in 

table 1.2. 
Table 1.2 

Trigonometric functions 

Functions Correspondence 

sin 
 

cos 
 

tg or tan 

 
ctg or cot 
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a. Function y = sin x and its graph (fig. 1.12). 

 

Fig. 1.12. The graph of a function y = sin x 

 

b. Function y = cos x and its graph (fig. 1.13). 

 

Fig. 1.13. The graph of a function y = cos x 
 

Trigonometric functions y = sin x and y = cos x are periodical functions 

with period T = 2π. 

c. Function y = tg x (y = tan x) and its graph (fig. 1.14). 

 

Fig. 1.14. The graph of a function y = tg x (y = tan x) 
 

Trigonometric function y = tg x is periodical function with period T = π. 
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Table 1.3 

Trigonometric functions of the main angles 

α (rad) 0 
π

6
 

π

4
 

π

3
 

π

2
 

2π

3
 

3π

4
 

5π

6
 π 

α (deg) 0° 30° 45° 60° 90° 120° 135° 150° 180° 

sin α 0 
1

2
 

2

2
 

3

2
 1 

3

2
 

2

2
 

1

2
 0 

cos α 1 
3

2
 

2

2
 

1

2
 0 

1

2
 

2

2
 

3

2
 –1 

tg α 0 
1

3
 1 3  – 3  –1 

1

3
 0 

ctg α – 3  1 
1

3
 0 

1

3
 –1 3  – 

 

We take an arbitrary right triangle that contains the angle α to define 

trigonometric functions of the angle α. We will set the sides of this triangle as:  

Hypotenuse is a side opposite right angle (longest side 

in the triangle), the c side in this case. 

The opposite leg is the side that lies opposite  

the angle α. For example, side a is opposite to angle α. 

The adjacent leg is the side which is a party angle.  

For example, leg b is adjacent to angle α (fig. 1.15). 

The sine of angle α is the ratio of the length of  

the opposite side a to the length of the hypotenuse с:  

sin α
a

c
. 

This attitude does not depend on the choice of triangle {ABC} containing 

the angle α, since all such triangles are similar.  

The cosine of angle α is the ratio of the length of the adjacent side b to  

the length of the hypotenuse c: cos α
b

c
. 

The sine of one acute angle in the triangle equals the cosine of the second: 

sin β cos α
b b

c c
. 

The tangent of angle α is the ratio of the length of the opposite side a to  

the length of the adjacent side b: tg α
a

b
. 

This is easy to see by studying a right triangle and applying  

the Pythagorean theorem that in symbolic form the Pythagorean identity can be 

written as:    sin
2
α + cos

2
α = 1. 

Fig. 1.15. An arbitrary 

right triangle 
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1.2.9. MAIN TRIGONOMETRIC FORMULAS 

sin(α ± β) = sin α cos β ± cos α sin β 

cos(α ± β) = cos α cos β ± sin α sin β 

tg α tg β
tg(α β)

1 tg α tg β
 

2 2 2

2tg α 2ctg α 2
sin 2α 2sin α cos α

1 tg α 1 ctg α tg α ctg α
 

2 2
2 2 2 2

2 2

1 tg α ctg α 1
cos 2α cos α sin α 2cos α 1 1 2sin α

1 tg α ctg α 1
 

2 2

2tg α 2ctg α 2
tan 2α

ctg α tg α1 tg α ctg α 1
 

cos(α β) cos(α β)
sin α sin β

2
 

cos(α β) cos(α β)
cos α cos β

2
 

sin(α β) sin(α β)
sin α cos β

2
 

cos(α β) cos(α β)
tg α tg β

cos(α β) cos(α β)
 

2
2

2

1 cos2α tg α
sin α

2 1 tg α
 

2
2

2

1 cos2α ctg α
cos α

2 1 ctg α
 

2
2

2

1 cos2α sin α
tg α

1 cos2α 1 sin α
 

α β α β
sin α sin β 2sin cos

2 2
 

α β α β
cos α cos β 2cos cos

2 2
 

α β α β
cos α cos β 2sin sin

2 2
 

sin(α β)
tan α tan β

cos α cos β  
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EXERCISES 

a. Simplify the expression: 

1) sin 20° cos 40° + cos 20° sin 40°;     2) sin 45° cos 15° + cos 45° sin 15°; 

3) cos 12° cos 18° – sin 12° sin 18°;     4) cos 98° cos 8° – sin 98° sin 8°; 

5) 
tg 22 tg 23

1 tg 22 tg 23
;  6) 

tg 45 tg 15

1 tg 15 tg 45
. 

 

b. Create the graph of the function: 

1) y = cos2x;  2) y = sin3x. 

c. Calculate:  

1) cos120º;  2) cos135º;  3) sin75º;  4) tg1105º. 

 

1.3. VECTORS 

 

A geometric vector (or simply a vector) is a geometric object that has 

length or magnitude and direction. It can be added to other vectors according to 

the rules of vector algebra. A vector is frequently represented in mathematics 

and physics by a line segment with a definite direction, or graphically as  

an arrow, connecting an initial point A with a terminal point B, and denoted  

by AB . 

The vector can also be denoted as AB  if it represents a directed distance or 

displacement from a point A to a point B (fig. 1.16).  

 
Fig. 1.16. The vector AB  

 

Latin word vector means ―carrier‖. A vector is what is needed to ―carry‖ 

the point A to the point B. The magnitude of the vector is the distance between 

the two points and the direction refers to the direction of displacement from A to 

B. Mathematical operations on real numbers  such as addition, subtraction and 

multiplication have close analogues for vectors. Vectors play an important role 

in physics. Velocity and acceleration of a moving object as well as forces acting 

on it are described by vectors. Although most of other physical quantities do not 

represent distances (except, for example, position and displacement), their 

magnitude and direction can be still represented by the length and direction  

of an arrow. The mathematical representation of a physical vector depends on 

the coordinate system used to describe it.  

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Coordinate_system
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1.3.1. VECTOR ADDITION 

It is possible to use different rules (methods) for the geometric construction 

of the vector addition a + b , but they all give the same result.  

a. Triangle rule. 

Both vectors are transported parallel to themselves so that the beginning of 

one of them coincided with the end of another. Then the vector sum a + b  is 

defined by a third party resulting triangle, and its beginning coincides with the 

beginning of the first vector a  and the end of the second vector b  (fig. 1.17). 

 
Fig. 1.17. The vector sum a + b 

 

This rule is directly and naturally generalized to add any number of vectors, 

moving in the rule of the polygon. 

b. Polygon rule. 

The beginning of the second vector coincides with the end of the first,  

the beginning of the third — with the end of the second, and so on. The sum of  

n vectors is a vector with the beginning coinciding with the beginning of  

the first vector and the end coinciding with the end of the n-th vector (fig. 1.18). 

 

Fig. 1.18. The sum of n vectors 

 

c. Parallelogram rule. 

Both vectors a  and b  are transported parallel to themselves so that their 

beginning matches. Then the vector sum is given by diagonal built on  

a parallelogram of them coming from their common base point (fig 1.19). 

The rule of the parallelogram is especially useful when there is a need to 

represent the vector of amounts immediately applied to the same point, which is 
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applied to both terms — that is, to depict all three vectors having a common 

origin. 

a – b = (a1 – b1)e1 + (a2 – b2)e2 + (a3 – b3)e3. 

 
Fig. 1.19. Parallelogram rule 

1.3.2. VECTOR SUBTRACTION 

Subtraction of two vectors can be geometrically defined as follows: to 

subtract b  from, a  place the tails of a  and b  at the same point, and then draw 

an arrow from the head of b  to the head of a. This new arrow represents  

the vector a – b , as illustrated below on fig. 1.20. 

 

Fig. 1.20. Subtraction of two vectors 

 

Subtraction of two vectors may also be performed by adding the opposite 

of the second vector to the first vector, that is a – b a ( b) . 

1.3.3. VECTOR MULTIPLICATION (SCALAR MULTIPLICATION) 

a. Multiplication by a number. 

Multiplication of a vector a  by a number n > 0 gives a collinear vector 

with length n times greater.  

Multiplication of a vector a  by a number n < 0 gives the opposite 

directional vector with a length of n times more (fig. 1.21). 

 

Fig. 1.21. Multiplication of a vector a  by a number n > 0 
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b. The dot product. 

For geometric vectors the dot product is defined via their geometric 

features and is entered as follows: 

ab a b cos(a, b).  

Here to calculate the cosine takes the angle between the vectors, which is 

defined as the angle formed by the vectors, if you put them to one point (to 

combine them). 

1.3.4. VECTOR DECOMPOSITION 

An arbitrary vector c  can be represented as a sum: c = a bm n , where m 

and n are arbitrary numbers, and the triple of vectors c ,  and  are coplanar 

(fig. 1.22). It is a decomposition of the vector  on a  and b  components.  

If the vectors a  and b  are not collinear, the submitted decomposition is the only 

possible. 

 

Fig. 1.22. Vector decomposition 

1.3.5. PROJECTION OF VECTOR ON A COORDINATE AXIS 

The projection of the vector AB  on the axis l is a number equal to the size 

of the segment A1B1 to the axis l, where the points A1 and B1 are the projections 

of points A and B on the axis (fig. 1.23).  

 

Fig. 1.23. The projection of the vector AB  on the axis l 

 

The projection of the vector on the coordinate axis is a scalar value.  

The sign of the projection depends on the direction of the vector relative to  

the coordinate axes. 
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Projection may be positive or negative. The projection of the vector AB  

on an some axis is called positive if the projection direction coincides with  

the direction of the axis from the beginning of the projection up to the end of it. 

Let‘s imagine Cx as the projection of the vector c  on the axis x (fig. 1.23). 

 
a     b      c   d   e 

Fig. 1.24. The projections of the vector c  on the axis x 

 

a. if 0° < α < 90°, cx = c·cos α, 0 < cos α < 1, cx > 0. 

b. if α = 0°, c  ↑↑ OX, cx = c·cos 0°, cx = +c, projection is positive. 

c. if α = 90°, c   OX, cx = c·cos 90°, cx = 0. 

d. if 180° > α > 90°, –1 < cos α < 0, cx < 0. 

e. if α = 180°, c  ↑↓ OX, cx = c·cos 180°, cx = –c, projection is negative. 

EXERCISES 

a. Produce an addition of vectors a , b  and c :  

 

b. Produce a subtraction of vectors a  and b : 

 

c. Produce a decomposition of the vector c  on a  and b  components along 

the directions АВ and CD  
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d. Produce a projection of vector a  on the coordinate axises x and y for 

both cases (1 and 2) 

 
1       2 

 

1.4. ELEMENTARY GEOMETRY FIGURES AND FORMULAS 

 

Triangle. Types of triangles. 

Triangles can be classified according to the lengths of their sides: 

Equilateral (a), Isosceles (b) and Scalene (с) Triangles (fig. 1.25). 

Triangles can also be classified according to their internal angles: Right (a), 

Obtuse (b) and Acute (с) Triangles (fig. 1.26). 

     
a          b     с 

Fig. 1.25. Triangles classification according to the length of their sides: 

a — Equilateral; b — Isosceles; с — Scalene 

 

   
a        b     с 

Fig. 1.26. Triangles classification according to the internal angles: 

a — Right; b — Obtuse; с — Acute 

 

The Pythagorean theorem. 

In any right triangles, the square of the length of the hypotenuse equals  

the sum of the squares of the lengths of the two other sides. If the hypotenuse 

has length c, and the legs have lengths a and b (fig. 1.27) then the theorem states 

that a
2
 + b

2
 = c

2
. 

The area S of the triangle (fig. 1.28): S = 
1

2
bh. 
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Fig. 1.27. The Pythagorean theorem      Fig. 1.28. The area S of the triangle 

for right triangles 
 

The area S of the parallelogram (fig. 1.29): S = ah = ab sin α. 

 

Fig. 1.29. The area S of the parallelogram 
 

The length L of a circle (fig. 1.30): L = 2πR = πD. 

The surface S area of a circle (fig. 1.30): S = πR
2
. 

 

Fig. 1.30. The surface area S of a circle 
 

A rectangle is any quadrilateral with four right angles. It can also be 

defined as a parallelogram containing a right angle (fig. 1.31). 

If a rectangle has length a and width b, its area: S = ab, and its perimeter  

P = 2(a + b). 
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A rectangle with four sides of equal length is a square (fig. 1.32). 

     
 

Fig. 1.31. A rectangle         Fig. 1.32. A square 

 

The perimeter P of a square whose four sides have length a is: P = 4a and 

the area S is: S = a
2
 or it can be calculated using the diagonal d: S = 

2
d

2
. 

 
1.5. LIMIT OF A FUNCTION 

 

The number L is called the limit of a function f(x) at a point p if for any 

sequence {xn}  D[f] that converges to a point p, the corresponding sequence of 

function values {f(xn)} converges to L. 
( )lim

x p

f x L . 

It means generally that f(x) can be made as close as desired to L by making 

x close enough, but not equal, to p. 

1.5.1. LIMITS OF SPECIAL INTEREST 

Trigonometric functions 

0

sin 
1lim

x

x

x
 — First wonderful limit 

0

1 cos 
0lim

x

x

x
 

Exponential functions 
1

0

1
(1 ) 1 2 7178282lim lim

x

x

x x

x e .
x

 — Second wonderful limit 

0

1
1lim

x

x

e

x
 

c. Logarithmic functions  
0

ln(1 )
1lim

x

x

x
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Examples: 

1. We will set the function у = 3x
2
 + 2x – 5 and the argument x of  

the function tends to 2. If the argument of the function takes on the values 2.1; 

2.01; 2.001 etc. → 2, the function gets the values 12.43; 11.14; 11.01 etc. → 11. 

That is, the sequence of function values has a limit, equals to 11. 

We саn write down the following expression: 
2

2

(3 2 5) 11lim
x

x x . 

Thus we can simply substitute the value of the argument limit directly to 

the to the function expression in order to calculate the value of the function 

limit. 

2. Find the limit of the function 

2 4

2

x
y

x
 if x → 2. 

It is not possible to make a direct substitution the value of the argument 

limit directly to the to the function expression because we will obtain no sense 

result such as 
0

0
. We may use factoring formula (a

2
 – b

2
) = (a – b)(a + b) 

2 2 2

2 4 ( 2)( 2)
( 2) 2 2 4lim lim lim

2 2x x x

x x x
x .

x x
 

EXERCISES 

a. calculate the limits of functions: 

1. 
2

3( 4 1)lim
x

x x ;  2. 
2

4 16
lim

2x

x

x
;  3. 

1

2

2

1
lim

2 1x

x

x x
;  

4. 
2

3(5 7 )lim
x

x x ;  5. 
3

2 9
lim

3x

x

x
;   6. 

0 0

sin e 1
lim lim
x x

xx

x x
 

 

1.6. DERIVATIVES AND INTEGRALS 

1.6.1. DERIVATIVES. GENERAL RULES 

It‘s important to determine how quickly the function y is changing with 

variable x in many cases. The derivative of a function represents this 

information as an infinitesimal change in the function y = f(x) with respect to its 

variable x. 

Let‘s consider a function y = f(x) at two points with some values  

of argument x0 and x0 + Δx (fig. 1.33). The difference between the points  

is an increment of an argument: Δx = x – x0. The increment of function will be: 

Δy = y – y0. For continuous functions, if Δx → 0, then Δy → 0. But it is 
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impossible to foretell the value the attitude 
y

x
 aspires at unlimited decrease Δx, 

because it depends on a concrete kind of function y(x). 

 
Fig. 1.33. Derivative of a function y = f(x) — geometrical sence 

 

Definition: Derivative of the function y(x) in the given point x0 is a limit  

of the attitude of an increment of function to an increment of argument at its 

unlimited decrease. Derivative of function of one argument is designated: y' or 

dy

dx
. Thus: 

Δ 0 Δ 0

Δ Δ
lim ,  or  lim

Δ Δx x

y dy y
y  =

x dx x
.  

 

 

Derivative of a function has simple geometrical sense.  

From fig. 1.32 it is evident, that the attitude 

tg α,
y BC

x AC
 

where α — a slope angle of the secant AB to an axis OX.  

If Δx → 0 the point B will move towards point A, then Δx will 

unboundedly decrease and approach 0, and the secant AB will approach  

the tangent AC. Hence, a limit of the difference quotient is equal to a slope  

of a tangent at point A. 

Δ 0

Δ
lim lim tgα tgβ.

Δx

y
y

x
 

Thus, derivative of a function at a point is numerically equal to the tangent 

of a corner between the tangent lead to the curve of function in the given point, 

and an axis OX, — that is the geometrical sense of a derivative.  

Derivative of a function has also a mechanical sense or interpretation.  

Let‘s consider a movement of a material point along a coordinate line.  

The point displacement during the time interval from t0 till t0 + Δt is equal to:  

S(t0 + Δt) – S(t0) = ΔS, 

and its average velocity is: aver

S
v

t
.
 

B 

C 

D  

Δx = x – x0 = dx 

Δv 

dv 

β 

α 

y 

y0 
А 

x 

y = f(x) 
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If Δt → 0, an average velocity value approaches the certain value, which is 

called an instantaneous velocity v(t0) of a material point at the moment t0.  

inst
0

lim
t

S dS
v S .

t dt
 

An instantaneous velocity vinst = v(t0) is a derivative of a displacement 

with respect to time at the moment t0:  

vinst = S′(t). 

Similarly to this imagination, an instantaneous acceleration a(t0)  

is a derivative of a velocity with respect to time at the moment t0:  

ainst = v′(t). 

There are several certain rules how to calculate a derivative of 

elementary functions and its combinations. 

Single derivatives of simple functions are calculated with the help of 

special table of derivatives (table 1.4). The derivatives of more complicated or 

composite functions are calculated easily using special differentiation rules. 

Table 1.4 

Table of derivatives 

Function Derivative 

x
a
 ax

a – 1
 

C (constant) 0 

a
x
 a

x 
ln a 

e
x
 e

x
 

ln x 
x

1
 

sin x cos x 

cos x –sin x 

tg x 
x2cos

1
 

ctg x 
x2sin

1
 

arctg x 
21

1

x
 

1.6.2. DIFFERENTIATION RULES 

Constant Rule. The derivative of any constant C equals to zero: C′ = 0. 

Constant Multiple Rule. The derivative of constant С times a function is 

equal to the constant С times the derivative of the function: 

(Cu)′ = C·(u)′. 

Sum rule: the derivative of a sum is equal to the sum of the derivatives: 

(u + v)′ = u′ + v′. 
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Product rule: the derivative of a product of two functions is equal  

to the first times the derivative of the second plus the second times the derivative 

of the first: 

(u·v)′ = u′·v + u·v′. 

Quotient rule: the derivative of the quotient of two functions is equal to 

the denominator times the derivative of the numerator minus the numerator 

times the derivative of the denominator all divided by the square  

of the denominator: 

2

u u v v u
.

v v
 

Chain rule for a composite function:  

Composite function consists of the combination of two (or more) functions.  

Lets two functions f(x) and g(x) of the composite function f(g(x)) are 

obtained by replacing each occurrence of x in f(x) by g(x). Thus, f(g(x)) = f(u), 

where u = g(x). 

It is necessary to calculate a derivative of each function which  

is an argument of another function being a part of a composite function in order 

to calculate a composite function derivative. Then they should multiply each 

other: 

f′(g(x)) = f′(u) · u′(x). 

Example 1: y = sin x, and x = (t
2
 + 3t). Then y = sin(t

2
 + 3t) is a composite 

function of x.  

It‘s derivative is y′= (sinx)′·(t
2
 + 3t)′ = cosx·(2t + 3) = (2t + 3)·cos (t

2
 + 3t). 

 

Example 2: y = sin
3
(tg(x

2
)). It is necessary to make a number  

of the conditional steps-mental operations to find the derivative of this 

composite function. 

1. To determine the number of functions-arguments which are the parts  

of a composite function.  

1. The power function (cubic function) — the derivative is 3sin
2
(tg(x

2
)). 

2. sin(tg(x
2
)) — derivative is equal to cos(tg(x

2
)). 

3. tg(x
2
) — derivative is 22cos

1

x . 

4. x
2
 — derivative is equal 2x. 

2. To combine the derivatives of the parts of a composite function: 

2 2 2

2 2

1
3sin (tg( )) cos(tg( )) 2

cos ( )
xy x x x.

x  
 

Example 3. Calculate the function derivative y′, if y = sin(tg( x )),   

y is a composite function, y′ = (sin(tg( x )))′ = cos(tg( x ))·(tg( x ))′,· 

(tg( x ))′ is also a composite function,  
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2

1
cos(tg ) ( )

cos
y x x

x  

2

1 1
cos(tg )

2cos
y x

xx  

2

cos(tg )

2  cos

x
y

x x  

EXERCISES 

a. Calculate the derivatives of functions: 

1. у = 5х
3
;   2. у = sin

2
6x; 

3. у = 3х
4
·ln 4x;  4. ; 

5. у = (sin
2
x + 8x)

9
;  6. ( ) lnxy e x x ; 

7. 
sin x

y
x

;   8. y = ln(x
2
 – 4x + 4). 

1.6.3. MAXIMA AND MINIMA OF FUNCTIONS 

The function f(x) has a relative maximum value at point A, if f(A) is 

greater than any value in its immediate neighborhood. 

The function f(x) has a relative minimum value at point B, if f(b) is less 

than any value in its immediate neighborhood. At each of these points  

the tangent to the curve is parallel to the x-axis so the derivative of the function 

is zero: f′(x) = 0. The term local is used since these points are the maximum and 

minimum in this particular region. There may be others outside this region.  

If f(x) has a local maximum or minimum at points a and b, and if f'(x) 

exists, then f'(x) = 0. 

At points immediately to the left of a maximum the slope of the tangent is 

positive: f'(x) > 0. While at points immediately to the right the slope is negative: 

f'(x) < 0. In other words, at a maximum, f'(x) changes sign from + to –.  

At a minimum, f'(x) changes sign from – to + (fig. 1.34). 

A point x at which the function has either a maximum or a minimum is 

called a critical point.  

To find the maximum and minimum values of a function we need: 

1. Solve the algebraic equation: f'(x) = 0. 

The roots x1, x2, x3 … of this equation are the stationary points. 

2. Calculate the second derivative f′′(x) and definite its sign at the points. 

If the second derivative is positive at a stationary point is positive  

(f′′(x1) > 0), the point x1 is a local minimum; if it is negative (f′′(x2) < 0),  

the point x2 is a local maximum; if it is equal to zero: f′′(x3) = 0, it may be no 

local extremums. In this case it is necessary to find a sign of the first derivative 

on the left side (x < x3) and on the right one (x > x3) from the x3. If the sing on 
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the left side is ―–― and on the right one is ―+‖ there is a local minimum at  

the point x3. If the sing on the left side is ―+― and on the right one is ―–‖ there is 

a local maximum at the point x3. And if the sing not changes there is no 

extrema at this point. 

3. Determine a value of function in points of maximum and minimum. 

 

Fig. 1.34. The relative maximum and the relative minimum of the function f(x) 

 

Example. Let f(x) = 2x
3
 – 9x

2
 + 12x – 3. 

Are there any critical values — solutions to f'(x) = 0 — and do they 

determine a maximum or a minimum? And what are the coordinates on  

the graph of that maximum or minimum? Where are the turning points?  

Solution. f'(x) = 6x
2
 – 18x + 12 = 6(x

2
 – 3x + 2) = 6(x – 1)(x – 2) = 0. 

Implies: x = 1, x = 2. 

Those are the critical values. Does each one determine a maximum or does 

it determine a minimum? To answer, we must evaluate the second derivative at 

each value. 

f'(x) = 6x
2
 − 18x + 12; f''(x) = 12x – 18 f''(1) = 12 – 18 = –6. 

The second derivative is negative. The function therefore has a maximum 

at x = 1. 

To find the y-coordinate — the extreme value — at that maximum we 

evaluate f(1): f(x) = 2x
3
 – 9x

2
 + 12x – 3; f(1) = 2 – 9 + 12 – 3 = 2. 

The maximum occurs at the point (1, 2). 

Next, does x = 2 determine a maximum or a minimum?  

f''(x) = 12x – 18; f''(2) = 24 – 18 = 6. 

The second derivative is positive. The function therefore has a minimum at 

x = 2. 

To find the y-coordinate — the extreme value — at that minimum, we 

evaluate f(2): f(x) = 2x
3
 – 9x

2
 + 12x – 3 f(2) = 16 – 36 + 24 – 3 = 1. 

The minimum occurs at the point (2, 1). 
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Here in fact is the graph of f(x): 

 

EXERCISES 

a. Determine maxima and minima of functions: 

1. y = 2x
2
 – x

4
;  2. y = 2 + x – x

2
;  3. y = 

3

3x
 – x;  4. y = x·e

–x
. 

1.6.4. DIFFERENTIAL OF A FUNCTION 

The differential of a function represents the principal part of the change  

in the function y = ƒ(x) with respect to changes in the independent variable.  

Definition. The differential dy is defined as a product of function 

derivative y′ and an increment (or differential) of an argument dx: 

dy = y′·dx. 

The argument differential dx is equal to the increment of argument Δх, i. e. 

dx = Δх. 

Differential dy of function is not equal to its increment Δy but represents its 

main part: Δy ≈ dy = y′·dx. 

In the fig. 1.31 differential dy corresponds to line segment CD: dy = [CD]. 

1.6.5. INDEFINITE INTEGRALS. GENERAL RULES 

We are able to find the function derivative F′(x) in any case. What about  

the reverse operation? Very often it is necessary to find some function F(x)  

the derivative of which is equal to the initial function f(x) = F′(x). 

Definition. The function F(x) is called an antiderivative function of  

the initial function f(x), if the following equation is performed: F′(х) = f(х). 

But, for example, if the derivative of expression x
3
 + 5 is 3x

2
,  

an antiderivative of 3x
2
 is x

3
 + 5. At the same time the derivative of x

3
 + 7 is 

also 3x
2
, another antiderivative of 3x

2
 is x

3
 + 7. 

Similarly, another antiderivative of 3x
2
 is x

3
 + 8 etc. In fact, every 

antiderivative of 3x
2
 has the form x

3
 + C, where C is an arbitrary constant: 

F′(х) = x
3
 + C. 
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Definition. Indefinite integral of a function f(x) is a set of all its 

antiderivatives F(x) of the initial function f(x). The process of calculating an 

indefinite integral is called integration. 

The symbol ( )df x x  is used to indicate the indefinite integral of f(x).  

The indefinite integral of any given function is not unique and can differ by up 

to a constant. Thus we write, ( )d ( ) ,f x x F x C  

where C is an arbitrary constant known as the constant of integration. 

Features of the indefinite integral. 

The integral of a sum or difference of functions is the sum or difference of 

the individual integrals. ( )d d df g x f x g x. 

We can take the multiplicative constant k outside the integral sign. 

k d k dy x y x. 

The main standard integrals are presented in table 6.1. 
Table 6.1 

Standard integrals 

0 d Cx
 1 d Cx x  

α+1
α C  (α 1)

α+1

x
x dx  

1
 d ln Cx x

x
 

2

1 arcsin 
 d

arccos 
1

x C
x

x C
x

 

2

1 arctg 
 d

arcctg 
1

x C
x

x C
x

 

C 
ln 

x
x a

a dx
x

 

sin  d cos Cx x x  

cos  d sin Cx x x  

tg  d ln cos Cx x x  

ctg  d ln sin Cx x x  

2

1
 d tg C

cos
x x

x
 

2

1
 d ctg C

sin
x x

x
 

1
 d ln tg C

sin 2

x
x

x
 

1 π
 d ln tg C

cos 2 4

x
x

x
 

2 2

arcsin 1
 d

arccos 

x
C

ax
x

a x C
a

 

2 2

1
arctg 1

 d
1

arcctg 

x
C

a ax
x

a x C
a a

 

2 2

1 1
 d ln C

2+ 

a x
x

a a xa x
 

Sometimes it is impossible to find an antiderivative which is an elementary 

function. There are different methods of integration in this case. The simplest 

methods are linear integration and integration by substitution. 

Linear integration allows us to break complicated integrals into simpler 

ones which correlate table integrals. 
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Example: 

25
(5 sin )d 5 d sin d cos

2

x
x x x x x x x x C.

 

Integration by substitution. 

The substitution rule is an important tool for finding antiderivatives and 

integrals for composite function (like the chain rule for differentiation). It allows 

to involve new variables and its differentials with the main aim — to reduce 

previous variables for table standart integral with new variables. 

Example 1. Find the solution:
 

1dx x x  

By using the substitution t = 1x  we obtain 

2
2

2

2 2 4 2

1 1
1d ( 1) 2 d

1 d 2 d

2 ( 1)d (2 2 )d

t x t x
x x x t t t t

x t x t t

t t t t t t

 

Then use linear integration 

5 3
4 2 2 2

2 d 2 d C
5 3

t t
t t t t  

Produce reverse substitution and final result is: 
5 3

5 32 2 2 2
1d C ( 1) ( 1) C

5 3 5 3

t t
x x x x x  

Example 2. Find the solution: 3(1 sin )x . 
By using the substitution 1 + sinx = t we obtain 

3 1 4
3 31 sin 

(1 sin ) cos  d d C C
cos  d d 3 1 4

x t t t
x x x t x

x x t
 

Produce reverse substitution and final result is: 
4

3 (1 sin )
(1 sin ) cos  d C

4

x
x x x  

EXERCISES 

a. Calculate the integrals: 

1. 33 dx x ; 2. ( sin e )dxx x x ;  3. 
sin2

d
sin

x
x

x
; 

4. 2 1e dx x ; 5. 
2sine sin cos dx x x x ;  6. 

d

ln

x

x x
. 

1.6.6. DEFINITE INTEGRAL  

Integration was introduced as the reverse of differentiation. A more 

rigorous treatment would show that integration is a process of adding or 

«summation». 
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Consider the graph of the positive function y(x) shown in figure 1.35. 

Suppose we are interested in finding the area of the region bounded above by  

the graph of y(x), bounded below by the x-axis, bounded to the left by  

the vertical line x1 = a, and bounded on the right by the vertical line xn = b.  

 

Fig. 1.35. Calculation of the area under a curve f(x) 

 

One way in which this area can be approximated is to divide it into  

a number of rectangles, find the area of each rectangle, and then add up all these 

individual rectangular areas. The sum of the areas of all n rectangles is then 

1

Δ
n

ABDС i i
i

S y x .  

This quantity gives us an estimate of the area under the curve but it is not 

exact. To improve the estimate we must take a large number of very thin 

rectangles. So, what we want to find is the value of this sum when n tends to 

infinity and Δx tends to zero. We write this value as  

Δ 0 1

lim Δ d
bn

x ii a
ABCD i iS y x y x. 

Limit of the sum is called the definite integral of y from x = a to x = b and 

it is written 
b

a

ydx.  

Fundamental theorem of calculus (the Newton–Leibniz formula): Let f(x) 

be integrable over the interval [a; b], and suppose there is an antiderivative F(x) 

of f(x) over the interval [a; b]. Then, the definite integral with integrand f(x) and 

limits a and b is equal to the value of the antiderivative F(b) minus the value of 

antiderivative F(a): 

( )d ( ) ( ) ( )
b

a

b
f x x F x F b F a .

a
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The notation ( )
b

F x
a

 means the following: at first substitute the upper limit 

b into the function F(x) to obtain F(b) and then from F(b) we subtract F(a),  

the value obtained by substituting the lower limit a into F(x). This Newton–

Leibniz formula (1.11) allows us to easily solve definite integral, if we can find 

the antiderivative function of the integrand. 

Unlike the indefinite integral, which is the set of functions, the definite 

integral is a numerical value, that represents the area under the curve f(x). 

Features of the definite integral: 

1. ( )d ( )d
b a

a b

f x x f x x. 

2. ( ( ) ( ))d ( )d ( )d
b b b

a a a

f x g x x f x x g x x.  

3. ( )d 0
a

a

f x x . 

4. ( )d ( )d
b b

a a

kf x x k f x x. 

5. ( )d ( )d ( )d
b c b

a a c

f x x f x x f x x. 

Calculation of the area between two curves y1(x) and y2(x). 

The definite integral is used for calculation of the area between two curves 

y1(x) and y2(x). 

At first we must find the crossing points of this curves by solving  

the equation: y1(x) = y2(x). If this points are x1 and x2 > x1, we can calculate  

the area between the curves (we consider y1(x) > y2(x) at this region): 

2

1

1 2( )d
x

x

S y y x. 

Example 1. 

Consider the integral 
3

0

dx x. The area under the line is the triangle  

(fig. 1.36). The area of any triangle is half its base times the height. It is: 
1 9

3 3
2 2

S . 

As expected, the integral yields the same result:  
2 2 23

0

3 3 0 9 9
d 0

02 2 2 2 2

x
x x . 
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Fig. 1.36. The area S under the line y = x 

 

Example 2. 

Calculate the area S limited the curve у = х
2
, axis x and lines х1 = –1  

и х2 = 2. In fig. 1.37 this area is cross-hatched.  
32

2

1

2 8 1 9
d 3

13 3 3 3

x
S x x .

 
 

 

Fig. 1.37. The area S under the curve y = x
2 

 

Example 3. Calculate the integral  
32

2

2

2 8 8 8 32 2
(4 )d (4 ) (4 2 ) ( 4 2 ) 2(8 ) 10

23 3 3 3 3 3

x
x x x · · . 

EXERCISES 

a. Calculate the definite integrals: 

1) 
9

4

d ;x x
   

2) 
0

sin d ;x x

   

3) 
4

2

0

9 d ;x x x  

4) 

31

4
0

d
;

3

x x

x
   5) 

4

0 2

d
;

9

x x

x    

6) 
0

1

5 6 7(1 ) dx x x.

 

b. Calculate the area between two curves:  

1) y = 2x – x
2
, y = x;  2) y = x

2
, y = –2x. 
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THE BASICS OF PHYSICS 
 

2. KINEMATICS 
 

The study of the object motion, and the related concepts of force and 

energy, forms the field of science called mechanics. Mechanics is divided into 

three parts: kinematics, dynamics, and statics. Kinematics describes how objects 

move, dynamics deals with force and why objects move. Statics is concerned 

with the analysis of loads (i. e. forces) acting on and within physical systems 

that are in equilibrium. 

Kinematics is the branch of mechanics which deals with the study  

of the motion without taking into account the factors responsible for producing 

motion. 

In mechanics the concept (or model) of an idealized particle is used.  

It is considered to be a mathematical point (point particle) with no spatial extent 

(no size). The particle model is useful in many real situations where we are 

interested only in translational motion.  

Translational motion means motion in which all particles in the body move 

along parallel paths, and with the same velocity and acceleration (fig. 2.1).  

 
a         b 

Fig. 2.1. Rectilinear (a) and curvilinear (b) rigid body translation 

 

Therefore the object‘s size is not significant in case of translational motion. 

For example, we might consider a billiard ball, or even a spacecraft traveling 

toward the Moon, as a point particle, for many purposes. 

There are two types of translational motion: rectilinear translation (paths 

are straight lines) and curvilinear translation (paths are curved, e. g. circular) 

(fig. 2.1). 

In this section we consider the simplest two cases of translational motion:  

a body motion along a straight line (linear or one-dimensional motion) and 

curvilinear motion in a circle path. 

 

http://en.wikipedia.org/wiki/Physical_system
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2.1. MECHANICAL MOTION CHARACTERISTICS 

 

The main task of kinematics is to determine a position of the body at any 

instant of time. Any measurement of a body position must be made with respect 

to a reference frame. In mechanics a frame of 

reference is represented by a set of coordinate axes 

(fig. 2.2), therewith the origin (or zero point) of  

the frame is often chosen as a reference point.  

To locate a body means to find its coordinates (x, y) 

relative to the origin of coordinate axes (to  

the reference point). Any point on the plane can be 

specified by giving its x and y coordinates (point A in fig. 2.2). In three 

dimensions, a z axis perpendicular to the x and y axes is added. 

For one-dimensional motion we usually choose 

the x axis as the line along which the motion takes 

place (fig. 2.3). Then the position of a point at any 

moment is given by its x coordinate. If the motion is 

vertical, as with a falling object, we usually use the y 

axis.  

The position of the moving object is changed with time and hence the x 

coordinate is a function of time t (x = f(t)). The dependence x = f(t) is called  

the equation of motion.  

To describe the motion, such physical characteristics as path, distance, 

displacement, velocity and acceleration are introduced. 

Path (trajectory) is the curve along which the object moves (line ACDB in 

fig. 2.4). 

The distance (s) is the actual length of 

the path followed by the moving object 

(length of the line ACDB). It is a scalar 

quantity.  

We need to make a distinction 

between the distance a body has travelled 

and its displacement. Displacement is 

defined as the change in position of  

the object, i. e. it shows how far the object 

is from its starting point (vector  in  

fig. 2.4). The direction of the displacement 

vector is from an original position to a final position. Displacement does not 

depend on the actual path followed by the object. Only the initial and the final 

positions determine the displacement.  

Let us consider linear motion of an object during a particular time interval. 

Suppose that at some initial time t1, the object is on the x axis at the position x1 

Fig. 2.3. Position of a point A 

for one-dimensional motion 

0 
A 

x x 

0 

Fig. 2.2. Position of a point A 

on the plane (x, y) 

A 

x 

y 

x 

y 

0 

Fig. 2.4. Distance s (length of the line 

ACDB) and the displacement vector   

y 

x 

s 
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in the coordinate system shown in fig. 2.5. At some later time, t2, suppose  

the object has moved to position x2. The displacement vector  shows a change 

in the position of the object along the x axis during time interval t = t2 – t1.  

From fig. 2.5 it is seen that the magnitude  

of the displacement vector r is equal to the change  

in the x coordinate of the object: r = x = x2 – x1.  

The distance travelled s is equal to the magnitude of 

displacement: r = x = x2 – x1 = s. 

Note that the distance and the magnitude of the displacement vector are 

equal only in case of linear motion in the same direction. In all other cases r < s 

(fig. 2.4). 

The SI units for the displacement and the distance are meters (m). 

Velocity vector describes how fast and in what direction the body moves.  

Acceleration vector describes how fast and in what direction the velocity 

of the body changes.  

Example 2.1. Distance and displacement.  

A car moves along a circular path from point A to 

point B (fig. 2.6). If AB is the diameter of the circle, find 

(a) the magnitude of the displacement and (b) the total 

distance travelled. 

Solution. The magnitude of the displacement r is equal to the diameter of 

the circle: r = AB = 2R.  

Distance s is equal to the half of the circle length: s = πR. 
 

Example 2.2. Distance and displacement.  

The object starts from the ground (point A) and moves 

vertically upwards to a maximum height of h (point B) and 

falls back to the ground (fig. 2.7). Find (a) the magnitude  

of the displacement and (b) the total distance travelled. 

Solution. The displacement is equal to zero and  

the total distance travelled is equal to 2h (s = 2h).  
 

2.2. UNIFORM LINEAR MOTION 
 

Uniform linear motion is a body motion along a straight line with constant 

velocity. 

Velocity. Velocity is defined as the rate of a body position change  

in a particular direction with respect to time:  

r
.

t
      (2.1) 

Velocity vector has the same direction as the displacement vector .  

It is a vector quantity. If the body travels in the same direction and covers equal 

Fig. 2.5. The displacement 

vector   

0 
x 

x2 

10  20 30 40 50 

  

B 

h 

A 

Fig. 2.7. Example 2.2 

A B 

R 

r 

Fig. 2.6. Example 2.1 

x1 
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distances during equal time intervals, then its velocity is said to be a uniform 

velocity. 

In physics when solving many problems, the magnitudes of various 

physical vector quantities should be frequently determined. These magnitudes 

are always determined by finding the projection of 

the vectors on the chosen coordinate axes.  

Let a particle be in a linear motion with  

a uniform velocity (fig. 2.8). We choose positive 

direction of the x axis along the motion direction. 

A particle is at the position x0 at initial instant of 

time t0 = 0 and at the position x at instant of time t. 

From fig. 2.8 it is seen that x component of the velocity and the displacement 

vectors are equal to their magnitudes: x = , rx = r. Then the magnitude of  

the velocity vector is given by 
r

.
t

       (2.2) 

Taking into account that the magnitude of the displacement vector r is 

equal to the distance (s = x – x0) we obtain that the total distance travelled is 

equal to magnitude of the velocity vector multiplied by the total elapsed time: 

r = s = x – x0 = t.      (2.3) 

 

From the Eq. 2.3 it follows that the position of a particle x at any instant of 

time is defined as:    x = x0 + t.      (2.4) 

This is the basic equation of a uniform motion. 

Figure 2.9 shows a graph of the magnitude of velocity  and the distance s 

of a particle versus the time in case of a uniform motion. The slope of the s(t) 

graph is defined by the velocity magnitude, i. e. tan  = . The larger  

the velocity, the larger the angle  formed by the s(t) graph with the t axis. 

a      b 

Fig. 2.9. A plot of the magnitude of velocity  (a) and the distance s (b) of a particle versus 

time for case of a uniform linear motion 

The SI units of velocity are meter per second (m/s). 

 

2 

 = const 

1 

t 

s 

2 

2 1 

Fig. 2.8. The velocity vector   

  

s 

x x0   

1 
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Example 2.3. Distance.  

A car travels along a straight road with constant velocity 80 km/hr. How far 

does the car travel after 30 min? 

Solution. For solving a problem we use Eq. 2.3. The time interval  

t = 30 min = 0.5 hr. The distance travelled at  = 80 km/hr is 

s =   t = (80 km/hr) (0.5 hr) = 40 km. 
 

Example 2.4. Equation of motion.  

A car‘s position as a function of time is given by x = 5 + 30 t. What are (a) 

the coordinate, (b) its displacement and distance travelled after 10 s?  

Solution.  

a) Setting t = 10 s in the equation of motion gives the coordinate x 

x = 5 + 30·t = 5 m + 30 m/s·10 s = 305 m. 

b) In case of uniform linear motion in the same direction the magnitude of 

the displacement vector and the distance are equal and are defined by Eq. 2.3. 

Then displacement (distance) during time interval t = 10 s is 

r = s = x – x0 = 30 t = 30 m/s 10 s = 300 m. 

 

2.3. NON-UNIFORM LINEAR MOTION 

 

A body has a non-uniform motion if it travels unequal distances during 

equal time intervals.  

2.3.1. AVERAGE AND INSTANTANEOUS VELOCITY AND SPEED 

If the body covers unequal distances during equal time intervals, then 

velocity is called a variable velocity. In case of a non-uniform motion  

the average velocity  during some time interval is defined as  

av ,
r

t
       (2.5) 

where  is the displacement, t is the time interval.  

Magnitude of the average velocity vector is given by 

av ,
r

t
       (2.6) 

where r is the magnitude of the displacement vector, t is the time interval.  

The average speed of a body s is the total distance travelled divided by  

the time interval t: 

s

s
.

t
       (2.7) 

Average speed is a scalar and it is not the magnitude of average velocity 

vector. 
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Instantaneous velocity (i. e. the velocity at a specific instant of time or 

specific point along the path) is the limit of the average velocity as the time 

interval approaches to zero; it is equal to the instantaneous rate of a body 

position change with time. 

If t  0, then from the Eq. 2.5 it follows that instantaneous velocity is 

defined as     
0

lim
t

r
.

t
      (2.8) 

The magnitude of the instantaneous velocity is  

0
lim
t

r
.

t
      (2.9) 

The magnitude of the instantaneous speed is always equal to the magnitude 

of the instantaneous velocity because the distance travelled and the magnitude of 

displacement vector become the same when they are infinitesimally small. Then 

we can write  

0 0 0

d
,lim lim lim

dt t t

r s x x

t t t t
   (2.10) 

where 
d

d

x

t
 is the derivative of x with respect to time. 

Note that in case of uniform linear motion in the same direction  

the magnitude of the velocity vector is speed. 
 

Example 2.5. The average speed and the average 

velocity.  
A particle moves half of its distance under the angle 

α1 = 45° with respect to the x-axis at velocity 1 = 5 m/s 

and the other half of its distance with the velocity  

2 = 10 m/s under the angle α2 = 135
o
 (fig. 2.10). (a) What 

is the average speed of the particle? (b) What is  

the average velocity? 

Solution.  

a) For solving a problem we use Eqs. 2.3, 2.6 and 

2.7. The time elapsed to cover the first half of the distance  

1
12

s
t . 

The time elapsed to cover the second half of the distance is 2
22

s
t . 

The time taken to cover total distance is  

Δt = t1 + t2 = 1 2

1 2 1 22 2 2

s s s
.  

 

   

 

   

x 

2 
  

1 

Fig. 2.10. Example 2.5 
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Then the average speed is  

1 2

1 2

1 2

1 2

2

2 2(5 m/s) 10 (m/s)
6 7 m/s

15 m/s
s s

s s
. .

t
 

The average speed is 6.7 m/s. 

b) The magnitudes of displacement vectors  and  are r1 = 1t1 = s/2 and 

r2 = 2t2 = s/2, respectively. The displacement vectors ,  and  form 

rectangular triangle as shown in fig. 2.10, from which it follows 

r = 
2 2

1 1
2

s
r r . 

Then the magnitude of average velocity is  

av
6 7 m/s

4 8 m/s
2 2 2

sr s .
. .

t t
 

The average velocity is 4.8 m/s. The values of average speed and average 

velocity differ. 

NOTE. The difference between the average speed and the magnitude of  

the average velocity can occur when the motion is not in the same direction. 

 

Example 2.6. The average speed and the average velocity.  
An automobile travels on a straight road for 40 km at 80 km/h. It then 

continues in the same direction for another 20 km at 60 km/h. (a) What is the 

average velocity of the car during the full trip? (b) What is the average speed? 

Solution. A car travels in the same direction, then the magnitude of its 

displacement is equal to the distance, i. e. r = s. For solving a problem we use 

Eqs. 2.3 and 2.7. 

Solving Eq. 2.3 for t and setting 1 = 80 km/hr, s1 = 40 km and  

2 = 60 km/hr, s2 = 20 km gives the time elapsed to cover the first (t1) and  

the second (t2) part of the distance, respectively  

1
1

1

40
0 5 hr,

80

s
t .  

2
2

2

20
0 3 hr.

60

s
t .  

The total time taken to cover total distance is  

t = t1 + t2 = 0.5 + 0.3 = 0.8 hr. 

The total distance travelled is  

s = 40 + 20 = 60 km. 

Setting s = 60 km and t = 0.8 hr in Eq. 2.7 we obtain 

av
60 km

75 km/hr.
0 8 hr

r s

t t .
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Both the average velocity and speed have the same value 75 km/hr.  

NOTE. Average speed and average velocity have the same magnitude 

when the motion is in the same direction. 

 

Example 2.7. Average velocity.  

A person walks 50 m at a velocity 1 m/s and then run 60 m for 20 s along  

a straight track. What is the average velocity of a person? 

Solution. For solving a problem we use Eqs. 2.3 and 2.6 (r = s).  

Solving Eq. 2.3 for t and setting 1 = 1.0 m/s, s1 = 50 m gives the time 

elapsed to cover the first part of the distance  

1
1

1

50 m
50 s.

1 m/s

s
t  

The total time taken to cover total distance is  

t = t1 + t2 = 50 s + 20 s = 70 s. 

The total distance travelled is  

s = 50 m + 60 m = 110 m. 

Setting s = 110 km and t = 70 s in Eq. (2.6) gives: 

av
110 m

1 6 m/s.
70 s

r s
.

t t
 

The average velocity is 1.6 m/s. 

2.3.2. AVERAGE AND INSTANTANEOUS ACCELERATION 

The velocity generally changes with time either in magnitude or in 

direction or in both. In this case the motion of a body is said to be accelerated 

(or retarded). The change of velocity with time is measured by a vector quantity 

called acceleration .  

If velocity changes by unequal amounts during equal time intervals,  

the body has a variable acceleration. In case of non-uniformly accelerated 

motion the term of the average acceleration is defined. If  is the velocity  

at any time t1 and  is the velocity at another time t2, then   

is the change in velocity, t = t2 – t1 is the time elapsed. Average acceleration  

is defined as the ratio of the change in velocity to the time interval: 

av .a
t

      (2.11) 

Instantaneous acceleration is defined as the limit of the average 

acceleration as the time interval approaches to zero. If t  0, then from  

the equation 2.11 it follows that instantaneous acceleration is equal to 

0

.lim
t

a
t

      (2.12) 
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a        b 
Fig. 2.11. Projections of the acceleration vector  along the x axis for case of an accelerated 

(a) and retarded (b) linear motion 

 

Magnitude of the instantaneous acceleration vector is given by 

d d d
= = .lim

d d dt

x
a

t t t t
    (2.13) 

where 
d

dt
 is the derivative of the magnitude of the velocity with respect to 

time, 
2

2

d

d

x

t
 is the second derivative of x with time.  

Units of acceleration are meter per second squared (m/s
2
). 

 

Example 2.8. Average acceleration.  

A car accelerates along a straight road from rest to 90 km/h during time 

interval equal to 5 s. What is the magnitude of its average acceleration? 

Solution. We use Eq. 2.11, where we set t = 5 s. The car starts from rest, 

so 1 = 0 m/s. The final velocity is 2 = 90 km/h = 90  10
3
 m/3600 s = 25 m/s. 

From Eq. 2.11 the average acceleration is 

22 1
av

25 m/s 0 m/s
5 m/s .

5 s
a

t
 

 

2.4. UNIFORMLY ACCELERATED LINEAR MOTION 

 

If the body travels in some direction and its velocity changes by equal 

amounts during equal time intervals, however small these intervals may be, then 

its acceleration is said to be a uniform acceleration. 

In case of motion with a uniform acceleration, the acceleration  is  

0 ,a
t

      (2.14) 

where  and  are the initial and the final velocity of the object, respectively,  

t is time interval.  

The velocity of the particle that has been accelerated after some elapsed 

time t is       .          (2.15) 

In this section we consider the case of linear motion. Let us choose  

the positive direction of x axis coinciding with the direction of the initial 

velocity  (fig. 2.11). To determine the magnitudes of the acceleration and  

  
0 

x 

  

ax < 0 

   A A 
0 

  

x 

  

ax > 0 
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the velocity vectors, let us find the projections of these vectors along x axis.  

If the direction of the acceleration vector coincides with the direction  

of the initial velocity the projection of the vector  along x axis is equal to +a 

(ax = +a) (a is the magnitude of the vector ), and ax = –a when the directions of 

the vectors  and  are opposite (fig. 2.11). 

Thus the magnitude of the acceleration vector is defined as: 

,x ox
xa

t
     (2.16) 

where ax = a (a is the magnitude of the vector ). 

If the velocity increases with time, the acceleration is positive (a > 0), but  

if the velocity decreases, the acceleration is negative (a < 0) and it is called  

the retardation (motion is decelerated or retarded). 

The magnitude of the velocity of the uniformly accelerated particle after 

some elapsed time t is given by 

x = 0x + ax t.      (2.17) 

For case of linear motion x = , 0x = 0, that is,  

 = 0  a t,      (2.18)
 

where 0 and  are the initial and the final speed of the particle, respectively. 

As a check, note that this equation reduces to  = 0 at t = 0. As a further 

check, take the derivative of the (t) function. Doing so yields 
d

d
a

t
, which is 

the definition of a.  

Figure 2.12, a shows a plot of the (t) function defined by Eq. 2.18. 

a       b 

Fig. 2.12. A plot of the speed  (a) and the coordinate x (b) of an object moving with constant 

acceleration versus time 

 

The function is linear and thus the plot is a straight line. The slope  

of the graph is defined by the acceleration magnitude, i. e. tan  = a. 

Position (coordinate x) of the particle moving with a uniform acceleration 

at any instant of time is given by the equation: 
2

0 0
2

at
x x t .      (2.19) 

α 

0 t 

 x 

x0 

0 t 

0 
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This is the basic equation of uniformly accelerated motion. The function 

defined by Eq. 2.19 is quadratic and thus the plot is curved (fig. 2.12, b). 

As a check, note that putting t = 0 yields x = x0. As a further check, taking 

the derivative of the function x(t) given by Eq. 2.19 yields to Eq. 2.18. 

Distance travelled by a uniformly accelerated particle by a given time. 
2

0 0
2

at
s x x t .      (2.20) 

By substituting t = (  – 0)/a from the Eq. 2.18 into the equation 2.20, we 

obtain speed of a particle after covering a certain distance. 
2
 = 0

2
 ± 2as,      (2.21) 

where 0 is the initial speed, s is the distance. This equation is useful if we do 

not know t and are not required to find it. It can be given in other form:  

2as = 
2
 – 0

2
      (2.21)

 

However other equations can be derived that might be useful in certain 

situations. Thus two equations 2.18 and 2.19 can be combined to yield two 

additional equations of linear motion with constant acceleration, each of which 

involves a different ―missing variable‖. 

1. We can eliminate the acceleration a to produce the following equation 

0 0

1
( )

2
x x t .    (2.22) 

2. Finally, we can eliminate 0, obtaining  
2

0
2

at
x x t .     (2.23) 

Table 2.1 lists the basic equations of motion with constant acceleration and 

the specialized equations which have been derived above. To solve a problem 

you can choose an equation for which the only unknown variable is the variable 

requested in the problem.  
Table 2.1 

Equations of Motion with Constant Acceleration 

Equation Missing quantity Equation Number 

 = 0 at x – x0 2.18 

  
2.19 

  
2.20 

 t 2.21 

 a 
2.22 

 0 

2.23 
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Example 2.9. Velocity and acceleration.  

A particle‘s position on the x axis is given by 

x = 5 + 10t + 3t
2
, 

where x in meters and t in seconds. Find (a) the particle‘s instantaneous velocity 

at time t = 2s, and (b) the acceleration a. 

Solution. To find the velocity function (t) and acceleration we use  

Eqs. 2.10 and 2.13.  

a) To get the function (t), we differentiate the position function x(t) with 

respect to time (Eq. 2.10): 

2d d
(5 10 3 ) 10 6

d d

x
t t t.

t t
 

Setting t = 2 s in the above equation gives 

 = 10 m/s + 6 m/s 2s = 22 m/s. 

b) To get the acceleration a, we differentiate the velocity function (t) with 

respect to time (Eq. 2.13): 
2d

6 m/s
d

a .
t

 

The particle’s velocity at time t = 2 s is 22 m/s and acceleration is 6 m/s
2
. 

 

Example 2.10. Acceleration at given x(t).  

A particle is moving in a straight line so that its position is given by  

the relation x = 5 + 4t
2
. Calculate (a) its average acceleration during the time 

interval from t1 = 2 s to t2 = 5 s, and (b) its instantaneous acceleration as  

a function of time. 

Solution. To determine acceleration, we first must find the velocity at t1 

and t2 by differentiating x(t) (Eq. 2.10). Then we use Eq. 2.11 to find the average 

acceleration, and Eq. 2.13 to find the instantaneous acceleration. 

a) The velocity at any time t is 

2d d
(5 4 ) 8

d d

x
t t.

t t
 

Therefore, at t1 = 2 s, 1 = 8 2 = 16 m/s and at t2 = 5 s, 2 = 40 m/s. Thus, 

we obtain   
22 1

av
40 m/s 16 m/s

= 8 m/s .
3 s

a
t

 

b) The instantaneous acceleration at any time is 

2d d
(8 ) 8 m/s

d d
a t .

t t
 

The acceleration in this case is constant. 

 

Example 2.11. Uniformly accelerated linear motion.  

A car starts from rest and then it is moving with a constant acceleration  

a = 2 m/s
2
 during a 100 m race. How fast is the car going at the finish line? 
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Solution. We use equation (2.20), where we set 0 = 0. Setting 0 = 0  

in Eq. 2.20 and solving it for t we obtain 

2

2 2(100 m)
= 10 s.

2 m/s

s
t

a
 

It takes a car 10 s to get a finish line. 

 

2.5. FREELY FALLING OBJECTS 

 

An important example of uniformly 

accelerated linear motion is that of an 

object falling freely near Earth‘s surface 

(fig. 2.13). 

Galileo Galilei was the first to 

postulate that at a given location on the 

Earth and in the absence of air resistance, 

all objects fall with the same constant 

acceleration. This acceleration is called 

the acceleration due to gravity (the free-

fall acceleration) on the surface of the 

Earth, and it is denoted by symbol g. Its 

magnitude is approximately g = 9.80 m/s
2
 

(at the surface of Earth). Acceleration due 

to gravity is a vector as is any acceleration and its direction is downward, 

toward the center of the Earth (fig. 2.13). It is independent on the body 

characteristics, such as mass, density, or shape; it is the same for all objects. 

When dealing with freely falling bodies Eqs. 2.18–2.23 also describe this 

motion, where we replace a with the value of g given above. Also, since  

the motion is vertical, we refer the motion to the vertical coordinate y axis.  

As a rule, the direction of y axis coincides with the direction of the body motion. 

We take y0 = 0 unless otherwise specified. Then the equations of the freely 

falling body motion (at y0 = 0) are 

y = 0y +gyt,      (2.24) 
2

0 ,
2

yg t
s t      (2.25) 

2
 = 0

2
 + 2gys.     (2.26) 

NOTE. In the above equations the projections of vectors  and are 

positive if their directions coincide with the axis OY and they are negative  

in the opposite case.  

In the special case of a body thrown upward with an initial velocity , its 

acceleration is equal to the acceleration due to gravity  (in the absence of air 

Fig. 2.13. The acceleration due to gravity g 
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resistance). As the body rises, its velocity decreases until it reaches the highest 

point (retarded motion), where its velocity is zero for an instant; then it 

descends, with the increasing velocity. 
 

Example 2.12. Falling from a tower.  

Suppose that a ball is dropped from a tower 70.0 m 

high. Calculate (a) how far will it have fallen after time 

interval t = 2.0 s? (b) how much time it takes for the ball 

to reach ground. Ignore air resistance. Assume that  

the initial velocity is equal to zero. (g = 9.80 m/s
2
). 

Solution. Let us take y as positive downward, so the 

acceleration due to gravity g is positive: g = +9.8 m/s
2
 

(fig. 2.14). For solving a problem we use Eq. 2.25, where we set 0 = 0. 

a) We set t = 2.0 s in Eq. 2.25: 
2 2 2(9 8 m/s )(2 )

= 19.6 m.
2 2

gt . s
s  

The ball has fallen a distance of 19.6 m during the time interval t = 2 s. 

b) Solving Eq. 2.25 for t and setting s = h = 70 m gives  

2

2 2 70 m
= 14 3 s 3 8 s.

9 8 m/s

h
t . .

g .
 

It takes 14.3 s for the ball to reach ground. 
 

Example 2.13. Ball thrown upward.  
A person throws a ball upward into the air with an 

initial velocity of 10.0 m/s (fig. 2.15). Calculate (a) how 

maximum high it goes; (b) how much time it takes for 

the ball to reach maximum height. Ignore air resistance. 

(g = 9.80 m/s
2
). 

Solution. Let us choose y to be positive in  

the upward direction. The acceleration due to gravity is 

downward and so it has negative sign (gy = –g = –9.80 

m/s
2
) (fig. 2.15). For solving a problem we use Eqs. 2.24 and 2.26:  

 = 0 – gt,   
2
 = 0

2
 – 2gs. 

We consider the time interval from when the ball leaves the thrower‘s  

hand until the ball reaches the highest point. At time t = 0 we have y0 = 0,  

0 = 10.0 m/s. As the ball rises, its speed decreases until it reaches the highest 

point. At time th (maximum height), the velocity of the ball is equal to zero. 

a) To determine the maximum height hmax, we set  = 0 in Eq. 2.26 and 

solve it for s = hmax:  
2 2 2 2
0 0

max 2

(10 m/s)
= = 5.1 m.

2 2 2(9 8 m/s )
h

g g .
 

The ball reaches a maximum height of 5.1 m. 

h 

y 

  

0 

y 

Fig. 2.14. Example 2.12 

hmax 

y 
  

0 

   

Fig. 2.15. Example 2.13 
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b) The time th required for the ball to reach its highest point hmax we can 

calculate from the Eq. 2.24, where we set  = 0. Then 

0 = 0 – gth, 

0
2

10 0 m/s
= 1.02 s.

9 8 m/s
h

.
t

g .
 

The time required for the ball to reach the maximum height is 1.02 s. 

 

2.6. UNIFORM CIRCULAR MOTION 

 

Uniform circular motion occurs when an object (point particle) moves  

in a circular path at constant speed.  

In a uniform circular motion, a particle 

covers equal distances within equal interval of 

time, but the direction of motion changes at every 

point as shown in fig. 2.16. In this case the 

velocity of the body is referred to as linear 

velocity. A circular motion is an example of an 

accelerated motion with a constant speed. 

The angular displacement of a particle is 

measured by the angle  covered by the circle 

radius R and it is subtended at the center of  

the circle (fig. 2.16).The fixed axis around which motion takes place is called 

axis of rotation (point O in fig. 2.16). In a uniform circular motion, a particle 

undergoes the same angular displacement during  

the same time interval. 

The angular displacement of a particle can be 

given in degrees or in radians. 

One radian is defined as the angle subtended at 

the center of a circle by an arc with the length equal 

to the radius of the circle (fig. 2.17). If  is the angle 

subtended by an arc AB of length l at the center of  

a circle of radius R, then 

θ (radian) .
l

R
      (2.27) 

In one complete rotation or 360°, we have 

2π
2π radian.

l R

R R
 

180
1 radian 57 18 .

π
 

Fig. 2.17. A radian definition 

O 

R 
l 

R 

A 

B 
 rad 

Fig. 2.16. A linear velocity of  

a particle rotating about an axis O 

A O
 R 

   

B 
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Angular velocity is the angle described by a particle during a unit time. 

Angular velocity is represented by Greek letter  (Omega) and is defined as 

θ
ω .

t
      (2.28) 

The units of angular velocity  are radian per second (rad/s). 

The relation between the linear  and angular  velocities is given by  

the following expression: 

 = R ,      (2.29) 

where R is the circle radius. 

Change of the linear velocity  direction is described by the centripetal 

acceleration . Its direction is along the radius R to the circle center (fig. 2.16). 

The magnitude of the centripetal acceleration is defined as 
2

,ca
R

      (2.30) 

where R is the circle radius. 

Substituting (2.29) in this equation we obtain the another equation for  

the centripetal acceleration: 

ac = ω
2
R.      (2.31) 

Time required to complete one rotation is called the time period and 

represented by T. The circle length is equal to 2 R, thus time period is given as 
2π 2π

ω

R
T      (2.32) 

or 
2π

ω .
T

     (2.33)  

The number of rotations made by the particle in 1 second is called 

frequency of rotation. It is represented by Greek letter  (nu): 
1

v .
T

      (2.34) 

The SI units for frequency of rotation are hertz (Hz). 

The angular velocity is related to the frequency of rotation by the following 

equation:        = 2 .           (2.35) 

From the equations 2.30–2.35 the following equations for the centripetal 

acceleration can be derived: 
2 2

2 2 2

2

4π
ω 4π .c

R
a R v R

R T
    (2.36) 

 

Example 2.14.  
The platter of the hard drive of a computer rotates at 6000 rev/min 

(revolutions per min). (a) What is the angular velocity of the platter?  

(b) If the reading head of the drive is located 3.5 cm from the rotation axis, what 

is the linear speed of the point on the platter just below it? 
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Solution. a) To find the angular velocity we use Eq. 2.35, where we set 

frequency of rotation  = 6000 rev/min = 6000 rev/60 s = 100 Hz. Then  

the angular velocity is  = 2  = 2 (3.14 rad) (100 Hz) = 628 rad/s. 

b) The linear velocity of the point a 3.5 cm out of the rotation axis is given 

by the Eq. 2.30, where we set R = 3.5 cm = 3.5  10
–2

 m: 

 = R  = (3.5  10
–2

 m)  (628 rad/s) = 22 m/s. 

PROBLEMS 

1. A train 50 meter long passes a bridge 250 m long at the speed of 9 km/h. 

How long will it take to completely pass over the bridge? (Answer: 2 min) 

2. A ball rolling at the speed of 1 m/s was stopped within 1 meter. What 

was the average retardation applied to ball? How long did it take to stop it?  

(Answer: 0.5 m/s
2
, 2 s) 

3. A motor car starts from rest and accelerates uniformly for 30 s to a speed 

of 72 km/hr. It then moves with uniform velocity and is finally brought to rest in 

50 meter with a constant retardation. If the total distance travelled is 950 meter, 

find the acceleration, retardation and the total time taken. (Answer: 0.67 m/s
2
,  

4 m/s
2
, 65 s) 

4. A car starts from rest and moves with uniform acceleration. Its velocity 

is 25 cm/s after 5 s and 34 cm/s after 8 s. Calculate the distance that it will travel 

in tenth second. (Answer: 28.5 cm) 

5. A stone is thrown upwards from the surface of earth with initial speed of 

5 m/s. What is the maximum height reached by a stone? (Answer: g = 10 m/s
2
; 

1.25 m/s) 

6. What is the angular speed of (a) the second (b) the minute and (c)  

the hour hand of an analog watch? (Answer: 0.105 rad/s, 1.75 10
–3

 rad/s, 

1.45 10
–4

 rad/s) 

TESTS (Sections 2.1–2.5) 

1. Which of following graphs represents motion with uniform speed? 

0 

s 

t 

0 

 

t 

0 

s 

t 

0 

 

t 

a b 

c d 
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2. Two straight lines drawn at the same displacement 

time graph make angles 30° and 45° with X-axis as shown 

The ratio of two velocities is:  

a) 
1

2
  b) 1

3
  c) 

1

3
   d) 2  

 

 

3. A body covers half of its distance with speed ―u‖ and other half with  

the speed ― ‖, the average speed of the body is: 

a) 
2

u
  b) 

2

u
  c) 

2u

u
  d) 

2

u

u
 

4. A body goes from A to B with a velocity 40 km/hr and comes back from 

B to A with a velocity of 50 km/hr, the average velocity during the whole 

journey is:  

a) 45 km/hr  b) 44.4 km/hr  c) zero km/hr  d) 48 km/hr 

5. At first half of the distance a body moves with a velocity 40 m/s and at 

second half — with a velocity 50 m/s at same direction, so the average velocity 

during its whole journey is: 

a) 45 m/s   b) zero m/s  c) 44.44 m/s  d) 48 m/s 

6. Which of the following statements is not true? 

a) velocity, acceleration and displacement are vectors; 

b) a vector quantity has only magnitude while scalar has both magnitude 

and direction; 

c) mass, work, energy, moment of inertia are scalars. 

7. Acceleration is the rate of change of 

a) speed  b) position  c) velocity  d) distance 

8. A particle is moving with a velocity 1 m/s and after t(s) the velocity 

changes to 2 m/s. The average acceleration is:  

a) 1 1

t
 m/s

2
  b) 2 1

t
 m/s

2
 

c) ( 1 + 2)·t m/s
2
  d) none of the above 

9. An object starting from rest covers distances in direct proportion to  

the square of time. Its acceleration is: 

a) increasing   b) constant 

c) zero    d) none of the above 

10. The displacement x of a particle along a straight line at a time t  

is x = a0 + a1t + a2t
2
. The acceleration of the particle is: 

a) a0  b) a1  c) 2a2 d) a2 

0 
t 

s 

45° 

30° 
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11. If the speed of a car increases by 3 times, how does the distance needed 

to stop it change: 

a) 3 times  b) 6 times  c) 9 times  d) None of the above 

12. A body starts from rest and moves with uniform acceleration ―a‖.  

The distance covered during the nth second will be: 

a) a(n – 1) b) a(n – 
1

2
) c) a(2n – 1) d) a(2n + 1) 

13. A body starting from rest travels 150 m in 8th second. Its uniform 

acceleration is: 

a) 15 m/s
2
  b) 10 m/s

2
 c) 20 m/s

2
 d) 30 m/s

2
 

14. An object is projected upwards with a velocity of 100 m/s. It strikes  

the ground back in (g = 10 m/s
2
): 

a) 10 s  b) 20 s  c) 5 s  d) 15 s 

15. A ball thrown vertically upwards with an initial velocity of 19.6 m/s 

returns to thrower in 4 s. The maximum height reached by it is: 

a) 9.8 m  b) 44.1 m  c) 19.6 m  d) 26.7 m 

16. Two bodies of mass m1 and m2 are dropped from rest from heights h1 

and h2. The ratio of their times to reach the ground are: 

a) h1 : h2    b) 1 2 : h h  

c) 1 1 2 2 : m h m h   d) m1h1 : m2h2 

TESTS (Section 2.6) 

1. A body is said to be in uniform circular motion when its linear velocity: 

a) remains constant both in magnitude and direction; 

b) remains constant in magnitude but changes in direction; 

c) remains constant in direction but changes in magnitude; 

d) none of the above. 

2. The acceleration of a body performing uniform circular motion with 

linear speed  in circle of radius R is: 

a) 
2

R
  b) 

R
  c) 

2R
  d) 

2
R 

3. A car going round a circular path at constant speed 

a) has a constant linear velocity; 

b) has a constant acceleration; 

c) has a constant momentum; 

d) none of the above. 
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4. A body moves in a circle of radius R. After completing the circular path 

once it returns at the point of start. The displacement of the body is: 

a) 2 R  b) R  c) zero  d) R
2
 

5. A body moving in a circle of radius R with constant speed makes n 

revolutions per second. Its centripetal acceleration is: 

a) 2 nR  b) 4
2
n

2
R  c) n

2
R  d) 

2
n

2
R 

6. Two bodies of masses m1 and m2 are moving in concentric circles  

of radii r1 and r2 such that the frequencies of revolutions are the same. The ratio 

of centripetal accelerations is: 

a) R1
2
 : R2

2
 b) R1 : R2  c) 1 2 : R R   d) R2 : R1 

7. In the above problem the ratio of their angular velocities is: 

a) R1 : R2  b) R1
2
 : R2

2
 c) 1 : 1  d) R2

2
 : R1

2
 

8. The ratio of the angular speeds of minute hand and hour hand of a clock is: 

a) 6 : 1  b) 12 : 1  c) 1 : 6  d) none of the above 

9. In uniform circular motion which is true? 

a) both velocity and acceleration are constant; 

b) both acceleration and speed are not constant; 

c) both acceleration and speed are constant; 

d) both velocity and acceleration are not constant. 

10. A particle moves in a plane with a constant speed with its direction 

changing. The path of the particle is: 

a) straight line; 

b) an arc of the circle; 

c) a parabola;  

d) an ellipse. 

11. The length of second‘s hand in a watch is 1 cm. The change in speed of 

its tip in 15 seconds is: 

a) Zero  b) 
π

30
 cm/s  c) 

π

30 2
 cm/s  d) 

π
2 cm/s

30
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3. DYNAMICS 
 

In this Chapter we consider what makes the objects to move. The connection 

between the force and motion studies the subject called dynamics. 

 

3.1. NEWTON’S LAWS OF MOTION 

 

Before discussion Newton‘s laws of motion, let us give definitions of some 

useful terms. 

Inertia. Inertia is the property of a body to maintain its state of rest or 

uniform motion in a straight line. 

Mass. The mass is a measure of the inertia of an object. It is the characteristic 

of a body that relates the body‘s acceleration to the net force causing  

the acceleration. The more mass a body has, the greater the force needed to 

impart it a particular acceleration. It is harder to start it moving from rest, or to 

stop it when it is moving. Mass (m) is a scalar quantity. The SI unit for mass is 

kilogram (kg). 

Force. Force is a push or a pull which changes or 

tends to change the state of rest or of uniform motion of 

a body in a straight line. We need a force to overcome 

inertia of a body. When you push a body, you are 

exerting a force on it (fig. 3.1). We often call it contact 

force because the force is exerted when one object 

comes in contact with another object. On the other hand, 

we say that an object falls because of the force of 

gravity. 

Force ( ) is a vector and has both direction and magnitude (fig. 3.1). We 

can represent any force on a diagram by an arrow. The direction of the arrow  

is the direction of push or pull, and its length is drawn proportional to  

the magnitude of force. The SI unit for force is newton (N). 

If two or more forces act on a body, we find the net (resultant) force ( ) by 

adding them as vectors (see example in fig. 3.2).  

Fig. 3.2. The net force is a vector sum of  and  forces (  = + ) 

 

m1 

m3 

m2 

   

   

  

Fig. 3.1. A force exerted 

on a body by a person 

  

  



61 

A single force that has the same magnitude and direction as the calculated 

net force would then have the same effect as all the individual forces. This fact 

is called the principle of superposition for forces. 

Newton’s first law of motion (law of inertia):  every body continues in its 

state of rest or of uniform motion in a straight line, as long as no net force acts 

on it. This is called principle of inertia.  

From the Newton‘s first law it is evident that a body by itself is incapable 

of changing its state of rest or of uniform motion in a straight line. This 

incapability is known as inertia. Hence first law is called law of inertia.  

The reference frames in which Newton‘s first law does hold are called 

inertial reference frames or inertial frames. Usually approximation is made 

that a reference frame fixed on the Earth is an inertial frame. Any reference 

frame that moves with constant velocity relative to an inertial frame is also 

inertial reference frame.  

Reference frames in which the law of inertia is not valid, such as 

accelerating reference frames, are called noninertial reference frames or 

noninertial frames. 

Newton’s second law of motion: acceleration of a body is directly 

proportional to the net force acting on it, and is inversely proportional to  

the body’s mass. The direction of the acceleration is in the direction of the net 

force acting on the body.  

  or  ,
F

a F ma
m

     (3.1) 

where  is the acceleration, m is the mass, and  is the net force acting on  

the body. 

When n forces different in magnitude and direction act of the body,  

 means the vector sum of all the forces acting on the object, which we defined 

above as the net (resultant) force. Then  

1

,
n

i
iF ma       (3.2) 

where 
1

1 2 3

n

i
i nF F F F ... F .  

Only external forces, i. e. forces exerted on the body by other bodies, are 

to be included.  

Newton’s third law of motion: 

whenever one object exerts a force on a 

second object, the second exerts an equal 

force in the opposite direction on the first. 

Forces come in pairs (fig. 3.3). 

Commonly one of these forces is called the action force. The other one is 

then called reaction force. The term action means the force exerted on the first 

Fig. 3.3. The action    and the reaction 

   forces exerted by bodies 

m1 m2 
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body by second body ( ), while reaction means force exerted on the second 

body by the first body ( . Then 

  or  12 21 12 21F F F F .     (3.3) 

Third law of motion can be formulated as ―to every action there is an equal 

and opposite reaction‖. But it is very important to remember that the ―action‖ 

and ―reaction‖ forces are acting on different objects.  

 

3.2. MAIN FORCES 

3.2.1. THE GRAVITATIONAL FORCE 

Galileo Galilei claimed that all objects dropped near the surface  

of the Earth fall with the same acceleration, g, if air resistance is negligible.  

The force that causes this acceleration of mass m is the gravitational force Fg, 

that can be written as  

Fg = mg.       (3.4) 

This force is directed down toward the 

center of the Earth (fig. 3.4). The gravitational 

force (force of gravity) is explained by 

Newton’s law of universal gravitation that 

states: every particle in the universe attracts 

every other particle with a force that is 

proportional to the product of their masses and 

inversely proportional to the square of  

the distance between them. This force acts along 

the line joining the two particles (fig. 3.5).  

The magnitude of the gravitational force can be 

written as  

Fg = G·m1m2/r
2
,  (3.5) 

where m1 and m2 are the masses of the two 

particles, r is the distance between them, and G 

is a universal constant which has the same 

numerical value for all objects (G = 6.67 10
–11

 N m
2
/kg

2
). 

3.2.2. GRAVITY NEAR THE EARTH SURFACE 

When Eq. 3.5 is applied to the gravitational force between the Earth and  

an object at its surface (Fg), m1 becomes the mass of the Earth M, m2 becomes 

the mass of the object m, and r becomes the distance of the object from  

the Earth‘s center, which is approximately the radius of the Earth R. Thus, 

Fg = G·mM/R
2
.      (3.6) 

Combining Eq. (3.4) and (3.6) we obtain 

mg = G·mM/R
2
.      (3.7) 

Fig. 3.4. The gravitational force    

   

Fig. 3.5. Newton‘s law of universal 

gravitation 
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Solving Eq. 3.7 for g gives the acceleration of gravity at the Earth‘s 

surface: 

2

2
9 8 m/s

G M
g . .

R
     (3.8) 

Thus, the acceleration of gravity at the surface of the Earth, g, is 

determined by the Earth mass M and the radius of the Earth R. 

3.2.3. THE FORCE OF ELASTICITY AND HOOKE’S LAW 

The elasticity forces are revealed in a response of a body to the action of 

the external forces. The external force is called the load. 

Changes of shape and (or) dimensions of the sample which is made from 

some material under the action of the external forces is called strain 

(deformation).  

Elasticity is the property of a body to preserve its shape and dimensions 

after load removing. 

For example, let us consider the case of an axial tension (or compression) 

of a body (fig. 3.6). A load tends to stretch (elongate) a body (fig. 3.6, a). Then 

absolute deformation (the change in length) is equal to x = l – l0, where l0 is  

the original length, l is the elongated length. Relative deformation (strain)  is 

defined as:  

0

ε
x

.
l

      (3.9) 

Fig. 3.6. The force of elasticity  upon tension (a) and compression (b) 

 

The value of  is dimensionless, it is usually expressed in percents (%). 

When an external force F acts upon a solid body (the body is deformed), a 

reaction force (internal force) arises within the body that is equal in magnitude 

but opposite in direction to the external force (fig. 3.6). This is a force of 

elasticity  and it is sometimes called a ―restoring force‖. According to 

Hooke’s law a force of elasticity is directly proportional to deformation:  

Fel = –k·x,      (3.10) 

where k is the stiffness constant, x is an absolute deformation. 

0 x 
 

x 
 

a 
 

x 

l0 

b 
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The internal force is characterized by the mechanical stress . For an axial 

tension (or compression) the value of stress  (tensile or compressive stress) is 

defined as the average force F per unit cross-sectional area S within the body on 

which external force acts: 

σ
F

.
S

       (3.11) 

In the SI system stress is measured in the pascals (symbol Pa), which is 

defined as one newton per square meter: 

2
σ

N
Pa

m
. 

In terms of strain and stress Hooke's law can be defined as: 

σ = E·ε,       (3.12) 

where E is called Young’s modulus or the modulus of elasticity.  

Thus Hooke’s law states that the stress is directly proportional to the strain 

upon elastic deformation. 

Substituting Eq. 3.9 and 3.11 for the strain and stress, respectively, in  

the Eq. 3.12 we obtain: 

0

F E x
.

S l
      (3.13) 

Then 
0

E S
F x

l
, and from Eq. 3.13 it follows that 

0

E S
k .

l
      (3.14) 

Thus the stiffness constant k is directly proportional to the modulus of 

elasticity, and it is dependent on the body shape and dimensions. 

3.2.4. NORMAL FORCE 

For an object resting on a table, the table exerts 

upward force ( ), but it remains stationary (fig. 3.7). 

The reason is that the table is compressed slightly 

beneath the object, and due to its elasticity, it pushes 

up on the object as shown. 

The force exerted by the table is often called  

a contact force, since it occurs when two objects are in contact. The push on an 

object from the table is a normal force ( ) (sometimes it is denoted by symbol 

). The name comes from the mathematical term normal, meaning 

perpendicular: the force on an object from the table is perpendicular to the table 

(fig. 3.7). Thus when a body presses against a surface, the surface deforms and 

pushes on the body with a normal force that is perpendicular to the surface. 

Fig. 3.7. The normal force   
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3.2.5. TENSION 

When a cord (or a rope or other such object) is attached to a body and 

pulled taut, the cord pulls on the body with a force directed away from the body 

and along the cord (fig. 3.8). The force is often called 

a tension force ( ) because the cord is said to be  

in a state of tension (or to be under tension), which 

means that it is being pulled taut. The tension in  

the cord is the magnitude T of the force on the body.  

A cord is often said to be massless (meaning its mass is negligible 

compared to the body‘s mass) and unstretchable.  

3.2.6. WEIGHT 

Weight of the body ( or ) is the force with which the body acts on a 

support or on a cord. The weight force is applied not to the body but to the 

support or to the cord (fig. 3.9). 

a        b 
Fig. 3.9. Weight of the body  

 

In accordance with the Newton‘s third law the weight force acting on a 

support (or on a cord) and the normal force  (or tension force ) exerted by a 

support on the body (reaction force) are equal in magnitude (W = N and W = T), 

and oppositely directed (fig. 3.10): 

  or  W N W T.     (3.15) 

Fig. 3.10. Weight of the body  and the reaction forces (normal  and tension  forces) 

3.2.7. FRICTION 

If we either slide or attempt to slide a body over a surface, the motion is 

resisted by a bonding between the body and the surface. The resistance is 

considered to be a single force called either the frictional force ( ) or simply 

friction. 

Fig. 3.8. The tension force   
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We focus our attention on sliding friction, which is usually called kinetic 

friction when object slides across a surface. This force is directed along the 

surface, opposite to the direction of the motion (fig. 3.11). 

Fig. 3.11. The friction force  
 

Sometimes, to simplify a situation, friction is assumed to be negligible  

(the surface, or even the body, is said to be frictionless).  

The magnitude a frictional kinetic force is given by 

Ffr = k N,      (3.16) 

where k is the coefficient of kinetic friction, N is the magnitude of the normal 

force. The coefficient k is dimensionless and its value depends on the nature of 

the two surfaces in contact.  

There is also static friction, which refers to a force parallel to the two 

surfaces that can arise even when they are not sliding. The force of static friction 

depends on various factors and it may change from zero to its maximum value 

given by (Ffr)max = s N, where s is the coefficient of static friction generally 

being greater than k. However when solving problems it is commonly 

suggested that both of these coefficients are equal: s = k. 

The static friction force is directed along the surface, opposite to  

the direction of the intended motion. 

3.2.8. PROBLEM SOLVING 

When solving problems involving Newton‘s laws and forces, it is very 

important to draw a diagram showing all the forces acting on each object 

involved. Such a diagram is called a free-body diagram (fig. 3.12), or force 

diagram: choose one object, and draw an arrow to represent each force acting on 

it. Include every force acting on that object. Do not show forces that the chosen 

object exerts on other objects. Only forces acting on a given object can be 

included in the Newton‘s second law equation (Eq. 3.1). If your problem 

involves more than one object, a separate free-body diagram is needed for each 

object. For the case shown in fig. 3.12, the forces that could be acting are gravity 

and contact forces (one object pushing or pulling another, normal force, 

friction). 
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Fig. 3.12. A free-body diagram 

 

Newton‘s second law involves vectors, and it is usually necessary to 

resolve vectors into components. Choose x and y axis in a way that simplifies 

the calculation. Then for each object apply Newton‘s second law to the x and y 

components separately (i. e. , x x y yF ma F ma ). 

NOTE. The weight of the body is always applied to the support (or a cord), 

and not to the body, this is why it is not included in the Newton’s second law 

(force  in fig. 3.13). To find the weight of the body, it is necessary to solve 

Newton’s second law equation, determine the magnitude of the reaction force  

(N or T) which is equal to the weight W, according to the Eq. 3.15. 

 

Fig. 3.13. A box resting on a table 

 

Let us determine the weight of a box ( ) resting on the smooth 

(frictionless) horizontal surface of a table (fig. 3.13). The forces acting on  

the body are the normal force ( ) and the gravitational force ( ) as 

shown in fig. 3.13. The box is at rest, so its acceleration  and in 

accordance with the Newton‘s second law the net force acting on it must be 

zero. Hence 

  or  0N mg N mg. 
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Thus the magnitude of the normal force N = mg. In accordance with  

the Newton‘s third law the magnitude of normal force on the box is equal to  

the box‘s weight, so W = N = mg. Thus weight of the body is equal to  

the magnitude of the gravitational force on the body just in case if it is located 

on a resting support (or on a resting cord) with respect to the Earth. If a support 

(or a cord) with a body accelerates down or upward, the weight W  mg. 

Example. 3.1. Weight.  

A passenger of mass 70 kg descends in an elevator that accelerates at  

2.5 m/s
2
 downward. He stands on scales that shows in kg. (a) During this 

acceleration, what does the scales show? (b) What does the scales show when 

the elevator descends at a constant speed of 0.5 m/s? 

Solution. We use Newton‘s second law 

only in an inertial frame. If the cab accelerates, 

then it is not an inertial frame. So we choose 

the ground to be our inertial frame and make 

any measure of the passenger‘s acceleration 

relative to it. 

The fig. 3.14 shows all the forces acting 

on the passenger. The direction of the 

acceleration is downward, so we choose the 

positive direction of y axis as down. From 

Newton‘s second law it follows 

Fg – N = ma. 

a) The magnitude of the normal force (N) 

acting on the passenger is given by: 

N = Fg – ma = mg – ma = m (g – a) = (70 kg) (9.8 m/s
2
 – 2.5 m/s

2
) = 511 N. 

So passenger‘s weight is W = N = 511 N. The scales shows in kg  

2

511 
52 1 kg

9 8 m/s

N N
m . .

g .
 

b) When the elevator descends at a constant speed, the acceleration is equal 

to zero (a = 0), so by Newton‘s second law we obtain  

Fg – N = 0 or N = Fg = mg = (70 kg) 9.8 (m/s
2
) = 686 N. 

Thus passenger‘s weight is W = N = 686 N and the scales shows his mass 

70 kg. 

 

Example 3.2. Newton’s second law.  

A box of mass m = 5 kg is pulled along a floor by a cord that exerts a force 

of magnitude FP = 25 N at the angle 30°. The magnitude of the box‘s 

acceleration is 2 m/s
2
. What is the coefficient of kinetic friction? 

Solution. The free-body diagram is shown in fig. 3.15. The forces on the 

box are the gravitational force Fg = mg, the normal force exerted by the floor FN, 

Fig. 3.14. Example 3.1. A free-body 

diagram for a passenger standing on 

the scales 
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the applied force FP, and the friction force Ffr. We use Newton‘s second law 

given by Eq. 3.1. 

Let us find projections of the forces 

and the acceleration vectors on the 

coordinate axes (x and y). We choose the 

upward direction as the positive y direction. 

In the vertical direction there is no motion 

(ay = 0), so Newton‘s second law in  

the vertical direction gives , then  

FN + FP·sin α – mg = 0, 

where the minus sign means that the 

gravitational force Fg acts in the negative y 

direction (m and g are magnitudes). 

From this equation we obtain that  

the normal force is given by  

FN = mg – FP·sin α. 

Now we apply Newton‘s second law for the horizontal (x) direction 

(positive to the right), and include the friction force: 

FP·cos α – Ffr = ma. 

Then the frictional force is given by 

Ffr = μFN = FP·cos α – ma. 

Substituting in this equation expression for FN obtained above gives  

the coefficient of kinetic friction ( ). 
2

2

cos α 25 N cos 30 (5 kg) (2m/s ) 12 5 3 10
μ 0 3

sin α 49 12 5(5 kg) (9 8m/s ) 25 N sin 30

fr P

N P

F F ma .
. .

F mg F ..

 

The coefficient of kinetic friction  = 0.3.  

 

3.3. CONSERVATION OF MOMENTUM 

3.3.1. LINEAR MOMENTUM AND IMPULSE EQUATION 

Amount of motion present in body is called linear momentum 

(momentum) of the body. It is represented by a vector . Linear momentum of  

a body having mass m and moving at any instant of time with a velocity , is 

defined as  

.       (3.17) 

The units for linear momentum in SI system are kg m/s. The adjective 

linear is often dropped, but it serves to distinguish from angular momentum. 

Since mass m is always a positive scalar quantity, from Eq. 3.17 it follows that 

vectors and have the same direction.  

Fig. 3.15. Example 3.2. Free body 

diagram for a box pulled by a force 

of magnitude Fp at the angle 30° 
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In mechanics several bodies form system. The forces can be of two types: 

external and internal forces. Any force acting on the body system from  

the bodies outside the system is called an external force. Forces between bodies 

inside the system are called internal forces. Internal forces cannot accelerate  

the system. A system is called isolated if the resultant external force acting  

on a system of bodies is zero (or no external forces act), the only forces acting 

are those between objects of the system. 

By substituting the expression for acceleration 2 1a
t

 into the second 

Newton‘s law equation (Eq. 3.1), we obtain  

    (3.18) 

or ,     (3.18a) 

where  and  is the velocity and momentum of the body at some initial 

instant of time, and  is the velocity and momentum of the body after 

certain time interval t. 

The product of the force multiplied by the time interval during which it acts 

upon a body ( ) is called impulse of a force.  

A change of momentum of the body is equal to impulse of a force acting on 

a body (Eq. 3.18). This relation is called impulse equation. 

3.3.2. THE LAW OF CONSERVATION OF MOMENTUM 

Now consider, for example, an isolated system of two bodies. Suppose that 

the bodies of mass m1 and m2 are moving with the velocities  and  and let 

them to interact with each other (fig. 3.16). Let the two bodies continue moving 

in the same direction with the velocities  and  after interaction. 

Fig. 3.16. Conservation of momentum in collision of two balls: 

a — before collision; b — at collision; c — after collision 
 

According to the Newton‘s third law of motion the forces acting on  

the bodies are equal in magnitude and oppositely directed, i. e.  

Change of momentum of the first body  

     (3.19) 

Change of momentum of the second body  

,     (3.20) 

where t is the time of acting of a force.  

b a c 
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From Eq. 3.19–3.20 (at ) we obtain 

    (3.21) 

or     (3.21a) 

From Eq. 3.21 it follows that the vector sum of the linear momentum of 

two bodies before interaction is equal to a vector sum of the linear momentum of 

these bodies after interaction. This is the law of conservation of linear 

momentum for two bodies which compose an isolated system. 

The law of conservation of momentum states that if the resultant external 

force acting on a system of bodies is zero (the system is isolated), the total 

linear momentum of the system is conserved (remains constant). 
The total linear momentum of the system is a vector sum of the linear 

momentum of each body in the system. 

Example 3.3. Momentum. Impulse equation.  
A golf ball of mass 0.05 kg is hit off the tee at a speed of 50 m/s. The golf 

club was in contact with the ball for 2 ms. Find (a) the impulse (momentum) 

imparted to the golf ball, and (b) the average force exerted on the ball by  

the golf club. 

Solution. a) The impulse imparted to the golf ball is given by the Eq. 3.17: 

P = m  = 0.05 kg  50 m/s = 2.5 kg m/s. 

b) We use the impulse equation (Eq. 3.18). The initial momentum of  

the ball is equal to zero. Then F t = p. 

The average force exerted on the ball by the golf club is 

3

2 5 kg m/s
1 25 kN.

2 10  s

p .
F .

t
 

 

Example 3.4. Conservation of momentum.  

A railroad car with a mass of 7000 kg traveling at speed of 25 m/s strikes a 

second railroad car with a mass of 3000 kg. If the cars lock together as a result 

of the collision, what is their common speed immediately after the collision? 

Solution. The masses of the railroad cars are m1 = 7000 kg and  

m2 = 3000 kg, respectively; initial speed of the first railroad car A = 25 m/s and 

of the second car ( B) is equal to zero. Then the initial total momentum is  

m1  A + m2  B = m1  A. 

Choose the positive direction to the right side as shown in fig. 3.17. After 

the collision, the two cars become attached, so they will have the same speed 

( ′). Then the total momentum after the collision is  

m1  ′ + m2  ′
 
= (m1 + m2) ′. 

According to the law of momentum conservation m1  A = (m1 + m2) ′. 

Then 

1

1 2

(7000 kg) (25 m/s)
17 5 m/s.

7000 kg 3000 kg

Am
.

m m
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Fig. 3.17. Example 3.4. Collision of railroad cars 

NOTE. In case of equal masses (m1 = m2) the mutual speed after collision 

is half the initial speed of the first car. 

 

Example 3.5.  
A bullet of mass 10 gram is horizontally fired from a gun of mass 5 kg with 

a speed of 100 m/s. What is the recoil (backward) speed of the gun? 

Solution. We have the mass 

of bullet (m =10 g = 0.01 kg) and  

the mass of the gun (M = 5 kg); 

initial velocities of the bullet ( B) 

and gun ( R) are equal to zero.  

The final speed of the bullet  

B′ = 100 m/s. The positive 

direction of bullet is taken from 

left to right (fig. 3.18). Let R′ be 

the recoil speed of the gun. Total 

momentum of the gun and the bullet before the fire (the gun is at rest) is  

m  B + M  R = 0. 

Total momentum of the gun and bullet after it is fired m  B′ – M  R′. 

Negative sign indicates that the direction in which the gun would recoil is 

opposite to that of bullet (fig. 3.18). According to the law of conservation of 

momentum m  B′ – M  R′ = 0.  

Then 
0 01 kg 100 m/s

0 2 m/s.
5 kg

B
R

m .
.

M
 

The recoil speed of the gun is 0.2 m/s. 

 

 

      

   

Fig. 3.18. Example 3.5. Recoil of a gun 



73 

PROBLEMS 

1. A 75 kg man stands in a lift. What force does the floor exerts on him 

when the elevator starts moving upward with an acceleration of 2.0 m/s
2
 

(assume g = 10.0 m/s
2
). (Answer: 900 N) 

2. Tendons are strong elastic fibers that attach muscles to bones.  

To a reasonable approximation, they obey Hooke‘s law. In laboratory tests  

on a particular tendon, it was found that, when a 250-g object was hung from it, 

the tendon stretched 1.25 cm. What is the stiffness constant of this tendon?  

(Answer: 200 N/m) 

3. A brick weighing 1 kg is sliding on ice with 2 m/s. It is stopped by 

friction in 10 s. Calculate the constant force of friction. (Answer: 0.2 N) 

4. Force of 10 N acts on a body for 40 s. Calculate the change  

in the momentum of the body. (Answer: 400 kg m/s) 

5. You throw a ball with a mass of 0.30 kg against a brick wall. It hits  

the wall and rebounds horizontally with the speed of 20 m/s. (a) If the ball is in 

contact with the wall for 0.010 s, find the impulse of the net force on the ball 

during its collision with the wall. (b) find the average horizontal force that  

the wall exerts on the ball during the impact. (Answer: 6 N s, 600 N) 

6. While launching a rocket of mass 2 10
4
 kg a force of 5 10

5
 N is applied 

for 20 s. What is the velocity attained by the rocket at the end of this interval. 

(Answer: 500 m/s) 

TESTS  

1. Inertia of a body directly depends upon: 

a) mass  b) area  c) volume   d) velocity 

2. When a body is at rest  

a) no force acts on it; 

b) the force acting has no contact with it; 

c) the forces acting on it balance each other; 

d) none of the above. 

3. A force of 2 N acting on a certain mass for 6 sec. gives it a velocity  

of 6 m/s. The mass is equal to: 

a) 0.5 kg  b) 1 kg  c) 2 kg  d) 4 kg 

4. A force acting on a body of 10 kg produces in it an acceleration  

of 2 m/s
2
. The force is: 

a) 5 N  b) 20 N  c) 10 N  d) none of the above 

5. A man of mass m is standing on a lift which is moving downwards with 

acceleration a. The weight of the man is: 

a) mg  b) m (g + a) c) m (g – a) d) zero 
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6. In the above problem if the downward acceleration of the lift is equal to 

the acceleration due to gravity, then the weight of the man is: 

a) mg  b) m (g + a) c) m (g – a) d) zero 

7. A spring being compressed by 0.1 m develops a restoring force 10 N. 

The stiffness constant of the spring is: 

a) 100 N/m b) 10 N/m c) 1 N/m  d) 1000 N/m 

8. The momentum of the system is conserved: 

a) always; 

b) never; 

c) only in the absence of an external force; 

d) only when an external force acts. 

9. A body of 2 kg is at rest. The impulse required to impart it a velocity of 

8 m/s is: 

a) 16 N s  b) 40 N s  c) 80 N s   d) none of the above  

10. A force of 10 N acts on a body for 5 s. The change in its momentum is: 

a) 2 kg m/s b) 0.5 N s  c) 50 kg m/s d) 500 kg m/s 

11. A force of 1 N acts on a body of mass 1 kg. The body acquires an 

acceleration of: 

a) 1 m/s
2
  b) 9.8 m/s

2
 c) 1/9.8 m/s

2
 d) (9.8)

2
 m/s

2
 

12. A force of 6 N acts on a body at rest of mass 0.1 kg which acquires a 

velocity 30 m/s. The time for which the force acts is: 

a) 18 s  b) 5 s  c) 0.5 s  d) 0.3 s 

13. A bomb of mass 9 kg explodes into two pieces of mass 3 kg and 6 kg. 

The velocity of 3 kg is 16 m/s. The velocity of 6 kg is: 

a) 4 m/s  b) 8 m/s  c) 16 m/s  d) 32 m/s 

14. A body is moving with uniform momentum of 10 kg m/s. The force 

acting on it is: 

a) zero  b) 10 N  c) 0.1 N  d) 100 N 

15. A body of mass 2 kg moves with an acceleration of 3 m/s
2
. The change 

in momentum in one second is: 

a) 0.67 kg m/s  b) 1.5 kg m/s  c) 6 kg m/s   d) 3 kg m/s  
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4. WORK. POWER. ENERGY 
 

4.1. WORK 
 

Work is done on an object by a force when the object moves through some 

distance. The work W done by a constant force F (constant in both magnitude 

and direction) is defined as a product of the magnitude of the displacement  

(r = d), the force F and cosine of the angle  between the directions of the force 

and the displacement (fig. 4.1):  

W = F  d  cos .     (4.1) 

In SI units work is measured in joule (J): 1 J = 1 N m.  

 

Fig. 4.1. The work done by the force F acting at an angle  to the displacement vector  

 

Work is a scalar quantity; it has only magnitude, which can be positive or 

negative. 

For the case when the motion and the force are in the same direction  

(  = 0° and cos  = 1) W = F d. When a particular force is perpendicular to  

the displacement (  = 90°, cos  = 0), no work is done by that force. 

In case of linear motion along a straight-line path in the same direction,  

the magnitude of displacement is the distance (d = s). Therefore  

W = F s cos .      (4.2) 
 

Example 4.1. Work.  
A person pulls a 20 kg box 10 m along a horizontal floor by a constant 

force F = 100 N acting at 30° angle (fig. 4.1). The floor exerts the opposite force 

of friction equal to 60 N. How much work does each of the following forces do 

on the box: a) 100-N pull, b) the friction force, c) the normal force from  

the floor, and gravity? d) What is the net work done on the box? 

Solution. A free-body diagram is similar to the Example 3.2 (fig. 3.15). 
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a) Setting in Eq. 4.1 F1 = 100 N, d = 10 m and  = 30° gives the work done 

by the force F1 

W1 = F1  d  cos  = (100 N)·(10 m)·cos 30° = 866 J. 

b) Setting in Eq. 4.1 F = 60 N, d = 10 m and  = 180° gives the work done 

by the friction force  

W2 = F2  d  cos  = (60 N)·(10 m)·cos 180° = –600 J. 

c) Directions of the normal force (N) and the force due to gravity (Fg) are 

perpendicular to the displacement (  = 90°). Then work done by the given forces 

is equal to zero (W3 = 0). 

d) When several forces act on a body there are two ways to find the net 

work. One way is to use Eq. 4.1 to compute the work done by each separate 

force.  

Then, because work is a scalar quantity, the total work done on the body by 

all the forces is the algebraic sum of the quantities of work done by  

the individual forces. An alternative way to find the total work is to compute the 

net force (i. e. vector sum of the forces) and then use Eq. 4.1. Let us illustrate 

both of these approaches. 

1) The algebraic sum of the quantities of work done by the person and  

the friction force is  

Wnet = W1 + W2 = 866 J – 600 J = 266 J. 

2) Just the projection of the net force parallel to the displacement vector 

does the work on the box. It is given by  

Fnet = F1 · cos  – F2 = (100 N )·(cos 30°) – 60 N = 86.6 N – 60 N = 26.6 N. 

The work done by the net force is 

Wnet = Fnet · d · cos  = (26.6 N)·(10 m)·cos 0° = 266 J. 

 

4.2. POWER 

 

Power is defined as the rate at which work is done. The average power P is 

equal to the work W done divided by the time t it takes to do it: 
W

P .
t

       (4.3) 

In SI system units, power is measured in joules per second, and this unit is 

given a special name, the watt (W): 1W = 1 J/s. 

The work done at power of one thousand watts for one hour is equal to one 

kilowatt-hour (1 kWh): 

1 kWh = (10
3
 W) (3600 s) = 3.6  10

6
 J = 3.6 MJ. 

Efficiency. An important characteristic of all engines is their overall 

efficiency , defined as the ratio of the useful power output of the engine Pout to 

the power input Pin:    out

in

η
P

.
P

       (4.4) 
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The efficiency is always less than 1.0 because no engine can create energy, 

and in fact, cannot even transform energy from one form to another without 

some going to nonuseful forms of energy (friction, thermal energy, etc.). For 

example, an automobile engine converts chemical energy released in the burning 

of gasoline into mechanical energy that moves the pistons and then the wheels. 

But nearly 85 % of the input energy is ―wasted‖ as thermal energy that goes into 

the cooling system or out the exhaust pipe, plus friction in the moving parts. 

Thus car engines are roughly only about 15 % efficient. 

 

4.3. ENERGY 

 

Energy can be defined as the ability to do work. Energy is measured  

in the same units as work: joules in SI units.  

An object in motion has the ability to do work and thus can be said to have 

energy. The energy of motion is called kinetic energy (from the Greek word 

kinetikos, meaning ―motion‖). 

To obtain a quantitative definition for kinetic energy, let us consider  

a simple rigid object of mass m (treated as a particle) that is moving in a straight 

line with an initial speed 1. To accelerate it uniformly to a speed 2, a constant 

net force F is exerted on it parallel to its motion over a displacement d. 

According to Newton‘s second law: 
F

a .
m

       (4.5) 

The distance s travelled by the object during the time interval t is defined 

as: 
2 2
2 1 ,
2

S
a

      (4.6) 

where 1 and 2 are the initial and final speed of the object, respectively. 

Then the net work done on the object is 
2 2 2 2
2 1 2 1=
2 2 2

m m
W F s m a .

a
    (4.7) 

4.3.1. KINETIC ENERGY 

The quantity 
2

2
k

m
E is defined as the kinetic energy of the object. 

NOTE. Equation (4.7) derived here for one dimensional motion with  

a constant force, is valid in general for translational motion of an object in three 

dimensions and even if the force varies. 

We can rewrite Eq. 4.7 as: 

W = Ek2 – Ek1.      (4.8) 



78 

Equation 4.8 is a useful result known as the work-energy principle. It states 

that the net work done on an object by the net resultant force is equal to  

the change in kinetic energy of the object. 

If the initial speed of an object 1 = 0 and the final speed 2 = , then 

W = Ek2 – Ek1 = 
2 2

0
2 2

m m
.    (4.9) 

From Eq. 4.9 it follows that in order to make the body move with some 

speed the work should be done upon the body which is equal to its kinetic 

energy. 

NOTE. The work-energy principle is a very useful reformulation of 

Newton’s laws. It tells us that if (positive) net work W is done on an object, the 

object’s kinetic energy increases by an amount W. The principle also holds true 

for the reverse situation: if the net work W done on an object is negative,  

the object’s kinetic energy decreases by an amount W. In other words, a net 

force exerted on an object opposite to the object’s direction of motion decreases 

its speed and its kinetic energy.  

The kinetic energy of a group of objects is the sum of the kinetic energies 

of the individual objects. 

4.3.2. POTENTIAL ENERGY 

Potential energy associated with forces that depend on the position or 

configuration of objects relative to the surroundings. Various types of potential 

energy can be defined. 

The common example of potential energy is gravitational potential energy. 

A heavy brick held above the ground has potential energy because of its position 

relative to the Earth. The raised brick has the ability to do work, because if it is 

released, it will fall to the ground due to the gravitational force, and can do 

work.  

Let us find the gravitational potential energy of an object near the surface 

of the Earth.  

Consider the case of falling an object of mass m 

downwards from height h1 to h2 (fig. 4.2). The 

gravitational force on an object of mass m near the 

Earth‘s surface is Fg = mg, where g is acceleration due 

to gravity. The work done by this gravitational force on 

an object that falls a vertical distance h = h1 – h2 is 

WG = F s = mg  (h1 – h2) = –(mgh2 – mgh1) = mgh.  (4.10) 

Thus falling an object of mass m from height h requires an amount of work 

equal to mgh. And once at height h, the object has the ability to do an amount of 

work equal to mgh. We can say that the work done in falling the object has been 

stored as gravitational potential energy UG = mgh. 

h1 

h2 

h 
   

Fig. 4.2. The work done by 

the gravitational force    
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We can rewrite Eq. 4.10 as: 

WG = –(UG2 – UG1).     (4.11) 

Equation 4.11 defines the change in gravitational potential energy when  

an object of mass m moves between two points near the surface of the Earth.  

Potential energy of an object at the Earth surface is commonly set to zero 

(UG2 = 0). Then the gravitational potential energy of an object, UG, at any point 

above the surface of the Earth at height h can be defined as 

UG = mgh.      (4.12) 

Note that the gravitational potential energy is associated with the force of 

gravity between the Earth and the mass m. 

We consider now elastic potential energy 

associated with elastic materials, which includes  

a great variety of practical applications. Consider a 

simple coil spring as shown in fig. 4.3, whose mass  

is so small that we can ignore it. When the spring  

is compressed and then released, it can do work on  

a ball (mass m). Thus the spring-ball system has 

potential energy when compressed (or stretched). 

Like other elastic materials, a spring is described by 

Hooke‘s law as long as the displacement x is not too 

great. To hold the spring compressed (or stretched)  

a distance x from its initial (unstretched) length 

requires the person‘s hand to exert a force FP = kx  

on the spring (fig. 4.3, a), where к is the spring 

stiffness constant. The spring pushes back with  

a force Fs = –kx (fig. 4.3, b). A spring force is thus a variable force: it varies 

with the displacement of the spring‘s free end. It can be shown that the spring-

ball system has potential energy Uel when compressed (or stretched) an amount 

x from equilibrium:    
2

,
2

el

kx
U            (4.13) 

where k is the spring stiffness, x is an absolute deformation.  

The quantity E equal to the sum of the kinetic energy and the potential 

energy of the system at any instant of time is called the total mechanical energy: 

E = Ek + U.      (4.14) 

If a system is isolated from its environment, there can be no energy 

transfers to or from it. For that case, the law of conservation of energy states:  

the total mechanical energy of the isolated (closed) system is conserved. 

E = Ek + U = const.     (4.15) 

This is called the principle of conservation of mechanical energy.  

If the kinetic energy Ek increases, then the potential energy U must decrease by 

an equivalent amount to compensate. Thus the total energy Ek + U remains 

constant. 

Fig. 4.3. The work done 

by the spring force    

a 

b 

c 
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This is one of the most important principles in physics. It is called the law 

of conservation of energy and can be stated as follows: The total energy is 

neither increased nor decreased in any process. Energy can be transformed 

from one form to another, and transferred from one object to another, but  

the total amount remains constant. 

When the external forces do work on a body, the change in the total 

mechanical energy of the system is equal to the work done by external forces 

(Wext): 

E2 – E1 = Wext.      (4.16) 

In case when nonconservative forces (such as a friction force) act within 

the closed system we obtain: 

E2 – E1 = Wfric.     (4.17) 
 

Example 4.2. Conservation of energy.  

A rock with a mass of 2 kg is falling 

down due to the Earth‘s gravity from a height  

h = 2.5 m above the ground (fig. 4.4). What 

are (a) the rock‘s speed when it has fallen to 

1.5 m above the ground; (b) the rock‘s speed 

just before it hits the ground? (c) the potential 

energy of the rock at the moment of release 

and the kinetic energy of the rock just before 

it hits the ground. 

Solution. We apply Eqs. 4.9–4.10 and  

the law of conservation of mechanical energy 

(Eq. 4.15) with only gravitational force acting 

on the rock. We choose the ground as  

the reference level. According to the Eq. 4.15 

the total mechanical energy of the rock at any 

point along the path is constant. Then 
2 2
1 2

1 2
2 2

m m
mgh mgh . 

where 1 is the rock‘s speed at the position h1 above the ground and 2 is its 

speed at some other point h2.  

a) At the initial moment (point y1 in fig. 4.4) position is h1 = 2.5 m and  

1 = 0. The rock‘s initial kinetic energy in equal to zero and total mechanical 

energy is equal to potential energy. Hence 

2
2

1 2
2

m
mgh mgh .  

We need to find the rock‘s speed at the height h2. Setting 1 = 0, h2 = 1.5 m 

and solving for 2 we find 

2
2 1 22 ( ) 2 9 8 m/s (2 5 m 1 5 m) 4 3 m/sg h h . . . . . 

Fig. 4.4. Example 4.2. Note bar graph 

represents the change in potential U 

and kinetic Ek energy 
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The rock‘s speed 1.5 m above the ground is 4.3 m/s. 

b) Just before rock hits the ground (point y2) the height is equal to zero  

(h2 = 0) and total mechanical energy is equal to the kinetic energy.  

Setting h2 = 0 in the above equation gives  

2
2 12 2(9 8 m/s )(2 5 m) 7 m/sgh . . . 

The rock‘s speed just before it hits the ground is 7 m/s. 

NOTE. The speed of the rock is independent of the rock’s mass. 

c) The potential energy UG of the rock is given by Eq. 4.10. It is equal to 

the initial mechanical energy of the rock. Setting h = 2.5 m in Eq. 4.10 we 

calculate: 

WG = mgh = (2 kg) (9.8 m/s
2
) (2.5 m) = 49 J. 

Just before the rock hits the ground total mechanical energy is equal to  

the kinetic energy E = Ek. According to the law of conservation of mechanical 

energy it is equal to the initial mechanical energy of the rock, i. e. E = Ek =  

WG = 49 J. 

NOTE. As the rock falls, the potential energy decreases, but the rock’s 

kinetic energy increases to compensate, so that the sum of the two remains 

constant. Just before the rock hits the ground all of the initial potential energy 

will have been transformed into kinetic energy (fig. 4.4). 

PROBLEMS 

1. A tow truck pulls a car 5 km along a horizontal roadway using a cable 

having a tension of 900 N. How much work does the cable do on the car if it 

pulls horizontally? (Answer: 4500 kJ) 

2. A body is under the action of a force 5 N moves through 10 m  

in a straight line. If work done is 25 J what is the angle at which force acts with 

the direction of motion. (Answer: 60°) 

3. A factory worker pushes a 50-kg crate a distance of 5 m along a level 

floor at constant velocity by pushing horizontally on it. The coefficient of 

kinetic friction between the crate and the floor is 0.25. (a) What magnitude of 

force must the worker apply? (b) How much work is done on the crate by this 

force? (c) How much work is done on the crate by friction? (e) What is the total 

work done on the crate? (Answer: 122.5 N, 612.5 J, –612.5J, 0 J) 

4. The human heart is a powerful and extremely reliable pump. Each day it 

takes in and discharges about 7500 L of blood. Assume that the work done by 

the heart is equal to the work required to lift this amount of blood a height equal 

to that of the average woman (1.64 m). The density of blood is  = 1060 kg/m
3
. 

(a) How much work does the heart do in a day? (b) What is the heart‘s power 

output in watts? (Answer: 127.772 kJ, 1.5 W). 
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5. How long will it take a 1250 Watts motor to lift a 400-kg piano to  

a sixth-story window 15 m above? (Answer: 47 s) 

6. The maximum height a typical human can jump from a crouched start  

is about 50 cm. By how much does the gravitational potential energy increase 

for a 80-kg person in such a jump? (Answer: 392 J) 

7. A 150-g baseball is dropped from a tree 15 m above the ground. (a) With 

what speed would it hit the ground if air resistance could be ignored? (b) If it 

actually hits the ground with the 10 m/s, what is the average force of air 

resistance exerted on it? (Answer: 17.2 m/s, 0.97 N) 

8. A spring has a stiffness constant k of 80 N/m. How much must this 

spring be compressed to store 40 J of potential energy? (Answer: 1 m) 

TESTS 

1. Work is: 

a) scalar quantity    b) vector quantity 

c) both scalar and vector   d) none of the above  

2. Power of the body is given:  

a) total capacity of doing work b) rate of doing work 

c) product of work and time  d) none of the above 

3. Energy is defined as: 

a) total capacity of doing work  b) rate of doing work  

c) product of work and time   d) none of the above  

4. An object is thrown vertically upwards. As it rises its total energy: 

a) decreases    b) increases 

c) remains constant   d) sometimes decreases, sometimes increases  

5. A force 100 N is required to move a body with a velocity of 10 m/s.  

The power developed is: 

a) 50 watts  b) 1000 watts   c) 10 watts d) 100 watts 

6. A mass of 100 kg rests on a smooth horizontal surface. Energy needed to 

accelerate it from rest to a velocity of 10 m/s is: 

a) 5000 J   b) 500 J    c) 50000 J d) 50 J 

7. Potential energy cannot be expressed in: 

a) J  b) N m  c) N s  d) W s 

8. Two bodies of masses m1 and m2 have the same momenta. The ratio of 

their kinetic energies is: 

a) m1:m2   b) m2:m1  c)   d) m1
2
:m2

2 

9. When velocity of body is doubled, its kinetic energy: 

a) doubled   b) remains the same  

c) becomes 4 times  d) none of the above 
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10. Work can be: 

a) positive only 

b) negative only  

c) both positive and negative 

d) neither positive nor negative 

11. A ship of mass 5 10
7
 kg is acted upon a force of 20 10

4
 N by an engine 

which moves it through 5 m. If resistance of water is negligible, the speed  

of the ship is: 

a) 10 m/s  b) 1 m/s  c) 0.2 m/s  d) 5 m/s 

12. When mass and velocity of a body is doubled its kinetic energy is 

a) doubled b) four times c) eight times d) sixteen times 

13. Work done against friction is: 

a) negative b) positive c) zero  d) none of the above 

14. A body moves a distance of 20 m along straight path when a force of 

5/  N acts on it. If work done is 50 J, at what angle with the direction of 

motion the force acts? 

a) 90°  b) 60°  c) 0°   d) 45° 

 

 

5. MECHANICAL OSCILLATIONS AND WAVES 
 

5.1. MECHANICAL OSCILLATIONS 

 

Movements or changes of the state of some system, which periodically  

(at regular intervals) repeat are called oscillations (or vibrations). If an object 

vibrates or oscillates back and forth over the same path, each cycle taking  

the same amount of time, the motion is called periodic. 

5.1.1. CHARACTERISTICS OF OSCILLATIONS 

Characteristics of oscillations are as follows displacement, amplitude, 

period and frequency.  

The distance x of the object from the equilibrium point at any instant of 

time is called the displacement. It is measured in metres m. 

The maximum displacement A (the greatest distance from the equilibrium 

point) is called the amplitude. The units of amplitude are the same as for 

displacement (m). 

One cycle is the complete motion from some initial point back to the same 

point. The period T is defined as the time required to complete one cycle.  

It is measured in seconds (s). 
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The frequency (f or ) is the number of complete cycles per second. 

Frequency and period are inversely related: 
1

f .
T

       (5.1) 

In the SI system frequency is measured in hertz (Hz), where 1 Hz = 1 cycle 

per second (s
–1

). 

5.1.2. SIMPLE HARMONIC MOTION 

One of the most important types of periodic motion is simple harmonic 

motion (SHM). In such motion the displacement x of a particle from its 

equilibrium position is described by a sine (or cosine) function of time t: 

x(t) = A sin υ = A sin(ωt + υ0)     (5.2) 

or  

x(t) = A cos υ = A cos(ωt + υ0), 

where A is the amplitude,  = t + 0 is the phase, 0 is the initial phase,  

 is the angular frequency.  

The phase of oscillations characterizes the state of the vibrational system at 

any instant of time. 

The above equations are called the equations of simple harmonic 

oscillations. 

The angular frequency  is related to the period T and the frequency of  

the motion f by the equation: 

 = 2 f = 
2π

.
T

      (5.3) 

The SI unit of angular frequency is the radian per second (rad/s). 
 

NOTE. SHM is the motion of a body under the influence of elastic or  

a similar force that is proportional to the body’s displacement but has  

the opposite direction. 
 

Simple harmonic motion can be represented graphically as shown  

in fig. 5.1. 

Fig. 5.1. Simple harmonic vibration 

 

A 

T 

Time (t) 
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5.1.3. EXAMPLES OF MECHANICAL OSCILLATIONS 

The simple pendulum oscillations. 

The simple pendulum consists of  

a particle of mass m (called the bob of 

the pendulum) suspended from one end 

of an unstretchable, massless string of 

length L that is fixed at the other end 

(fig. 5.2). The bob is free to swing back 

and forth in the plane of the page, to  

the left and right of a vertical line 

through the pendulum‘s pivot point. The 

forces acting on the bob are the force 

from the string T and the gravitational 

force Fg, where the string makes an 

angle  with the vertical line (fig. 5.2). If 

the bob swings through only small 

angles, its motion is approximately 

simple harmonic motion. In other words, the restriction is that the angular 

amplitude of the motion (the maximum angle of swing) must be small (θ < 5°). 

The period T, the frequency f and the angular frequency  of the simple 

pendulum are defined as  π    or   ,   ,
π

1
2 ω

2

L g g
T f

g L L
  (5.4) 

where L is the length of the pendulum string, g is the acceleration due to gravity. 

Spring pendulum oscillations. Spring 

pendulum consists of a body of mass m attached 

to a horizontal (or vertical) spring as shown in 

fig. 5.3. Such block-spring system is called  

a linear simple harmonic oscillator (or linear 

oscillator), where linear indicates that a restoring 

elasticity force Fel is proportional to the 

displacement x to the first power (Fel = –kx). 

The body moves in simple harmonic motion 

under the action of an elastic force Fel once it 

has been either pulled or pushed away from  

the equilibrium position and released.  

The period T, the frequency f and  

the angular frequency  of the spring pendulum 

are defined as 

1
2π ,   ,   ω ,

2π

m k k
T f

k m m
 (5.5) 

where m is the mass of a body, k is the spring stiffness. 

 

 

Fig. 5.2. A simple pendulum 

 

Fig. 5.3. A linear simple harmonic 

oscillator 
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Example 5.1. Equation of simple harmonic oscillations.  

A body with a mass of 500 g is undergoing harmonic oscillations described 

by the following equation x = 10 sin (5 t + 
π

6
), where t is in seconds and x in 

meters. Find (a) the amplitude, (b) the frequency and the period, (c) the position 

of a body at the initial instant of time t = 0, (d) the spring stiffness. 

Solution. a) We use Eqs. 5.1–5.3, from which it follows that the amplitude 

is A = 10 m, the angular frequency is  = 5 .  

b) The frequency of the oscillations is 
ω 5π

2 5 Hz
2π 2π

f . . Then  

the period is equal to 
1 1

0 4 s
2 5

T . .
f .

 

c) The position of a body at t = 0 is x(0) = 10 sin (
π

6
) = 5 m. 

d) The spring stiffness is k = 
2
m = 246.5  0.5 = 123.3 N/m. 

 

Example 5.2. Equation of simple harmonic oscillations.  

What is the equation describing the motion of a mass at the end of a spring 

which position at the initial instant of time t = 0 is x0 = 5 cm, and whose period 

is T = 0.314 s and amplitude is A = 10 cm?  

Solution. We use Eq. 5.2: x(t) = A sin(ωt + φ0). 

Angular frequency is given by  

 = 
2π 2π

20 rad/s
0 314

.
T .

 

At the initial instant of time t = 0 the position of a body is x0 = 5 cm. 

Amplitude is A = 10 cm. Then from Eq. (5.2) it follows that  

sin 0 = 0

0

5 1

10 2

x

A
 

or       0 = 
π

6
. 

The equation of simple harmonic oscillations is given by  

x = 10 sin (20t + 
π

6
) (cm). 

 

5.2. MECHANICAL WAVES 

 

Mechanical wave is the process of the vibrations‘ propagation in the elastic 

medium. In other words waves are disturbances which propagate through  

a medium. Particles form the elastic medium and their vibrations produce  

the wave. Waves can be viewed as a transfer of energy and particles‘ vibrations 

through the medium but not the straight-line movement of the particles.  



87 

The mechanical wave is called longitudinal if the direction of  

the displacement of the medium particles is along the direction of the wave 

propagation. In a transverse wave the direction of the displacement  

of the medium particles is perpendicular to the direction of the wave‘s motion. 

Longitudinal mechanical waves can propagate in different media (except of 

vacuum), and transverse waves can propagate just in solid.  

Waves have peaks and troughs. The height of a peak and depth of  

a trough is called the amplitude of the wave (fig. 5.4). 

Fig. 5.4. A schematic wavelength representation 

 

The distance between two adjacent peaks (or troughs) is the same. This 

distance which is a characteristic of the wave is called the wavelength . The 

units are metres m. The wavelength is the distance between any two adjacent 

points which are in phase. The wavelength  is the distance that the wave 

propagates in the medium at speed  for the time equal to the period Т: 

λ T .
f

      (5.6) 

Acoustic waves are mechanical longitudinal waves, which propagate in  

the elastic medium and have frequencies from the lowest ones to 10
12

–10
13

 Hz. 

Sound (audible) waves have frequencies about 16 Hz to 20 000 Hz. Sound 

having frequencies above the range of human hearing is called ultrasound. 

Waves having frequencies below 16 Hz are called infrasound. 

Speed of acoustic waves is dependent on the properties of the medium 

through which they propagate (e. a. temperature, elasticity, density). 

In summary a sound is a mechanical wave that moves through a medium as 

particles in the medium are displaced relative to each other. The speed of sound 

is different in different materials; in general, it is slowest in gases (  = 340 m/s 

in air), faster in liquids (  = 1450 m/s in water), and fastest in solids  

(  = 4900 m/s in iron).  

 

x 

y 

A 
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Example. 5.3. Wavelength and frequency. (a) What is the range  

of the wavelengths of audible sound in air? (b) What is the frequency of 

ultrasound corresponding to the wavelength equal to 1 mm? Assume the speed 

of sound in air equal to 340 m/s. 

Solution. We use the Eq. 5.6 a) The range of audible frequencies is from 

about 16 Hz to 20 000 Hz. Then from Eq. 5.6 we obtain 

1
1

340 m/s
λ 21 25 m

16 Hz
.

f
 

2
2

340 m/s
λ 17 mm.

20 000 Hzf
 

The range of the wavelengths of audible sound in air is from 17 mm to 17 m. 

b) The frequency of ultrasound in air corresponding to the wavelength 

equal to 1 mm is 

340 m/s
0 34 MHz.

λ 0 001 m
f .

.
 

PROBLEMS 

1. A particle is executing simple harmonic vibrations with the period  

T = 12 s and the initial phase 0 = 0. How much time does it take to travel  

a distance equal to half of its amplitude? (Answer: 1 s) 

2. A pendulum is first vibrated on the surface of earth. Its period is T.  

It is then taken to the surface of moon where acceleration due to gravity is 1/6th 

that on earth. What is its period? (Answer: 6T ) 

3. A spring is loaded with mass m and the period of oscillations is T. It is 

then cut into 4 equal parts. What is the period of oscillations of each part? 

(Answer: T/2) 

4. In diagnostic ultrasound imaging the speed of sound is assumed to be 

1540 m/s in soft tissues. If the ultrasound wave has the wavelength of 0.1 mm, 

what is its time period and frequency? (Answer: 0.065 s, 15.4 MHz) 

TESTS 

1. A metal sphere is suspended to a spring. It oscillates with frequency f.  

It is then taken to the moon where the acceleration of gravity (g) becomes 1/6th 

of its value on the earth. What is the frequency of oscillations? 

a) 6f   b) 6 f   c) the same  d) f/6 

2. A simple pendulum consists of a bob of a radius r and mass m and its 

period is 2 sec. When its bob is replaced by a bob of a mass of 2 m but the same 

radius r, the time period of motion is: 

a) 4 sec  b) 2 sec  c) 1 sec   d) 8 sec 
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3. A mass m is suspended to a spring of length L and stiffness constant k. 

The frequency of vibration is f1. The spring is cut into two equal parts and each 

half is loaded with the same mass m. The new frequency f2 is given by: 

a) 2 12f f   b) 1
2

2

f
f   c) 1

2
2

f
f  d) f2 = 2f1 

4. The equation of motion for a body executing simple harmonic vibrations 

is given by x = 0.5 sin (10 t + 5). The frequency is given by: 

a) 5 Hz  b) 1 Hz  c) 0.5 Hz   d) 5  Hz 

5. For a body of mass m attached to the spring the stiffness constant (k) is 

given by (  is the angular frequency): 

a) 
2ω

m
  b) m

2
  c) m

2
    d) m

2 2
 

6. Simple harmonic vibrations is given by x = A sin ( t + 0). When  

a particle is at its positive extreme, its phase relative to equilibrium position is: 

a)    b) /2  c) zero   d) 2  

7. Simple harmonic vibrations is given by x = A sin ( t + 0). If 0 = /6, 

the body started oscillating from: 

a) x = 0  b) 
3

2
x A  c) х = A/2   d) x = A/ 2  

8. Sound waves can not be propagated through: 

a) a gas  b) a liquid  c) vacuum  d) a solid 

9. A source of sound vibrates according to the equation x = 0.03 sin 100 t. 

The speed of the wave is 1.5 km/s. What is the wavelength of the wave? 

a) 60 m  b) 30 m   c) 15 m   d) 45 m 

10. The sound generator dipped in sea is sending waves of wavelength  

2.5 m and frequency 580 Hz. The speed of sound in sea water is: 

a) 1250 m/s b) 1450 m/s  c) 1650 m/s  d) 1050 m/s 

11. The speed of sound is the largest in: 

a) air  b) water   c) vacuum  d) steel 

12. Two persons cannot hear each other on the surface of moon because  

the moon has: 

a) craters      b) no atmosphere 

c) rocks which absorb sound  d) dust suspended all around 

13. The range of frequencies audible to human ear is: 

a) 16 Hz to 20000 Hz   b) 16 Hz to 2000 Hz 

c) 100 Hz to 10000 Hz   d) 16 kHz to 20000 kHz  
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6. STATICS 
 

Statics is concerned with the analysis of loads (i. e. forces) acting on and 

within structures that are in equilibrium. Equilibrium means a state of balance.  

A body is in static equilibrium when it is at rest relative to a given frame of 

reference. 

In practice, many structural analyses in biomechanics are performed based 

on the assumption of static equilibrium. 

In this section we will concern with rigid solid bodies which do not bend, 

stretch, or squash when forces act on them. 

Let us consider a rigid solid body  

(fig. 6.1) which can rotate about an axis that is 

perpendicular to the plane of the figure and 

passes this plane through point O. Two forces, 

and , act on the body in the plane of  

the figure. Such a body is called a lever.  

By definition a lever is a rigid solid body 

(commonly a bar) free to rotate about a fixed 

point called the fulcrum (point O).  

The efficiency of the force to cause a rotation 

about the fulcrum depends on the torque T  

(or moment) of the force with respect to point 

O. The torque of the force with respect to the point O is defined as  

T = F d,       (6.1) 

where F is the magnitude of the force, d is the perpendicular distance between 

point O and the line of action of the force (i. e. the line along which the force 

vector lies) (fig. 6.1).  

The distance d is called the lever arm (or moment arm) of force with 

respect to point O. The lever arms of the forces  and  in fig. 6.1 are  

the distances d1 and d2, respectively. If the line of action of the force passes 

through point O, so the lever arm for this force is zero and its torque with 

respect to O is zero. Such a force can not cause a rotation of the lever. A force 

of a given magnitude has the larger torque when it has the larger lever arm, this 

is the principle of levers. 

The force in fig. 6.1 tends to cause counterclockwise rotation about O, 

while tends to cause clockwise rotation. Counterclockwise torques are 

commonly considered to be positive and clockwise torques are negative, then  

the magnitudes of the torques of the forces and about O are  

T1 = F1 d1 T2 = –F2 d2.     (6.2) 

 

 

Fig. 6.1. Lever arms of the forces 

   and    
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When several torques act on a body, the net torque (or resultant torque Tnet) 

is the sum of the individual torques: 

1
net

n

i
iT T .      (6.3) 

The SI unit of torque is the newton-meter (N m).  

 

6.1. CONDITIONS FOR EQUILIBRIUM 

 

We learned that a particle is in equilibrium (i. e. the particle does not 

accelerate) in an inertial frame of reference if the vector sum of all the forces 

acting on the particle is zero. For an extended body, considered above,  

the equivalent statement is that the center of mass of the body has zero 

acceleration if the vector sum of all external forces acting on the body is equal 

zero. This is called the first condition for equilibrium.  

0iF  (vector form)  

or = 0, = 0,  = 0 (vector projection form).  (6.4) 

A second condition for an extended body to be in equilibrium is that  

the body must have no tendency to rotate. This condition is based on  

the dynamics of rotational motion in exactly the same way that the first 

condition is based on Newton‘s first law. A rigid body in equilibrium can not 

have any tendency to start rotating about any point, if the algebraic sum  

of the torques due to all the external forces acting on the body with respect to 

any specified point, is equal to zero. This is the second condition for 

equilibrium: 

1

0
n

i
i

T .      (6.5) 

Levers. Levers are used to lift loads in an advantageous way and to transfer 

movement from one point to another. Levers are classified regarding  

the relationship between their components (i. e. fulcrum, load and applied 

force). There are three classes of levers, as shown in fig. 6.2.  

In a Class 1 lever the fulcrum is located between the applied force and  

the load. A scissors and lifting a head off the chest are the examples of a Class 1 

lever (fig. 6.2). In a Class 2 lever, the fulcrum is at one end of the bar; the force 

is applied to the other end; and the load is situated in between. A wheelbarrow 

and raising up onto the toes are examples of a Class 2 lever. A Class 3 lever has 

the fulcrum at one end and the load at the other. The force is applied between 

the two ends. Many of the limb movements, for example, flexion at the elbow 

are performed by Class 3 levers. 
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Fig. 6.2. Three classes of levers 

 

According to the Eq. 6.5 condition for equilibrium for all three types of 

levers is given by 

T1 – T2 = 0   or   F1 d1 – F2 d2 = 0.    (6.6) 

From Eq. 6.6 it follows that  

1 2

2 1

F d

F d
   or   1

2 1
2

,
d

F F
d

     (6.7) 

where d1 and d2 are the lengths of the lever arms as shown in fig. 6.2, F2  

is the applied force required to balance a load force F1. If d1 is less than d2,  

the applied force F2 is smaller than the load force F1.  

The ratio of the load force to the applied force is called the mechanical 

advantage of the lever ( 1 2

2 1

F d
M

F d
). In dependence on the distances from  

the fulcrum, the mechanical advantage of a Class 1 lever can be greater or 

smaller than one. By placing the load close to the fulcrum, with d1 much smaller 

than d2, a very large mechanical advantage can be obtained with a Class 1 lever. 

In a Class 2 lever, d1 is always smaller than d2, therefore, the mechanical 

advantage of a Class 2 lever is greater than one. The situation is opposite  

in a Class 3 lever. Here d1 is larger than d2, therefore, the mechanical advantage 

is always less than one. 

 

 

 

 

Class 1 Class 2 Class 3 
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6.2. TYPES OF EQUILIBRIUM 

 

There are three types of static equilibrium: stable, unstable and neutral. 

Stable static equilibrium means that with small deviations of the body from 

the equilibrium state, forces or moments of forces emerge which tend to return 

the body to the state of equilibrium. A ball located at bottom of a spherical 

deepening is in a state of stable equilibrium (fig. 6.3). 

 

Fig. 6.3. Different types of equilibrium of the ball on a support: 

1 — neutral; 2 — unstable; 3 — stable 
 

Unstable static equilibrium means that, with a small deviation of the body 

from the equilibrium state, forces emerge which tend to increase this deviation. 

A ball located at the top of a sphere is an example of unstable equilibrium. 

Neutral equilibrium means that, with a small deviation, the body remains in 

equilibrium. An example is a ball lying on a flat horizontal surface.  

Minimum potential energy is correspondent to the state of stable 

equilibrium as compared to the adjacent states. Potential energy is larger in 

unstable equilibrium state than in the adjacent states. In case of neutral 

equilibrium potential energy is the same as in the adjacent states. 

 

6.3. CENTER OF MASS AND CENTER OF GRAVITATION 

 

When an object rotates, or several parts of a system of objects move 

relative to one another, there is one point that moves in the same path that  

a particle would move if subjected to the same net force. This point is called  

the center of mass (abbreviated CM). The general motion of an extended object 

(or system of objects) can be considered as the sum of the translational motion 

of the CM, plus rotational, vibrational, or other types of motion about the CM.  

For symmetrically shaped objects of uniform composition (such as spheres, 

cylinders, and rectangular solids) the CM is located at the geometric center of 

the object.  
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The center of gravity (CG) of an object is the point 

at which the force of gravity can be considered to act 

(fig. 6.4). The force of gravity actually acts on all  

the different parts or particles of an object, but for 

purposes of determining the translational motion of  

an object as a whole, we can assume that the entire 

weight of the object (which is the sum of the weights of 

all its parts) acts at the CG.  

Commonly the center of gravity and the center of 

mass are at the same point. 

Center of mass or center of gravity of an extended object can be easily 

determined experimentally. If an object is suspended from any point, it will 

swing (fig. 6.4) due to the force of gravity on it, unless it is placed so its CG lies 

on a vertical line directly below the point from which it is suspended.  

The algebraic sum of the torques due to the forces of gravity acting on all 

particles of the body with respect to the center of gravity is equal to zero. 

The subject of statics is important because it allows us to calculate certain 

forces acting on (or within) a structure when some of the forces on it are already 

known. Let us consider several examples. 

Example 6.1. The first class lever.  
The arms of a horizontal lever are d1 = 25 cm and d2 = 2 m long at opposite 

sides of the fulcrum (fig. 6.2). The shorter arm is loaded with the weight of  

500 N at the end. (a) What force should be applied at the lever longer arm to 

balance the load? (b) What is the advantage of the lever? 

Solution. We use Eq. 6.7. Setting, d1 = 25 cm = 0.25 m, d2 = 2 m, F1 =  

500 N, we calculate F2:  

1
2 1

2

0 25 m
500 N 62 5 N

2 m

d .
F F . .

d
 

Advantage of the lever is 1 2

2 1

2 m
8 times.

0 25 m

F d
M

F d .
 

The force required to balance the load is 62.5 N. 

 

Example 6.2. Balance of a horizontal beam.  
A uniform beam of length L and mass m = 2 kg rests on two fulcrums as 

shown in fig. 6.5. A uniform block of mass M = 3.5 kg is at rest on the beam at  

a distance L/4 from its left end. Find the reactions forces exerted on the beam by 

the right and left fulcrums. 

Solution. A free-body diagram for the system consisting of the beam and 

the block is shown in fig. 6.5. The forces acting on the system are as follows:  

the force of gravity of the beam g,beamF mg  and of the block g,blockF M g  

Fig. 6.4. Determination 

of the center of mass of 

a flat uniform body 
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and the reaction forces  and  at the left and right ends of the beam, 

respectively. 

We apply two conditions for equilibrium (Eqs. 6.4–6.5) and solve this 

problem in two equivalent ways.  

From the Eq. 6.4 (balance of forces) we obtain:  

0l rmg M g F F . 

Let us choose y axis to be positive in the upward direction (fig. 6.5). Then 

for the projections of forces along the y axis we can write: 

Fl + Fr – mg – Mg = 0   or   Fl = mg + Mg – Fr. 

Fig. 6.5. Example 6.2 

 

Then we need to use the Eq. 6.5 (balance of torques). Let us choose  

the axis O through the left end of the beam so that the torque of the force  is 

equal to zero. Then from the balance of torques equation we obtain: 

0
2 4

r
L L

F L mg Mg . 

Solving the above equation for Fr yields: 
2(2 ) (2 2 kg 3 5 kg) (9 8 m/s )

18 4 N
2 4 4 4

r
mg Mg m M g . .

F . . 
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Let us find the remaining unknown force magnitude Fl from the balance of 

forces equation: 

Fl = mg + Mg – Fr = (m + M) g – Fr = (5.5 kg) (9.8 m/s
2
) – (18.4 N) = 35.5 N. 

Second solution. This problem can be solved in a different way, applying 

the balance of torques equation (Eq. 6.5) about two different axes. Choosing 

first an axis through the left end of the beam, as we did above we find  

the reaction force at the right end of the beam Fr = 18.4 N. 

For an axis passing through the right end of the beam Eq. 6.5 yields  

3
0

2 4
l

L L
F L mg Mg . 

Solving for Fl, we find 
23 (2 3 ) (2 2 kg 3 3,5 kg) (9 8 m/s )

35 5 N
2 4 4 4

l
mg Mg m M g .

F . . 

It is in agreement with the previous result. Note that the reaction force 

magnitudes are not dependent on the beam length, but only on the mass  

of the beam and the block. 

 

Example 6.3. Balance of a horizontal beam.  
A uniform horizontal rod of length L = 5 m rests on two fulcrums, located 

at distances a = 0.8 m and b = 1.2 m from the left and right ends of the rod, 

respectively (fig. 6.6). Find the ratio of the reaction forces N2 and N1 exerted on 

the rod by the right and left fulcrums. 

Fig. 6.6. Example 6.3 

 

Solution. A free-body diagram for the rod is shown in fig. 6.6. The forces 

acting on the rod are as follows: the force of gravity of the rod  and  

the reaction forces  and . The problem can be solved most easily by using 

the torque equation (Eq. 6.5) and by choosing the axis through the point O so 

that the torque of the force is equal to zero. 

We calculate torques about the point O. Let d1 = 
2

L
a  and d2 = 

2

L
b  are 

lever arms of the forces  , respectively. Condition for equilibrium of  

the rod gives: 

N1  d1 – N2  d2 = 0 

b a 

N2 N1 

   

L 

O 

L/2 
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or          1 2
2 2

L L
N a N b . 

Solving the above equation for N1/N2 we obtain: 

2

1

2

2

2 5 0 8 1 7
1 33

2 5 1 2 1 3

L
a

L
b

N . m . m . m
. .

N . m . m . m
 

 

Example 6.4. The third class lever. Force exerted by biceps muscle.  

How much force must the biceps 

muscle exert when a 5.0-kg ball is held  

in the hand with the arm horizontal as in 

fig. 6.7? The biceps muscle is connected to 

the forearm by a tendon attached 5.0 cm 

from the elbow joint. Assume that the 

mass of forearm and hand together is 2.0 

kg and their center of gravity (CG) is 

situated as shown in fig 6.7. 

Solution. The free-body diagram for 

the forearm is shown in fig. 6.7. The forces 

acting on the lever are as follows the force 

of gravity of the arm  and the ball , the upward force  exerted by  

the muscle, and a force  exerted at the joint by the bone in the upper arm (all 

assumed to act vertically). We wish to find the magnitude of . The problem 

can be solved most easily by using the torque equation (Eq. 6.5) and by 

choosing the axis through the joint so that the torque of the force is equal to 

zero. 

We calculate torques about the point where Fj acts. Let dM, da db are lever 

arms of the forces   and , respectively. Condition for equilibrium of  

the lever gives:  FM  dM – Fa  da – Fb  db = 0. 

Solving the above equation for FM and setting Fa = ma g and Fb = mb g we 

obtain:   
( )a a b b a a b b

M
M M

F F

d

d d m d m d g
F .

d
 

Setting dM = 5 cm = 0.05 m, da = 15 cm = 0.15 m, db = 35 cm = 0.35 m;  

ma = 2 kg, mb = 5 kg we calculate the magnitude of the biceps muscle force FM: 

2

2

( ) (2 kg)(0 15 m) (5 kg)(0 35 m)
9 8 m/s

0 05 m

(41 kg) 9 8 m/s 402 N

a a b b
M

M

m d m d g . .
F .

d .

. .

 

Fig. 6.7. Example 6.4  
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Note that the force required of the muscle (402 N) is quite large compared 

to the weight of the object lifted (Fb = 49 N). Indeed, the muscles and joints of 

the body are generally subjected to quite large forces. The position (distance dM) 

at which the biceps muscle is connected to the forearm differs in some extent for 

different humans. Even small increase in the lever arm of the force exerted by 

the muscle the can lead to the noticeable increase in the ability of a human to lift 

weights.  

PROBLEMS 

1. Cylindrical tube of small diameter with mass m = 2 10
3
 kg is lying  

on the ground. What the minimum force must be exerted on one of the tube ends 

to lift it from the ground? (Answer: 9.8 kN). 

2. A uniform beam of mass m = 140 kg is suspended horizontally by two 

vertical ropes. Find the tension in each rope, if the distance from the center  

of mass of the beam to the ropes are l1 = 3 m, l2 = 1 m, respectively. (Answer: 

343 N, 1029 N). 

3. A uniform horizontal beam of length L = 4 m rests on two fulcrums, 

located at distances a = 0.8 m and b = 1.2 m from the left and right ends of  

the beam, respectively. To balance the reaction forces, a load of mass m = 30 kg 

is suspended at one of the beam ends. Find the mass of the beam. (Answer:  

270 kg) 

4. A uniform horizontal beam of mass m = 360 kg and length L = 5 m rests 

on two fulcrums, located at distances a = 1.0 m and b = 1.5 m from the left and 

right ends of the beam, respectively. A load of some mass is suspended at one of 

the beam ends in order to provide the reaction forces exerted on the beam by 

both fulcrums to be equal. Calculate the mass of the load. (Answer: 40 kg) 

 

 

7. FLUID MECHANICS 
 

In this Chapter we consider the materials that are very deformable and can 

flow. Such ―fluids‖ include liquids and gases. We concentrate on the main 

points of hydrostatics — the branch of fluid mechanics that is related to  

the study of fluids at rest in equilibrium state. Hydrodynamics is the study of 

fluids in motion. 

The three common phases, or states, of matter are solid, liquid, and gas.  

We can distinguish these three phases as follows. A solid maintains a fixed 

shape and a fixed size. A liquid preserves its volume, but does not maintain  

a fixed shape, it takes on the shape of its container. A gas has neither a fixed 

shape nor a fixed volume, it will expand to fill its container. Since liquids and 

gases do not maintain a fixed shape, they both have ability to flow; they are thus 

often referred to fluids. 
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7.1. DENSITY AND PRESSURE 

 

An important property of any material is its density ρ, defined as its mass 

per unit volume. If a homogeneous material with a mass m has volume V,  

the density is     ρ
m

.
V

       (7.1) 

Two objects made of the same material have the same density even though 

they may have different masses and different volumes. Density is a scalar 

quantity; its SI unit is the kilogram per cubic meter (kg/m
3
). 

NOTE. The density of a gas varies considerably with pressure, but  

the density of a liquid does not; i. e. liquids are not compressible. 

Consider the force  acting perpendicular to  

the surface with area S (normal force) (fig. 7.1). 

Pressure p is defined as magnitude of the normal force 

per unit area:   
F

p .
S

         (7.2) 

Pressure is a scalar. The SI unit of pressure  

is pascal (Pa) (after the name of Blaise Pascal)  

(1 Pa = N/m
2
).  

The pascal is related to some other common (non-SI) pressure units as 

follows: 

1 atm = 1.013  10
5
 Pa = 760 torr. 

The atmosphere (abbreviated atm) is the approximate average pressure of 

the atmosphere at sea level. The torr (named for Evangelista Torricelli, who 

invented the mercury barometer) is the pressure exerted by a mercury column of 

1 millimeter high (1 torr =1 mm Hg = 133.3 Pa). 

 

7.2. PASCAL’S PRINCIPLE 

 

Solids and fluids transmit forces differently. When a force is applied to one 

section of a solid, this force is transmitted to the other parts of the solid  

in the same direction. Because of a fluid‘s ability to flow, it transmits a force 

uniformly in all directions. Therefore the additional pressure at any point  

in a fluid at rest is the same in all directions. This principle is known as Pascal’s 

principle (after the name of French scientist Blaise Pascal). 

Pascal‘s principle states: the pressure applied to an enclosed 

incompressible fluid is transmitted undiminished to every portion of the fluid 

and to the walls of its container. 

From Pascal‘s principle it follows that the pressure at a point in a fluid in 

static equilibrium depends on the depth of that point but not on any horizontal 

dimension of the fluid or its container. 

Fig. 7.1. A force   acting 

perpendicular to the surface 

of area S 

  

S 
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Let us find quantitatively how the pressure in  

a liquid of uniform density varies with depth. Consider  

a point at a depth h below the surface of the liquid, as 

shown in fig. 7.2. The pressure at this depth h is due  

to the weight of the column of liquid above it. Thus  

the force due to the weight of liquid acting on the area S 

is defined as 

F = mg = ( V)·g = S h g,  (7.3) 

where V = S h is the volume of the column of liquid,  is 

the density of the liquid, and g is the acceleration due to 

gravity. The pressure p due to the weight of liquid is then 
ρ

ρ
F Shg

p gh.
S S

     (7.4) 

This pressure is called hydrostatic. 

NOTE. The area S doesn’t affect the hydrostatic 

pressure. The fluid pressure is directly proportional to 

the density of the liquid and to the depth within  

the liquid. In general, the pressure at equal depths 

within a uniform liquid is the same. The shape of  

the container does not matter (fig. 7.3).  

In case of a liquid in an open container (e. g. 

water in a glass) there is a free surface at the top 

exposed to the atmosphere. Then the pressure at  

a depth h in the fluid is 

p = p0 + ρgh,      (7.5) 

where p0 is the atmospheric pressure at the top surface. 

 

Example 7.1. Pressure. Pascal’s Principle.  
Determine the total force and the pressure on the bottom of a swimming 

pool with transverse sizes 25.0 m by 12.5 m and depth 2 m (the density of water 

 = 10
3
 kg/m

3
). What will be the pressure on the wall of the pool near  

the bottom? 

Solution. For solving a problem we use Eqs. 7.2 and 7.4. The surface area 

of the swimming pool bottom is S = a b, where a and b are the width and  

the length of the pool. 

Setting  = 10
3
 kg/m

3
, h = 2 m and g = 9.8 m/s

2
 in Eq. 7.4, we obtain 

hydrostatic pressure on the bottom of the swimming pool  

p = gh = (10
3
 kg/m

3
) (9.8 m/s

2
) (2 m) = 1.96 10

4
 Pa. 

From Eq.7.2 it follows that the total force F acting on the pool bottom is  

F = p S = p a b. Setting a = 12.5 m, b = 25.0 m, we obtain: 

F = (19.6 10
3
 Pa) (12.5 m) (25.0 m) = 6.125 10

6
 N. 

Fig. 7.3. The pressure in 

a fluid is the same for all 

points at the same level 

Fig. 7.2. Hydrostatic 

pressure at the depth h 

p 

S 
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Pressure is p = 19.6 10
3
 Pa, the force is F = 6.125 10

6
 N. 

According to Pascal‘s principle the pressure is the same for all points at 

equal depth, thus the pressure on the wall of the pool near the bottom is  

p = 19.6 10
3
 Pa. 

 

7.3. ARCHIMEDES’ PRINCIPLE AND BUOYANCY 

7.3.1. ARCHIMEDES’ PRINCIPLE 

Archimedes‘ principle states: when a body is completely or partially 

submerged in a fluid, a buoyant force ( ) from the surrounding fluid acts on 

the body (fig. 7.4). The force is directed upward and has a magnitude equal to 

the weight of the fluid that has been displaced by the body
1
:  

Fb = mf · g = ρf · Vf · g,     (7.6) 

where mf is the mass of the fluid displaced by the body; f is the fluid density,  

Vf is the submerged volume of a body, g is an acceleration due to gravity. 

The buoyant force occurs because the pressure in a fluid increases with 

depth. 

Objects submerged in a fluid appear to weigh less than they do when 

outside the fluid. For example, a large rock that you would have difficulty lifting 

off the ground can often be easily lifted from the bottom of a stream. When  

the rock breaks through the surface of the water, it suddenly seems to be much 

heavier. Many objects, such as wood, float on the surface of water. These are 

examples of buoyancy (fig. 7.4). In each example, the force of gravity is acting 

downward. But in addition, an upward buoyant force is exerted by the liquid. 

 
a     b    c 

Fig. 7.4. Examples of buoyancy:  

a — a body is partially submerged; b — a body is completely submerged; c — a body sinks 

(V0 is the volume a body, Vf is the submerged volume of a body) 

                                                      
1
 By ―fluid displaced‖, we mean a volume of fluid equal to the submerged volume of the object  

(or that part of the object that is submerged). 
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The weight of a body on which a buoyant force acts is given by  

the following expression: 

W = mg – Fb = (m – f  Vf) g.     (7.7) 

The net downward force acting on a body of a mass m submerged in a fluid 

is the difference between the gravitational force and the buoyant force: 

F = Fg – Fb = mg – f   Vf ·g = ρ·Vg – f   Vf ·g,   (7.8) 

where  and f are the body and fluid density, correspondently; V is the body 

volume and Vf is the fraction of a body volume which is submerged. 

From Eq. 7.8 it follows that whether a body sinks or floats in liquid 

depends on its density. If its density is greater than that of liquid (  > f), then  

Fg > Fb and a body sinks. When the magnitude Fb of the (upward) buoyant force 

acting on the body is equal to the magnitude Fg of the (downward) gravitational 

force, a body floats in a fluid.  

7.3.2. CONDITION FOR FLOTATION 

Using Eq. 7.8 we obtain a condition at which a body floats at the surface of 

a liquid: 

mg = f  Vf  g   or   ρ·Vg = f  Vf  g.    (7.9) 

From the Eq. 7.9 a condition for flotation of bodies can be expressed as 

follows: 

ρ

ρ

f

f

V
.

V
     (7.10) 

 

Example 7.2. Buoyancy.  
A wood block of density 800 kg/m

3
 floats in a liquid of density 1200 

kg/m
3
. The block has height h = 6 cm. By what depth is the block submerged?  

Solution. The block floats when the buoyant 

force is equal to the gravitational force (fig. 7.5). 

To find depth h we use Eq. 7.10. The volume of 

the displaced liquid is V = h S, where S is the area 

of the block surface submerged in the liquid. 

From Eq. (7.10) it follows 

ρ

ρ

f f f

f

V h S h
.

V h S h
 

Then the depth h by which the block 

submerged is defined by the following equation: 
ρ

ρ
f

f

h h. 

Setting f = 1200 kg/m
3
,  = 800 kg/m

3
, h = 6 cm = 0.06 m, we obtain hf: 

Fig. 7.5. Example 7.2. 

Forces acting on a wood 

block submerged in a liquid 
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3 3
2 2

3 3

ρ 0 8 10  kg/m
6 10  m 4 10  m 0 04 m

ρ 1 2 10  kg/m
f

f

.
h h . .

.
 

The depth by which the block is submerged is 4 cm. 

PROBLEMS 

1. Water stands 12.0 m deep in a storage tank whose top is open to  

the atmosphere. What is the pressure at the bottom of the tank? (Answer:  

2.2 10
5
 Pa) 

2. What is the difference in hydrostatic blood pressure (mm Hg) between 

the top of the head and the bottom of the feet of 1.70 m tall person standing 

vertically? (the density of blood blood = 1.06 10
3
 kg/m

3
). (Answer: 133 mm Hg) 

3. If the force on the tympanic membrane (eardrum) increases by about  

1.5 N above the force from atmospheric pressure, the membrane can be 

damaged. When a man goes scuba diving in the sea, below what depth could 

damage to his eardrum start to occur? The eardrum is typically 8.2 mm  

in diameter (the density of seawater  = 1.03 10
3
 kg/m

3
). (Answer: 2.8 m) 

4. A manometer tube is partially filled with water. Both arms of the tube 

are open to the air. Oil (which does not mix with water) is poured into the left 

arm of the tube. Find the ratio between the heights of oil and water columns  

in the left and right arms correspondently over the level of oil–water interface 

( oil = 0.86 10
3
 kg/m

3
) (Answer: 1.16).  

5. A geologist finds that a Moon rock with an actual mass 9 kg has a mass 

of 6 kg when completely submerged in water. What is the density of the rock? 

(Answer: 3 10
3
 kg/m

3
) 

TESTS 

1. SI units of pressure is 

a) torr  b) atm  c) Pa  d) bar 

2. Hydrostatic pressure depends on liquid 

a) density  b) viscosity c) volume  d) none of the above 

3. A body floats in liquid when  

a) Fg > Fb  b) Fg < Fb  c) Fg = Fb  d) none of the above 

4. What fraction of a piece of iron will be submerged when it floats  

in mercury? ( iron = 7.8 10
3
 kg/m

3
, mercury = 13.6 10

3
 kg/m

3
) 

a) 0.28  b) 0.42  c) 0.57  d) 0.65 
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8. FUNDAMENTALS OF KINETIC THEORY OF GASES 
 

8.1. ASSUMPTIONS OF KINETIC MOLECULAR THEORY  

OF GASES 

 

The kinetic theory of gases is the study of the structure and properties of 

substance which describes a gas as a large number of small particles (atoms or 

molecules) in permanent random motion. There are following assumptions of 

this model: 

 A gas consists of large number of small particles (atoms or molecules), 

which are in permanent random motion. The random motion means that any 

molecule can move in any direction with different speed at any moment. 

 The molecules undergo elastic collisions with each other. The interaction 

forces between gas molecules are negligible except during a collision, because 

the average separation between particles is great compared with their 

dimensions.  

 The molecules undergo elastic collisions with the walls of their container 

and produce a pressure on the walls. 

This properties of gas molecules explain many phenomena, as well known 

Brownian motion, diffusion and etc. 

A diffusion is the movement of atoms and 

molecules from a region of high concentration to  

a region of low concentration. For example, some 

particles are dissolved in a glass of water. At first,  

the particles are all near one side of the glass. If the 

particles all randomly move around — diffuse — in 

the water, then the particles will eventually become 

distributed randomly and uniformly (fig. 8.1).  

 

8.2. AMOUNT OF SUBSTANCE, MOLAR MASS 

 

Amount of substance (chemical amount) n is a quantity that measures  

the amount of ensemble of atoms, molecules or other particles. The SI unit for 

amount of substance is the mole. The mole is defined as the amount of substance 

that contains the Avogadro‘s number (NA = 6.02·10
23

) of its elementary particles 

(atoms or molecules). Such amount of atoms is contained in 12 g of the isotope 

carbon-12. 

Amount of substance in moles can be determined as: 

,
A

N
n

N
       (8.1) 

where N is number of molecules in substance. 

Fig. 8.1. Diffusion 
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Molar mass M is a mass of 1 mole of a given substance, its physical 

characteristic equal to the mass m of substance per its amount of substance n: 
m

M .
n

       (8.2) 

The SI unit for molar mass is kg/mol. However, for both practical and 

historical reasons, molar masses are almost always measured in g/mol. 

Molecular mass can be determined from the following relation: 

0
A

M
m .

N
      (8.3) 

 

8.3. IDEAL GAS. GAS PRESSURE 

 

An ideal gas is a theoretical gas composed of many randomly moving 

point particles that do not interact except when they collide elastically. 

At normal conditions such as standard temperature and pressure, most real 

gases such as hydrogen, helium, neon, nitrogen, oxygen behave qualitatively 

like an ideal gas.  

As gas particles are constantly moving, they are also constantly colliding 

with the walls of their container and provide the forces pushing this walls  

(fig. 8.2). The gas pressure is the sum of these forces F divided by the area S of 

the container wall: 
F

p .
S

       (8.4) 

 

 

Fig. 8.2. Gas molecules colliding with container walls 

 

The molecule-kinetic theory of ideal gas shows that the gas pressure on  

the container walls is determined by formula: 

2
0

1
,

3
p cm       (8.5) 

where 
N

c
V

 is concentration of gas molecules (a number of molecules per unit 

volume), m0 is mass of molecule, 2  is the mean square speed of  

the molecule. 
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As an average kinetic energy of one molecule is 
2

0

2

m
E , the gas 

pressure depends on the kinetic energy of gas molecules: 
2

02 2
= .

3 2 3

m
p c cE      (8.6) 

The equation (8.6) is a very important in the kinetic theory because it 

relates pressure, a macroscopic property, to the average kinetic energy per 

molecule which is a microscopic property. The SI unit of pressure is a pascal 

(Pa) which is a newton per square meter (1 Pa = 1 N/m
2
). Other common units 

of pressure are the atmosphere (atm) and millimeter of mercury (mmHg): 

1 atm = 760 mmHg = 101325 Pa ≈ 10
5
 Pa. 

 
8.4. TEMPERATURE AS A MEASURE OF KINETIC ENERGY  

OF MOLECULES 

 

From the equation (8.6) we can find the average kinetic energy of gas 

molecules as      
3

.
2

pV
E

N
      (8.7) 

The special experiments have shown that at any constant temperature  

the value 
pV

N
is the same for any gas and it is proportional to the gas 

temperature. English physicist William Thomsom, 1
st
 Baron Kelvin suggested 

the absolute temperature scale T in which 

pV
kT .

N
      (8.8) 

and k is called Boltzmann constant (k = 1.38 · 10
–23

 J/K). 

Zero of Kelvin temperature scale defines the absolute zero, a hypothetical 

temperature at which all molecular movement stops and gas pressure drops to 

zero. All actual temperatures are above absolute zero.  

The average kinetic energy of molecules of the monoatomic gas depends 

on the absolute temperature according to the formula: 
2

0 3
= .

2 2

m
E kT       (8.9) 

From (8.9) the mean square speed of gas molecules is: 

2

0

3 3
=mss

kT RT
.

m M
    (8.10) 

where R = NA·k = 8.31 
J

K mol
is the constant called the universal gas 

constant, M = m0NA is molar mass. 
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Therefore, ideal gas pressure in absolute temperature scale is: 

p = ckT.      (8.11) 

Usually we use a Celsius temperature scale (fig. 8.3). According to this 

scale the temperature difference between the reference temperatures of  

the freezing and boiling points of water is divided into 100 degrees. The freezing 

point is taken as 0 Celsius degrees and the boiling point as 100 Celsius degrees.  

 

Fig. 8.3. Relation between Celsius and Kelvin temperature scales 

 

The intervals for the Celsius scale and for Kelvin scale are the same  

1 K = 1 °C, but the absolute zero 0 K = –273.15 °C. 

Thus, the conversion between these temperatures is: 

TK ≈ TC + 273.      (8.12) 

 

8.5. IDEAL GAS LAW 

 

An ideal gas state can be characterized by three main values: pressure p, 

volume V, and absolute temperature T. The Ideal Gas Law (the equation of state 

for an ideal gas) is general relation between these variables at fixed quantity of 

gas. As an ideal gas pressure (8.11) is p = ckT, where = ,AnNN
c

V V
 we can 

write: 

,A

n n
p N kT RT

V V
     (8.13) 

The most frequently introduced form of this equation is: 

pV = nRT   or   pV = ,
m

RT
M

    (8.14) 

where m is mass, M is molar mass and n is amount of gas moles. 

According to the equation of state, one of the thermodynamic variables p, 

V or T may always be expressed as the function of the other two values. 
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Example 8.1.  
A helium balloon, assumed to be a perfect sphere, has a radius of 18 cm.  

At room temperature (20 °C), its internal pressure is 1.05 atm. Find the number 

of moles of helium in the balloon and the mass of helium needed to inflate  

the balloon to these values. 

Solution: 

3 3 34 4
π π(0.18 m) 0 0244 m .

3 3
V r .  

P = 1.05 atm = 1.064 · 10
5
 N/m

2
. 

T = 20 °C = (20 + 273) K = 293 K.  

R = 8.31 J/(mol·K). 

Thus  
5 2 3(1 064 10  N/m )(0 0244 m )

1 066 mol
(8 31 J/mol K)(293 K)

PV . .
n . .

RT .
 

The atomic mass of helium M = 4 g/mol, so gas mass is  

34 g
1 66 mol 4 26 g 4 26 10  kg

mol
m n M . . . . 

 

8.6. ISOMETRIC PROCESSES 

 

Isometric processes are thermodynamic processes during which the amount 

of substance and one of the state variables — pressure, volume or 

temperature — remain unchanged.  

1. Isothermal process is carried out with a fixed amount of gas at constant 

temperature. In this case, the product of an ideal gas pressure and volume is 

always constant (Boyle’s law): 

PV = const = nRT 

or       p1V1 = p2V2,           (8.15) 

where n = const, T = const. 

A plot of p versus V at constant temperature for an ideal gas is a hyperbolic 

curve called an isotherm (fig. 8.4). Each point on the curve represents the state 

of the system at a given moment — that is, at pressure p and volume V. At a 

lower temperature another isothermal process is represented by a lower curve 

A′B′ (the product pV is less when T is less). 

 
Fig. 8.4. Isotherms for an ideal gas at two different temperatures 
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2. At isobaric process the pressure of a fixed amount of gas is kept 

constant. During the isobaric process the gas volume is proportional to gas 

temperature: 

const ,
nR

V T T
p

     (8.16) 

where n = const, p = const.  

It is known as Charles’ law: 

1 2

1 2

const   or   
V VV

.
T T T

    (8.17) 

This process is represented by a straight line on the volume-temperature 

diagram called isobar and coming out of the origin of coordinates (fig. 8.5). 

3. At isochoric process the gas volume does not change. The pressure of 

gas of fixed mass and fixed volume is directly proportional to the absolute 

temperature of gas. This law is expressed mathematically as: 

const ,
nR

p T T
V

     (8.18) 

where n = const, V = const, or as Gay-Lussac’s law: 

1 2

1 2

p p
.

T T
       (8.19) 

On pressure-temperature diagram of the isochoric process is represented by  

a straight line called isochor (fig. 8.6). 

     

Fig. 8.5. VT-diagram of isobaric process           Fig. 8.6. pT-diagram of isochoric process 

 

Example 8.2.  
The gas pressure in cylinder is 4.40 kPa at 25°C. At what temperature in °C 

will it reach a pressure of 6.50 kPa? 

Solution. Since a cylinder volume is constant, V1 = V2, then  

1 2

1 2

,
P P

T T
 

1 2
2

1

298 K 6 50 Pa
440 K 167 C.

4 40 kPa

T P .
T

P .
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TESTS 

1. According to the kinetic theory, the velocity of molecules increases  

with the: 

a) rise in temperature; 

b) fall in temperature; 

c) neither increases nor decreases. 

2. According to the kinetic theory, the collision between the molecules of 

gas are: 

a) perfectly inelastic; 

b) partially elastic; 

c) perfectly elastic; 

d) none of the above. 

3. According to the gas kinetic theory the molecules: 

a) repel each other; 

b) collide with each other elastically; 

c) move with uniform velocity; 

d) are massless particles. 

4. Brownian motion is: 

a) discontinuous; 

b) not random; 

c) regular;  

d) due to molecular collision. 

5. According to kinetic theory of a gas the kinetic energy of a gas is: 

a) proportional to the square root of its temperature; 

b) independent of its absolute temperature; 

c) proportional to its absolute temperature; 

d) proportional to cube of absolute temperature. 

6. Absolute zero is the temperature at which: 

a) all molecular motion ceases; 

b) some molecules are at rest; 

c) none of the above. 

7. The absolute zero is expressed as: 

a) 273 ºC;  b) –273 ºC; c) –273 K; d) 373 ºC. 

8. A gas is at one atmosphere. To what pressure it should be subjected  

at constant temperature so as to have 1/4
th

 of its initial volume.  

a) 
1
/4 atm;  b) 2 atm;  c) 3 atm;  d) 4 atm. 
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9. If the temperature of air is increased from 20 ºC to 200 ºC, the increase 

in kinetic energy will be: 

a) 1.6 times; b) 2 times; c) 3.4 times; d) 10 times. 

10. The temperature at which the kinetic energy of the gas will be half of 

the kinetic energy at room temperature of 27 ºC is: 

a) 13.5 ºC; b) –27 ºC; c) 123 ºC;  d) –123 ºC. 

11. An ideal gas at 27ºC is heated at constant pressure so as to double its 

volume. The temperature of the gas will be: 

a) 54 ºC;  b) 327 ºC;  c) 450 ºC;  d) 600 ºC. 

12. In which process PV-diagram is a straight line parallel to the volume 

axis? 

a) isothermal;   b) isochoric; 

c) isobaric;   d) none of these. 

13. Isothermal relation for 1g of a gas is: 

a) PV = RT;   b) PV = constant; 

c) P/T = constant;  d) V/T = constant. 

14. An ideal gas is expanded isothermally, its temperature will: 

a) increase;   b) decrease; 

c) remain the same;  d) become zero. 

15. Gas occupies 100 ml volume at 10
4
 Pa pressure. If during isothermal 

process the pressure is changed to 10
3
 Pa the volume of the gas will be: 

a) 10 ml;  b) 50 ml;  c) 200 ml; d) 1000 ml. 

PROBLEMS 

16. What is the pressure inside 38 L container holding 105 kg of argon gas 

at 20 °C? (Answer: 168 MPa) 

17. If 61.5 L of oxygen at 18°C and an absolute pressure of 245 kPa are 

compressed to 48.8 L and at the same time the temperature is raised to 56 °C, 

what will the new pressure be? (Answer: 349 kPa) 
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9. THERMAL PHENOMENA.  

BASICS OF THERMODYNAMICS 
 

Thermodynamic is the theory of thermal phenomena which is not 

considered atomic and molecular structure of bodies.  

A thermodynamic system is the content of a macroscopic volume in space, 

along with its walls and surroundings; it undergoes thermodynamic processes 

according to the principles of thermodynamics. This system can be described by 

thermodynamic variables such as temperature, internal energy and pressure. 

 

9.1. INTERNAL ENERGY. WORK OF GAS. FIRST LAW  

OF THERMODYNAMICS 

 

The total sum of the energies of all molecules in an object is called its 

internal energy. It includes total kinetic energy of the molecule‘s motion and 

total potential energy of their interactions. Energy can be transferred between  

a molecule system and its surroundings in two ways: 

a) work W done by the system; 

b) heat Q transfer, which occurs between the bodies with different 

temperature. 

The work produced by gas is equal to  

W = Fgas · Δl·cos α = p·S·Δl·cos α = p·ΔV.   (9.1) 

If the gas expands, ΔV ≡ V2 – V1 > 0 and gas work is positive W > 0.  

The work of external force ( ext gasF F ) is negative in this case. Vice versa  

if the gas is compressed by the external force the ΔV ≡ V2 – V1 < 0 and gas work 

is negative W < 0, but the work of external force is positive. 

The heat Q is transferred from body of higher temperature to the body of 

lower temperature. The transferred heat Q > 0 if thermal energy enters the body 

and Q < 0 when this energy leaves it. The SI unit of heat quantity is Joule.  

The First law of thermodynamics: the changing of the internal energy ΔU 

of molecular system is due to heat Q transfer and to the work W done by  

the system: 

ΔU = Q – W.      (9.2) 

In this formula Q > 0 when thermal energy enters the system and Q < 0 

when this energy leaves the system. 

The First law of thermodynamics (9.2) may be written in the form: 

Q = ΔU + W.      (9.3) 

The internal energy of n moles of an ideal monatomic (one atom per 

molecule) gas is equal to         (9.4) 

Thus, the internal energy of an ideal gas depends only on temperature and 

the number of moles of gas.  
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The changing of internal energy ΔU of an ideal monatomic gas is equal to: 

.     (9.5) 

 

9.2. FIRST LAW OF THERMODYNAMICS AT DIFFERENT 

PROCESSES 

 

At isothermal process the T is constant and internal energy of gas doesn‘t 

change: ΔT = 0 and ΔU = 0. First Law is: 

Q = W. 

That means that all heat energy transfers to a work.  

At isobaric process gas pressure is fixed but the gas volume and 

temperature may changes and First Law is: 

Q = ΔU + W, 

one part of transferred heat goes to doing a work by system and the another part 

goes to increasing the internal energy of gas. 

At this process W = p·ΔV = nR·ΔT. 

For ideal monoatomic gas ΔU = 1.5·nR·ΔT, so at this case  

Q = 2.5nR·ΔT. 

At isochoric process gas volume is fixed and gas doesn‘t make a work:  

W = p·ΔV = 0. So the First Law in this case is Q = ΔU, and for monoatomic gas 

Q = ΔU = 1.5nR·ΔT. 

All heat transfers to internal energy. It is the best process for body heating. 

There is a process, when the heating is absent: Q = 0. This process is called 

―adiabatic process‖. In this case First Thermodynamics Law has a form: 

ΔU + W = 0   or   ΔU = –W. 

It means that the gas internal energy decreases (and gas temperature 

decreases too) if gas adiabatically extends (W > 0) and vice versa, gas 

temperature and internal energy increases if gas is adiabatically compressed  

(W < 0).  

Example 9.1. 

2500 J of heat is added to a system, and 1800 J of work is done on the 

system. What is the changing of internal energy of the system? 

Solution. The heat added to the system is Q = 2500 J. The work W done by 

the system is –1800 J. Why the minus sign? Because 1800 J done on the system 

(as given) equals –1800 J done by the system. Hence: 

ΔU = Q – W = 2500 J – (–1800 J) = 2500 J + 1800 J = 4300 J. 

 

9.3. HEAT TRANSFER, TYPES OF HEAT TRANSFER 

 

The transfer of heat normally occurs from a higher temperature object to  

a lower temperature object. Heat transfer changes the internal energy of both 

objects involved. There are three different ways to transfer energy from one part 
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of system to another: conduction, convection, and radiation. In practical 

situations, any two or all three may be operating at the same time.  

Conduction is heat transfer by means of molecular agitation within  

a material without any motion of the material as a whole. If one end of a metal 

rod is at a higher temperature, then energy will be transferred along the rod 

toward the colder end. It happens due to the higher speed particles will collide 

with the slower ones with a transfer of energy to them.  

Convection is heat transfer by mass motion of a fluid such as air or water 

when the heated fluid moves away from the source of heat, carrying energy with 

it. Convection above a hot surface occurs because hot air expands, becomes less 

dense, and rises. Hot water is likewise less dense than cold water and rises, 

causing convection currents which transport energy.  

Thermal radiation is energy transfer by the emission of electromagnetic 

waves which carry out energy away from the emitting object. All life on Earth 

depends on radiation from the Sun, which consists of visible light plus many 

other wavelengths that the eye is not sensitive to, including much of the infrared 

radiation. 

 

9.4. AMOUNT OF HEAT. SPECIFIC HEAT 

 

The amount of heat Q required to change the temperature of a given 

material is proportional to the mass m of the material and to the temperature 

change ΔT. It can be expressed by the equation: 

Q = cmΔT,      (9.6) 

where с is a quantity characteristic of the material which is called a specific 

heat.  

If ΔT = T2 – T1 > 0, the Q > 0 too (process of body heating), if  

ΔT = T2 – T1 < 0 than Q < 0 (process of body cooling).  

The specific heat c is the amount of heat per unit mass required to raise the 

temperature by one Kelvin. Specific heat is essentially a measure of how thermally 

insensitive a substance is to the addition of energy. The greater a material‘s 

specific heat, the more energy must be added to a given mass of the material to 

cause a given temperature change. The SI unit of specific heat is J/kg·K.  

 

9.5. PHASE CHANGES 

 

A phase change is the transformation of a thermodynamic system from one 

phase or state of matter to another one by heat transfer. The term is most 

commonly used to describe transitions between solid, liquid and gaseous states 

of matter. The graph below (fig. 9.1) shows the matter temperature T changes 

with the heat Q transfer.  
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Fig. 9.1. Change temperature of a substance during the heating 

 

Melting is a physical process that results in the phase change from solid to 

liquid. Inverse process, the transition from liquid to solid, is called 

crystallization. The melting point is the temperature at which state of  

a substance changes from solid to liquid. At the melting point the solid phase 

and liquid one exist in a heat equilibrium. At the melting point, although  

the substance is still being heated, there is a time when the temperature does not 

change and the graph is horizontal. During this time, all the extra heat which is 

being added goes to overcome the force of attraction between the particles  

of the solid as it turns into a liquid.  

The heat involved in a change of solid-liquid phase depends on the total 

mass of the substance m as: 

Q = λm,       (9.7) 

where λ is the heat of fusion.  

Heat of fusion is the heat required to change 1.0 kg of a substance from  

the solid to the liquid state at melting temperature. The heat of fusion of water is 

340 kJ/kg.  

At any phase of the matter state the amount of heat Q required to change 

the temperature of the material is expressed by the equation (9.6): 

Qi = ci m·ΔT, 

where сi is a specific heat of the corresponding state of a matter. 

Vaporization is a phase transition from the liquid phase to vapour.  

If conditions allow the formation of vapour bubbles within a liquid,  

the vaporization process is called boiling. Boiling is a phase transition from  

the liquid phase to gas phase that occurs at or above the boiling temperature. 

Direct conversion from solid to vapour is called sublimation.  

At the boiling point bubbles of vapour are formed within the whole liquid 

volume. The boiling point of a liquid depends on the applied pressure; at sea 
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level water boils at 100 °C, at higher altitudes the temperature of the boiling 

point is lower.  

The heat involved in a liquid-vapor phase change at the boiling point is 

determined by the formula: 

Q = rm.       (9.8) 

where r is the heat of vaporization. It is the heat required to change 1.0 kg  

of a substance from the liquid state to the vapor phase at the boiling point.  

For water it is 2260 kJ/kg.  

 

9.6. THE HEAT BALANCE EQUATION 

 

A closed system is an isolated system if no energy in any form passes 

across its boundaries. Because the total energy of the system cannot change,  

the heat lost by one part of the system is equal to the heat gained by the other 

part and sum of all these heat transfers is equal to zero: 

Q1 + Q2 + … + Qn = 0.     (9.9) 

It is the heat balance equation for isolated system. 

For not isolated system the heat balance equation is  

Q1 + Q2 + … + Qn = Qext,    (9.10) 

where Qext is an external heat transferred to system. 

 

Example 9.2.  
How much heat input is needed to raise the temperature of an 10-kg vat 

made of iron filled with 20 kg of water from 10 °C to 90 °C? 

Solution. The specific heat of iron is c1 = 450 J/kg·K°. 

Thus: 1 1 1
j

10 kg 450 (90 10) K 360 kJ
kg K

Q c m T . 

The specific heat of water is cw = 4200 J/kg·K°.  

j
20 kg 4200 (90 10) K 6720 kJ

kg K
w w wQ c m T . 

1 360 kJ 6720 kJ 7080 kJwQ Q Q . 

 

Example 9.3.  

A 0,5-kg chunk of ice at –10°C is placed in 3 kg of water at 20 °C. At what 

temperature and in what phase will the final mixture be? Ignore any heat flow to 

the surroundings, including the container. 

Solution. First, check to see if the final state will be all ice, a mixture of ice 

and water at 0 °C, or all water.  

To bring the 3 kg of water at 20 °C down to 0 °C would require an energy 

release of: 

Qw = mwcw(20 °C – 0 °C) = 3 kg · 4200 J/kg · C° · 20 °C = 252 kJ. 
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On the other hand, to raise the ice temperature from –10 °C to 0 °C would 

require: 

Qice = micecice(0 °C – (–10 °C)) = 0.5 kg · 2100 J/kg · C° · 10 °C = 10.5 kJ. 

To change the ice to water at 0°C would require: 

 

For a total:   Qice + QF = Qw; 

10.5 kJ + 167 kJ = 177 kJ. 

This is not enough energy to cool the 3 kg of water from 20 °C to 0 °C, so 

that mixture will stay water, somewhere between 0 °C and 20 °C. 

To determine the final temperature T: 

micecice(0 °C – (–10 °C)) + λmice + micecw(T – 0 °C) = mwcw(20 °C – T) 

or   Qice + QF + T(micecice + mwcw) = mwcw · 20 °C. 

Solving for T we obtain: T = 5 °C.  

 

9.7. THERMAL EXPANSION. COEFFICIENT OF LINEAR  

AND VOLUME EXPANSION 

 

Most substances expand when heated and contract when cooled. However, 

the amount of expansion or contraction varies, depending on the material.  

The change in length Δl is directly proportional to the change in temperature ΔT 

and the original length of the object l0: 

Δl = αl0ΔT,      (9.11) 

where α is the proportionally constant, which is called the coefficient of linear 

expansion for the particular material and has units of K
–1

.  

We can write this proportionality in another form:  

l = l0(1 + αΔT).     (9.12), 

The change in volume of a material that undergoes a temperature change is 

given by a similar relation: 

ΔV = βV0ΔT,      (9.13), 

where ΔT is the change in temperature, V0 is the original volume and β is  

the coefficient of volume expansion. The units of β are K
–1

. 

Example 9.4.  
The steel bed of a suspension bridge is 200 m long at 20 °C. If the extremes 

of temperature to which it might be exposed are –30 °C to +40 °C, how much 

will it contract and expand? 

Solution. For steel α = 12 · 10
–6

 (K)
–1

. 

When the temperature increases to 40 °C: 

Δl1 = αl0ΔT = 12 · 10
–6

 (K)
–1

 · 200 m · (40 °C – 20 °C) = 4.6 · 10
–2

 m. 

When the temperature decreases to –30 °C: 

Δl2 = αl0ΔT = 12 · 10
–6

 (K)
–1

 · 200 m · (–30 °C – 20 °C) = –12 · 10
–2

 m. 

The total range the expansion is: Δl = 4.6 · 10
–2

 m + 12 · 10
–2

 m ≈ 17 cm. 
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TESTS  

1. The first law of thermodynamics is concerned with the conservation of: 

a) number of molecules;   b) energy; 

c) number of moles;    d) temperature. 

2. The addition of heat to a system appears as: 

a) only increase in internal energy; 

b) partly increase in internal energy and partly work done by the system; 

c) only work done by the system; 

d) all of these; 

e) none of these. 

3. In the equation for first law of thermodynamic ΔU = Q + W, the ΔU 

represents: 

a) change in internal energy;  b) change in external energy; 

c) both of them;    d) none of these. 

4. The internal energy of a ideal gas does not change during: 

a) isothermal process;   b) isobaric process; 

c) isochoric process;   d) none of these. 

PROBLEMS 

1. A steel railroad track has a length of 30 m when the temperature is 0 °C. 

What is its length when the temperature is 40 °C? The coefficient of linear 

expansion for steel is equal to 12·10
–6

 K
–1

. (Answer: 30,013 m) 

2. An aluminum sphere is 8.75 cm in diameter. What will be its change in 

volume if it is heated from 30 °C to 180 °C? The coefficient of volume 

expansion for aluminum is equal to 75·10
–6

 K
–1

. (Answer: 3,9 cm
3
) 

3. How much external work can be done by a gas when it expands from 

0.003 m
3
 to 0.04 m

3
 in volume under a constant pressure of 400 kPa? (Answer: 

14800 J) 

4. An engineer wishes to determine the specific heat of a new metal alloy. 

A 0,15-kg sample of the alloy is heated to 540 °C. It is then quickly placed in 

0.4 kg of water at 10 °C, which is contained in a 0.2-kg aluminum calorimeter 

cup. The final temperature of the system is 30.5 °C. Calculate the specific heat 

of the alloy. (Answer: 497 J/kg·°C ) 

5. To what temperature will 8700 J of heat raise 3 kg of water that is 

initially at 10 °C? (Answer: 10,7°C) 

6. When a 290-g piece of iron at 180 °C is placed in a 95-g aluminum 

calorimeter cup containing 250 g of glycerin at 10 °C, the final temperature  

is observed to be 38 °C. Estimate the specific heat of glycerin. (Answer:  

2,3·10
3
 J/kg·°C) 

7. How much heat must be absorbed by ice of mass m = 720 g at –10 °C to 

take it to the liquid state at 15 °C? (Answer: 300 kJ) 
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10. ELECTRICITY 
 

10.1. ELECTRIC CHARGE 

 

There are two types of observed electric charge, which are designated as 

positive and negative. The symbol for charge is ―q‖. The SI unit of charge is 

coulomb (C): 1 C = 1 A·1 sec.  

The smallest charge found in nature is the charge of proton, it is given  

the symbol ―e ― and is often referred to as the elementary charge: e = 1,6·10
–19

 C. 

The charge on the electron is ―–e‖. Electric charge is thus said to be quantized 

(existing only in discrete amounts: 1e, 2e, 3e, etc.). Any net charge q (negative 

or positive) can be determined as: q = n
 
· e, and n = 1, 2, 3… 

 

10.2. LAW OF CONSERVATION OF ELECTRIC CHARGE 

 

The law of conservation of electric charge makes sense for the isolated 

system that does not interact with or receive charge from other systems.  

In an isolated system, the total electric charge of the system is equal to  

the algebraic sum of all electric charges q1, q2, … qi  located in the system: 

q1, q2, … qi = const. 
The law states that the total electric charge in an isolated system always 

remains constant, regardless of other possible changes within the system. 

 

10.3. COULOMB’S LAW 

 

When the electric charges have likely signs there is a repulsive force 

between them and, opposite, when the charges are unlikely, there is attractive 

force between them. The force between two charged small spheres was studied 

by Coulomb. Coulomb‘s Law states that the electrostatic force F in vacuum 

between two point charges q1 and q2 is directly proportional to the product  

of the magnitude of the charges and inversely proportional to the square  

of the distance r between them: 

,1 2
2

q q
F k

r
      (10.1) 

where 

2
9

2
9 10

N m
k

C
is the electrostatic constant. 

The direction of forces is always along the line joining the two point 

charges, and it is attractive if the charges are opposite and repulsive  

if the charges are like. 

This formula (10.1) only applies to point charges (spatial size negligible 

compared to other distances) or spherically charges when they are at rest. 
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The electrostatic constant k in equation (10.1) is often written in terms  

of another constant, ε0, called the permittivity of free space (i. e. vacuum).  

It is related to k by: k = 1/4πε0. So in air or vacuum Coulomb‘s law can then be 

written as      1 2
2

0

1
,

4πε

q q
F

r
 

where     
2

12
0 2

1
ε 8 85 10

4π

C
. .

k N m
         (10.2) 

If the charges are situated in a medium of permittivity relative ε, then  

the magnitude of the interaction force Fm between them will be less: 

1 2
2

0

1

4πε ε
m

q q
F .

r
     (10.3) 

Dividing equation (10.2) by (10.3) one can obtain: 

ε 1
m

F

F
   or   

ε
m

F
F .     (10.4) 

The value εa = ε·ε0 is the absolute permittivity of the medium. 

Coulomb‘s law describes the electrostatics force between two charges at rest. 
 

Example 10.1. Electric force on electron by proton.  

Determine the magnitude of the electric force on the electron of a hydrogen 

atom exerted by the single proton (q2 = +e) that is its nucleus. Assume  

the electron ―orbits‖ the proton at its average distance of r = 0.53·10
–10

 m. 

Solution. We use Coulomb‘s law 1 2
2

q q
F k

r
 with r = 0.53·10

–10
 m and  

q1 = q2 = 1.6 · 10
–19

 C (ignoring the signs of the charges): 
9 2 2 19 19

8

10 2

(9 0 10 N m /C )(1 6 10 C)(1 6 10 C)
8 2 10 N

(0 53 10 m)

. . .
F . .

.
 

The direction of the force on the electron is toward the proton, since  

the charges have opposite signs and the force is attractive. 
 

Example 10.2. Which charge exerts the greater force?  

Two positive point charges, q1 = 50 μC and q2 = 1 μC, are separated by  

a distance l. Which is larger in magnitude, the force that q1 exerts on q2, or  

the force that q2 exerts on q1? 

 

Fig. 10.1. Example 10.2 

Solution. From Coulomb‘s law, the force on q1 exerted by q2 is 

1 2
12 2

q q
F k .

l
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The force on q2 exerted by q1 is 2 1
21 2

,
q q

F k
l

 which is the same magnitude. 

The equation is symmetric with respect to the two charges, so F21 = F12. 
 

NOTE. Newton’s third law also tells us that these two forces must have 

equal magnitude. 

 

10.4. THE ELECTRIC FIELD. THE ELECTRIC FIELD STRENGTH 

 

Electric field is said to exist in the region of space around a charged object: 

the source of electric field is a charge. The presence of an electric field may be 

detected with another charge. When a positive test charge q0 is placed near  

a charge q, which is the source of electric field, an electrostatic force F will act 

on the test charge (fig. 10.2) and .0F ~ q  

 

Fig. 10.2. A test charge q0 is placed near a charge q, which is the source of electric field,  

an electrostatic force F acts on the test charge 

 

But the ratio     
0

F
E

q
            (10.5) 

does not depend on the test charge q0 and is called the electric field strength or 

electric field intensity (or electric field). 

The electric field strength E  is a vector whose direction is the direction 

of the force acting on a positive test charge q0 placed at the point, and whose 

magnitude is the force per unit charge.  

Thus E has SI units of Newtons per Coulomb (N/C). If q0 is positive, F and 

E will point in the same direction. If q0 is negative, F and E point in opposite 

direction (fig. 10.3). 

    

Fig. 10.3. If q0 is positive, F and E will point in the same direction. If q0 is negative, F and E 

point in opposite direction 
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The electric field strength E at a distance r from single point charge q can 

be written as:  

0
2 2

0 0  ε ε

q qF q
Е k k .

q q r r
     (10.6) 

If the electric field strength E is due to more than one charge (q1, q2, q3, … 

qn), the individual electric field strengths (call them E1, E2, … En) due to each 

charge are added as vectors to get the total electric field strength E at any point 

of field (fig. 10.4). It is the principle of superposition: 

1 2 3 nE E E E ... E .     (10.7) 

 

 

Fig. 10.4. At any point P, the total electric field strength due to the charges q1 and q2 equals 

the  vector  sum  of  electric  field  strengths  of  the  charges:  E  =  E1 + E2. The  direction  of 

the individual electric field strengths is the direction of the force on a positive test charge 

 

Example 10.3. E at a point between two charges.  

Two point charges are separated by a distance of 10.0 cm. One has a charge 

of –25 μC and the other +50 μC. (a) Determine the direction and magnitude  

of the electric field at a point P between the two charges that is 2.0 cm from  

the negative charge (fig. 10.5, a). (b) If an electron (mass = 9.11·10
–31

 kg) is 

placed at rest at P and then released, what will be its initial acceleration 

(direction and magnitude)? 

 

Fig. 10.5. Example 10.3. In (b) we don‘t know the relative lengths of E1 and E2 until we do 

the calculation 
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Solution. The electric field at P will be the vector sum of the fields created 

separately by q1 and q2. The field due to the negative charge q1 points toward q1, 

and the field due to the positive charge q2 points away from q2. Thus both fields 

point to the left as shown in Figure b and we can add the magnitudes of the two 

fields together algebraically, ignoring the signs of the charges. In fig. 10.5, b we 

use Newton‘s second law (F = ma) to determine the acceleration, where F = qE. 

a) Each field is due to a point charge as given by E = kq/r
2
. The total field is 

2 2 2 2
1 2 1 2

6 6
9 2 21 2 1 2

2 2 2 2

8

25 10 C 50 10 C
( ) (9 0 10 N m /C )( )

(2 0 10 m) (8 0 10 m)

6 3 10 N/C

q q q q
E k k k .

r r r r . .

. .
 

b) The electric field points to the left, so the electron will feel a force to  

the right since it is negatively charged. Therefore the acceleration a = F/m 

(Newton‘s second law) will be to the right. The force on a charge q in an electric 

field E is F = qE. Hence the magnitude of the acceleration is 
19 8

20 2

31

(1 60 10 C)(6 3 10 N/C)
1 1 10 m/s

9 11 10 kg

F qE . .
a . .

m m .
 

NOTE. By carefully considering the directions of each field (E1 and E2) 

before doing any calculations, we made sure our calculation could be done 

simply and correctly. 

Example 10.4. E above two point charges.  

Calculate the total electric field (a) at point A and (b) at point B in fig. 10.6 

due to both charges, q1 and q2. 

Fig. 10.6. Calculation of the electric field at points A and B for Example 10.4 
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Solution. The calculation is much like that of Example 9.5, except now we 

are dealing with electric fields instead of force. The electric field at point A  

is the vector sum of the fields EA1 due to q1, and EA2 due to q2. We find  

the magnitude of the field produced by each point charge, then we add their 

components to find the total field at point A. We do the same for point B. 

a) The magnitude of the electric field produced at point A by each  

of the charges q1 and q2 is given by E = kq/r
2
, so 

9 2 2 6
6

1 2 2

(9 0 10 N m /C )(50 10 C)
1 25 10 N/C,

(0 60 m)
A

q .
E k .

r .
 

9 2 2 6
6

2 2 2

(9 0 10 N m /C )(50 10 C)
5 0 10 N/C

(0 30 m)
A

q .
E k . .

r .
 

from A away from q2, as shown; so the total electric field at A, EA has 

components        0 6
1cos30 1 1 10 N/C,Ax AE E .  

0 6
2sin30 4 4 10 N/CAy AE E . . 

Thus the magnitude of EA is 

2 2 6 6(1 1) (4 4) 10 N/C 4 5 10 N/C,AE . . .  

and its direction is ϕ given by tan ϕ = EAy /EAx = 4.4/1.1 = 4.0, so ϕ = 76°. 

b) Because B is equidistant from the two equal charges (40 cm by  

the Pythagorean theorem), the magnitudes of EB1 and EB2 are the same; that is, 
9 2 2 6

6
1 2 2 2

(9 0 10 N m /C )(50 10 C)
2 8 10 N/C.

(0 40 m)
B B

q .
E E k .

r .
 

Also, because of the symmetry, the y components are equal and opposite, 

and so cancel out. Hence the total field EB is horizontal and equals  

EB1cosθ + EB2cosθ = 2EB1cosθ. 

From the diagram, cosθ = 26 cm/40 cm = 0.65. Then 
6 6

12 cosθ 2(2 8 10 N/C)(0 65) 3 6 10 N/C,B BE E . . .  

and the direction of EB is along the +x direction. 

NOTE. We could have done part (b) in the same way we did part (a). But 

symmetry allowed us to solve the problem with less effort. 

Since the electric field strength is a vector, it is sometimes referred to as 

vector field. Lines of electric field strength are a convenient way of visualizing 

the electric field. Lines of electric field strength indicate the direction  

of the force due to the given field on a positive test charge. For a positive point 

charge, the electric field strength lines are directed radially outward from  

the charge (fig. 10.7). For a negative point charge they point radially inward 

toward the charge because that is the direction the force would be on a positive 
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test charge in each case. Since the electric field strength is the electric force per 

unit charge, the electric field strength lines are sometimes called lines of force. 

 

Fig. 10.7. The electric field strength lines near a single positive point charge and negative one. 

Electric  field  lines  extend  away  from  positive  charge  (where  they  originate) and  toward 

negative charge (where they terminate) 

 

The number of lines starting on a positive charge, or ending on a negative 

charge, is proportional to the magnitude of the charge. Notice that near  

the charge, where the electric field strength is greatest, the lines are closer 

together. This is a general property of electric field strength lines: the closer  

the lines are together, the stronger the electric field strength in that region. 

The uniform electric field is electric field where the vector E is constant 

everywhere in magnitude and direction. Thus electric fields are drown with 

parallel, equally spaced electric field strength lines.  

Example 10.5. Electron accelerated by electric field.  

An electron (mass m = 9.1·10
–31

 kg) is accelerated in the uniform field E  

(E = 2.0·10
4
 N/C) between two parallel charged plates. The separation of  

the plates is 1.5 cm. The electron is accelerated from rest near the negative plate 

and passes through a tiny hole in the positive plate. (a) With what speed does it 

leave the hole? (b) Show that the gravitational force can be ignored. Assume  

the hole is so small that it does not affect the uniform field between the plates. 

Solution. We can obtain the electron‘s velocity using the kinematic 

equations, after first finding its acceleration from Newton‘s second law, F = ma. 

The magnitude of the force on the electron is F = qE and is directed to the right. 

a) The magnitude of the electron‘s acceleration is 
31 2 30(9 1 10 kg)(9 8 m/s ) 8 9 10 Nmg . . . . 

Between the plates E is uniform so the electron undergoes uniformly 

accelerated motion with acceleration 
19 4

15 2

31

(1 6 10 C)(2 0 10 N/C)
3 5 10 m/s

9 1 10 kg

. .
a . .

.
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It travels a distance x = 1.5·10
–2

 m before reaching the hole, and since its 

initial speed was zero, we can use the kinematic equation, υ
2
 = υ0

2
 + 2ax, with  

υ0 = 0:  15 2 2 72 2(3 5 10 m/s )(1 5 10 m) 1 0 10 m/sax . . . . 

There is no electric field outside the plates, so after passing through  

the hole, the electron moves with this speed, which is now constant. 

b) The magnitude of the electric force on the electron is 
19 4 15(1 6 10 C)(2 0 10 N/C) 3 2 10 NqE . . . .  

The gravitational force is 31 2 30(9 1 10  kg)(9 8 m/s ) 8 9 10 Nmg . . .  

which is 10
14

 times smaller! Note that the electric field due to the electron does 

not enter the problem (since a particle cannot exert a force on itself). 

PROBLEMS 

1. Calculate the magnitude of the force between two 2.50 C point charges 

3.0 m apart in air. (Answer: 6.25·10
+9

 N) 

2. The force between two charges in free space is 5 N. What will the force 

between them be if they are in a medium of relative permittivity 2? (Answer:  

2.5 N) 

3. Calculate the magnitude of the electric force between an iron nucleus  

(q = +26e) and its innermost electron if the distance between them is 1.5·10
–12

 m. 

(Answer: 2.66·10
–3

 N) 

4. Particles of charge +88, –55, and +70 μC are placed in a line fig. 10.8. 

The center one is 0.75 m from each of the others. What are the net force on each 

charge due to the other two? (Answer: 52.8 N, 15.84 N, 36.9 N) 

 

Fig. 10.8 

5. Find the magnitude and direction of the electric field strength at  

points A and B in fig. 10.9 due to the two positive charges (q = 7 μC). (Answer: 

4.5·10
+6

 N/C) 

 

Fig. 10.9 

6. How many electrons make up a charge of 100 μC? (Answer: 6.25·10
+14

) 

7. Four equal point charges of +3 μC are placed at the four corners of  

a square that is 40 cm on a side. Find the force on an one of the charges? 

(Answer: 0.97 N) 
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8. What must the charge (sign and magnitude) of a particle of mass 5g be 

for it to remain stationary when placed in a downward-directed electric field of 

magnitude 800 N/C? (Answer: –0.0000613 C) 

9. Two charges of +1μC and –1μC are placed at the corners of the base of 

an equilateral triangle. The length of a side of the triangle is 0.7 m. Find  

the electric field strength at the apex of the triangle. (Answer: 18.4 kN/C) 

TESTS 

1. The conservation of electric charge implies that: 

a) charge can‘t be created; 

b) charge can‘t be destroyed; 

c) the number of charged particles in the universe is constant; 

d) simultaneous creation of equal and opposite charges is permissible. 

2. Two charges are placed at a certain distance apart. If a dielectric slab is 

placed between them, what happens to the force between the charges? 

a) decreases;  

b) increases; 

c) remains unchanged;  

d) may increase or decrease depending on the nature of the dielectric.  

3. Coulomb‘s law is given by F = kq1q2r
n
, where n is: 

a) 1/2; b) –2; c) 2;  d) –
1
/2. 

 

10.5. ELECTRIC POTENTIAL AND POTENTIAL DIFFERENCE 
 

Any charged body has an electric potential energy Wpot in electric field, 

which is directly proportional to the magnitude of the charge q0.: Wpot ~ q0. But 

the ratio Wpot/q0 doesn‘t depend on the charge magnitude placed in the electric 

field. The ratio Wpot/q0 is the energy characteristic of the electric field and is 

called electric potential υ:  
pot

0

υ
W

.
q

           (10.8) 

Electric potential υ is the potential energy per unit charge at a point in an 

electric field. Electric potential υ is a scalar characteristic of an electric field. 

Unit of electric potential is Volt (V) (1 Volt = 1 Joule per Coulomb (J/C)).  

The electric potential υ at a distance r from a single point charge is  

0

υ
ε 4πεε

q q
k .

r r
     (10.9) 

The potential from a collection of n charges is the algebraic sum  

of the potential due to each charge separately (this is much easier to calculate 

than the net electric field strength, which would be a vector sum). Potential due 

to a group of point charges q1, q2, q3,… qn can be found as:  

υ = υ1 + υ2 + υ3 + … + υn.    (10.10)  
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Example 10.6. Potential due to the two charges.  

Calculate the electric potential (a) 

at point A in fig. 10.10 due to the two 

charges shown, and (b) at point B.  

Solution. The total potential at 

point A (or at point B) is the sum of  

the potentials at that point due to each of 

the two charges q1 and q2. The potential 

due to each single charge is given by 

φ
q

k .
r

 

We do not have to worry about directions because electric potential is  

a scalar quantity. But we do have to keep track of the signs of charges. 

a) We add the potentials at point A due to each charge q1 and q2: 

2 1
2 1

2 1

φ φ φA A A
A A

q q
k k .

r r
 

where r1A = 60 cm and r2A = 30 cm. Then 
9 2 2 5 9 2 5

6 6 5

(9 0 10 N m /C )(5 0 10 C) (9 0 10 N m /C)( 5 0 10 C)
φ

0 30 m 0 60 m

1 50 10 0 75 10 7 5 10

A
. . . .

. .

. V . V . V .

 

b) At point B, r1B = r2B = 0.40 m, so  
9 2 2 5

2 1

9 2 5

(9 0 10 N m /C )(5 0 10 C)
φ φ φ

0 40 m

(9 0 10 N m /C)( 5 0 10 C)
0

0 40 m

B B B
. .

.

. .
V .

.

 

NOTE. The two terms in the sum in (b) cancel for any point equidistant 

from q1 and q2 (r1B = r2B). Thus the potential will be zero everywhere on  

the plane equidistant between the two opposite charges. This plane where φ is 

constant is called an equipotential surface. 

If all the points of a surface are at the same electric potential, then  

the surface is called an equipotential surface. In case of an isolated point charge, 

all points equidistant from the charge are at same potential. Thus, equipotential 

surfaces in this case will be a series of concentric spheres with the point charge 

as their centre (fig. 10.11). The potential will however be different for different 

spheres. 

Work A done by electric field in moving a unit positive charge is equal to 

potential energy difference: 

А = Wpot1 – Wpot2 = q0 (φ1 – φ2) = q0U.   (10.11)  

Fig. 10.10. Example 10.6 
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The potential difference U between point 1 and point 2 is: 

1 2
0

φ φ
A

U .
q

     (10.12) 

 

Fig. 10.11. The equipotential lines and electric field lines 

 

The potential difference U between two points in an electric field is defined 

as the amount of work A done in moving a unit positive charge q0 from one 

point to the other. The unit of potential difference U is Volt (1 V = 1 J/1 C). The 

electric potential υ of an electric field at infinity from charge is equal to zero. 

Suppose a positive test charge q0 is moved from point 1 to point 2  

in a uniform electric field between the two charged plates (fig. 10.12).  

 

Fig. 10.12. The charge q0 is moved from point 1 to point 2 in a uniform electric field between 

the two charged plates 

 

The work A done by an electric force F or ―field‖ in moving a positive test 

charge +q0 along the electric field line at a distance d = x2 – x1 is:  

0A F d q E d.    (10.13) 
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Thus, in uniform electric field the relation between potential difference U 

and electric field strength E is the following: 

U = E·d,      (10.14) 

where d is the distance, parallel to the field lines, between two points.  

The equation (10.14) shows that the unit for electric field strength E is volt 

per meter. Thus, the following relation among units is valid: 1 N/C = 1 V/m. 

The electric force is found to be a conservative force. Therefore, the work 

A done by the electrostatic force does not depend upon the path chosen to move 

charge from point 1 to point 2, but it is determined by the potential difference U 

between point 1 and point 2. 

 

Example 10.7. Work required to bring two positive charges close 

together.  

What minimum work must be done by an external force to bring a charge 

q0 = 3.00 μC from a great distance away (take r = ∞) to a point 0.500 m from  

a charge q = 20.0 μC? 

Solution. To find the work we can not simply multiply the force times 

distance because the force is not constant. Instead we can set the change in 

potential energy equal to the work required of an external force, and equation  

А = –(Wpot1 – Wpot2) = –q0(φb – φa). We get the potentials υb and υa using 

φ
q

k .
r

 

The work done by the electric field is equal to the change in potential 

energy:   0 b a 0(φ φ ) ( ),
b a

kq kq
A q q

r r
 

where rb = 0.500 m and ra = ∞. The right-hand term within the parentheses is 

zero (1/∞ = 0) so 
9 2 2 5

6 (8 99 10 N m /C )(2 00 10 C)
(3 00 10 C) 1 08 J

0 500 m

. .
A . . .

.
 

NOTE. The electric field does negative work in this case. In order to bring 

the charge to this point, the external force would have to do work A= +1.08 J, 

assuming no acceleration of the charge. 

 

Example 10.8. Electron in TV tube.  

Suppose an electron in a cathode ray tube is accelerated from rest through  

a potential difference υb – υa = υba = +5000 V (fig. 10.13). (a) What is  

the change in electric potential energy of the electron? (b) What is the speed of 

the electron (m = 9.1·10
–31

 kg) as a result of this acceleration? (c) Repeat for  

a proton (m = 1.67·10
–27

 kg) that accelerates through a potential difference  

φba = –5000 V. 
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Fig. 10.13. Example 10.8. Electron accelerated in TV tube 

 

Solution. The electron, accelerated toward the positive plate, will decrease 

in potential energy by an amount ΔW = qφba. The loss in potential energy will 

equal its gain in kinetic energy (energy conservation). 

a) The charge on an electron is q = –e = –1.6·10
–19

 C. Therefore its change 

in potential energy is 

ΔW = qφba = (–1.6·10
–19

 C)
.
(+5000 V) = –8.0·10

–16
 J. 

The minus sign indicates that the potential energy decreases. The potential 

difference υba has a positive sign since the final potential υb is higher than  

the initial potential υa. Negative electrons are attracted toward a positive 

electrode and repelled away from a negative electrode. 

b) The potential energy lost by the electron becomes kinetic energy K. 

From conservation of energy, ΔK + ΔW = 0, so ΔK = –ΔW: 

21
0 (φ φ ) φ ,

2
b a bam q q  

where the initial kinetic energy is zero since we are given that the electron 

started from rest. We solve for υ: 

19
7

31

2 φ 2( 1 6 10 C)(5000 V)
4 2 10 m/s

9 1 10 kg

baq .
. .

m .
 

c) The proton has the same magnitude of charge as electron, through of 

opposite sign. Hence for the same magnitude of υba we expect the same change 

in W, but a lesser speed since the proton‘s mass is greater. Thus: 

ΔW = qφba = (+1.6·10
–19

 C)(–5000 V) = –8.0·10
–16

 J 

and   
19

5

27

2 φ 2(1 6 10 C)( 5000 V)
9 8 10 m/s

1 67 10 kg

baq .
. .

m .
 

 

NOTE. The electric potential energy does not depend on the mass, only on 

the charge and voltage. The speed does depend on m. 
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Example 10.9. Uniform electric field obtained from voltage.  

Two parallel plates are charged to produce a potential difference of 50 V.  

If the separation between the plates is 0.050 m, calculate the magnitude of  

the electric field in the space between the plates. 

 

Fig. 10.14. Example 10.9 

 

Solution. We apply equation U = E·d to obtain the magnitude of E, assumed 

uniform. The electric field magnitude is E = U/d = (50 V/0.050 m) = 1000 V/m. 

PROBLEMS 

1. A 5.0g object carries a net charge of 3.8 μC. It acquires a speed υ when 

accelerated from rest through a potential difference U. A 2.0 g object acquires 

twice the speed under the same circumstances. What is its charge? (Answer: 

6.08 μC) 

2. A particle with a charge of +8 nC is in a uniform electric field E directed 

to the left. It is released from rest and moves to the left. After it has moved 3 cm, 

its kinetic energy is found to be 5·10
–6

 J. (a) What work was done by the electric 

force? (b) What is the potential of the starting point with respect to the endpoint? 

(c) What is the magnitude of E? (Answer: a) 5·10
–6

 J; b) 625 V; c) 20833 N/C) 

3. The potential energy of an electron (q = –1.6·10
–19

 C) increases by 

3.3·10
–15

 J when it moves 3.5cm parallel to a uniform electric field. What  

is the magnitude of the electric field through which the electron passes? 

(Answer: 5.9·10
5
 N/C) 

TESTS 

1. The work needed to move a –7.0 μC charge from ground to a point 

whose potential is +6.00 V higher is: 

a) –4.2·10
–5

 J;  b) +4.2·10
–5

 J;  c) 10
–4

 J;  d) –1.2·10
–5

 J. 
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2. State which of the following is correct: 

a) Joule = Coulomb · Volt;  b) Joule = Coulomb / Volt; 

c) Joule = Volt / Ampere;  d) Joule = Volt · Ampere. 

3. How much kinetic energy will an electron gain (in joules) if it falls 

through a potential difference of 21 000 V in a TV picture tube. 

a) 3
.
10

+15
 J;  b) 3.4

.
10

–15
 J;  c) 2

.
10

–13
 J; d) 3.4 J. 

4. An electric field of 640 V/m is desired between two parallel plates  

11.0 mm apart. A voltage which should be applied is: 

a) 700 V;   b) 0.7 V;   c) 7.04 V;  d) 10 V. 

5. The potential difference which is needed to give a helium nucleus  

(q = 3.2·10
–19

 C) 48 keV of kinetic energy is: 

a) 2.4·10
4
 V;  b) 4.8·10

3
 V;   c) 24 kV;   d) 10

3
 V. 

6. What is the potential energy of two equal positive charges of 1 μC each 

held 1 m apart in air? 

a) 9·10
–3

 J;  b) 9·10
–3

 C/V;  c) 1 J;  d) zero. 

7. How strong is the electric field between two parallel plates 5.0 mm apart 

if the potential difference between them is 110 V? 

a) 220·10
2
 V/m; b) 110 V/m;  c) 22·10

–3
 V/m; d) 22·10

3
 V/m. 

8. An electron of mass m and charge e travels from rest through a potential 

difference of U volts. The final velocity of the electron is: 

a) 
2

;
eU

m
  b) 

2
;

mU

e
  c) 

2
;

eU

m
 d) 

2mU
.

e
 

 

10.6. CAPACITORS. CAPACITANCE.  

ELECTRIC ENERGY STORAGE 

 

A capacitor is a device used to store electric charge, and usually consists 

of two conducting plates placed near each other but not touching. The parallel 

plate capacitor shown in fig. 10.15 has two identical conducting plates with  

a surface area S, separated by a distance d (with dielectric material between  

the plates, for example air). The capacitor is symbolized by a set of parallel lines. 

If a voltage is applied to a capacitor by connecting it to a battery as in  

fig. 10.15, the capacitor becomes charged quickly: one plate acquires a negative 

charge, the other an equal amount of positive charge. Each battery terminal and 

the plate of the capacitor connected to it are at the same potential: hence the full 

battery voltage appears across the capacitor. It is found that the amount of 

charge q acquired by each plate is proportional to the magnitude of the potential 

difference U between them: 

Q = CU.      (10.15) 
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Fig. 10.15. Parallel-plate capacitor connected to a battery (a). The same electric circuit is 

shown using symbols (b) 

 

The constant of proportionality, C, in this relation is called the capacitance 

of the capacitor. Capacitance C is equal to the amount of charge q stored per 

volt. The unit of capacitance is coulombs per volt and this unit is called a farad 

(1 F = 1 C/1 V). A 1-farad capacitor would be able to store 1 coulomb (a very 

large amount of charge) with the application of only 1 volt. One farad is, thus,  

a very large capacitance. Most capacitors have capacitance in the range of 1 pF 

(picofarad = 10
–12

 F) to 1μF (microfarad = 10
–6

 F). The capacitance С does not 

depend on q or U. It depends only on the size, shape, and relative position  

of the two capacitor plates, and also on the material that separates them.  

The capacitance of a parallel plate capacitor is given by formula:  

0ε ε
S

C .
d

      (10.16) 

where S is the area of one capacitor plate in square meters, and d is the distance 

between the plates in meters; the constant ε0 is the permittivity of free space and 

ε is a dielectric constant of a medium between the plates. 

 

Example 10.10. Capacitor calculations.  
(a) Calculate the capacitance of a parallel-plate capacitor whose plates are 

20 cm × 3.0 cm and are separated by a 1.0 mm air gap. (b) What is the charge  

on each plate if a 12 V battery is connected across the two plates? (c) What is 

the electric field between the plates? (d) Estimate the area of the plates needed to 

achieve a capacitance of 1 F, given the same air gap d. 

Solution. The capacitance is found by using equation C = ε0S/d. The charge 

on each plate is obtained from the definition of capacitance q = CU. The electric 

field is uniform, so we can use equation for the magnitude E = U/d. In (d) we 

use equation C = ε0 S/d again. 
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a) The area S = (20·10
–2

 m)·(3.0·10
–2

 m) = 6.0·10
–3

 m
2
. The capacitance C 

is then   

3 2
12 2 2

0 3

6 0 10 m )
ε (8 85 10 C /N m 53

1 0 10 m

S .
C . pF.

d .
 

b) The charge on each plate is q = CU = (53·10
–12

 F)·(12 V) = 6.4·10
–10

 C. 

c) For a uniform electric field, the magnitude of E is 

4

3

12 V
1 2 10 V/m

1 0 10 m

U
E . .

d .
 

d) We solve for S in equation C = ε0 S/d and substitute C = 1.0 F and  

d = 1.0 mm to find that we need plates with an area 
3

8 2

12 2 2
0

(1 )(1 0 10 m)
10 m

ε 8 85 10 C /N m

Cd F .
S .

.
 

NOTE. This is the area of a square of 10
4 
m = 10 km on a side! 

 

Example 10.11.Capacitance of an axon. 
Do an order- of magnitude estimate for the capacitance of an axon 10 cm 

long of radius 10 μm. The thickness of the membrane is about 10
–8

 m, and  

the dielectric constant is about 3.  

Solution. We model the membrane of an axon as a cylindrically shaped 

parallel-plate capacitor, with opposite charges on each side. The separation  

of the ―plates‖ is the thickness of the membrane, d ~ 10
–8

 m. We first calculate 

the area of the cylinder 

S = 2πrl = 6.28 · 10
–5

 m · (0.1 m) ≈ 6 · 10
–6

 m
2
. 

and then can use equation C = ε0 S/d to find the capacitance. The area S is  

the area of a cylinder of radius r and length l: 

The capacitance C is then  
6 2

12 2 2 8
0 8

6 0 10 m
εε 3 8 85 10 C /N m 10

10 m

S .
C . F.

d
 

 

10.7. THE EQUIVALENT CAPACITANCE 

 

Capacitors are found in many electric 

circuits. Capacitors can be connected together in 

various ways. Two common ways are in series, or 

in parallel. A circuit containing three capacitors 

connected in parallel is shown in fig. 10.16. 

When capacitors are connected in parallel, 

the equivalent capacitance is the sum of  

the individual capacitances:  

Ceq = C1 + C2 + C3.   (10.17) 
Fig. 10.16. Capacitors in parallel 
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The net effect of connecting capacitors in parallel is thus to increase the 

capacitance. This makes sense because we are essentially increasing the area of 

the plates where charge can accumulate. 

When capacitors are connected in series (fig. 10.17), the reciprocal of the 

equivalent capacitance equals the sum of the reciprocals of the individual 

capacitances:  

1 2 3

1 1 1 1

eq

.
C C C C

     (10.18) 

 

 

Fig. 10.17. Capacitors in series 

 

10.8. ENERGY STORED IN A CAPACITOR 

 

A charged capacitor stores electric energy. The energy stored in a capacitor 

is equal to the work done to charge the capacitor. Energy stored in a capacitor is 

electrical potential energy Wpot, and it is thus related to the charge q and voltage 

U on the capacitor. From the definition of capacitance C, the energy stored  

in a capacitor can be written in different forms: 
2

2
pot

1 1

2 2 2

q
W qU CU .

C
    (10.19) 

If we divide the stored energy by the volume of the capacitor, we find  

the electric energy per unit volume of capacitor of C; this result is valid for any 

electric field: 

2
pot 0

1
electric energy density εε

2
w E .    (10.20) 

 

Example 10.12. Equivalent capacitance.  

Determine the capacitance of a single capacitor that will have the same 

effect as the combination shown in fig. 10.18. Take C1 = C2 = C3 = C. 

Solution. First we find the equivalent capacitance of C2 and C3 in parallel, 

and then consider that capacitance in series with C1. Capacitors C2 and C3 are 

connected in parallel, so they are equivalent to a single capacitor having 

capacitance: C23 = C2 + C3 = 2C. 
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Fig. 10.18. Example 10.12 

 

This C23 is in series with C1, fig. 10.18, so the equivalent capacitance of  

the entire circuit, Ceq, is given by 
eq 1 23

1 1 1 1 1 3

2 2
.

C C C C C C
 

Thus Ceq = 3/2 C. 

NOTE. Hence the equivalent capacitance of the entire combination is  

Ceq = 3/2 C. 
 

Example 10.13. Energy stored in a capacitor.  

A camera flash unit stores energy in a 150 μF capacitor at 200 V. (a) How 

much electric energy can be stored? (b) What is the power output if nearly all 

this energy is released in 1.0 ms? 

Solution. We use equation for energy in the form 2
pot

1

2
W CU  because we 

are given C and U. 

The energy stored is 2 6 2
pot

1 1
(150 10 )(200 ) 3 0 J.

2 2
W CU F V .  

If this energy is released in 1/1000 of a second, the power output is 

P = W/t = (3.0 J) / (1.0·10
–3

 s) = 3000 W. 

PROBLEMS 

1. The membrane that surrounds a certain type of living cell has a surface 

area of and 5.0·10
–9

 m
2
 and a thickness of 1.0·10

–8
 m. Assume that  

the membrane behaves like a parallel plate capacitor and has a dielectric 

constant of 5.0. (a) The potential on the outer surface of the membrane is  

+60.0 mV greater than that on the inside surface. How much charge resides on 

the outer surface? (b) If the charge in part (a) is due to K+ ions (charge +e), how 

many such ions are present on the outer surface? (Answer: a) 1.3·10
–12

 C;  

b) 8.1·10
6
) 

2. A heart defibrillator delivers 4.00·10
2
 J of energy by discharging  

a capacitor initially at 1.00·10
4
 V. What is its capacitance? (Answer: 8.00 μF) 

3. Find the total capacitance for three capacitors connected in series, given 

their individual capacitances are 1.000, 5.000, and 8.000 μF. (Answer: 0.755 μF) 
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TESTS 

1. SI unit of capacitance is: 

a) Coulomb/Volt = Farad (F);  b) F·V; c) F/A; d) F·N. 

2. The dielectric with the permittivity ε filled the space between the plates 

of capacitor. Capacitance C of the capacitor is determined by: 

a) 0ε ;
S

d
  b) 0ε ε ;

S

d
  c) ε ;

d

S
  d) ε

S
.

d
 

3. The capacitance of a parallel plane capacitor depends on: 

a) the type of metal used; 

b) the thickness of the plates; 

c) the potential applied across the plates; 

d) the separation between the plates. 

4. The two plates of a capacitor hold +2500 μC and –2500 μC of charge, 

respectively, when the potential difference is 950 V. What is the capacitance? 

a) 2.6·10
–6

 F;  b) 2.6·10
6
 F;  c) 3.8·10

–5
 F;  d) 2.6 μF. 

5. Two parallel plates are separated by 2 cm. If the potential difference 

between them is 20 V, then the electric field between them is: 

a) 100 N/C;  b) 1000 N/C;  c) 2000 N/C;  d) zero.  

6. A 12000 pF capacitor holds 28.0·10
–8

 C of charge. What is the voltage 

across the capacitor? 

a) 23.3 V;  b) 2.33 V; c) 23 kV;  d) none of the above. 

7. A parallel plate capacitor is charged from a battery. After charging,  

the battery is disconnected. Which of the following increases, when the plates  

of the capacitor are moved apart? 

a) charge;  b) capacitance;  c) potential; d) none of these. 

8. What is the equivalent capacitance of  

the combination shown in fig. 10.19? 

a) C; b) 2C; c) 4C; d) C/4. 

 

 

 

9. In fig. 10.20, what is the effective 

capacitance between points P and Q? 

a) 6/11 μF;  b) 2/11 μF; 

c) 24/17 μF;  d) none of these. 

 

 

 

Fig. 10.20. Test 9 

Fig. 10.19. Test 8 



139 

10.9. AN ELECTRIC CURRENT 

 

In the previous Chapters we have been studying static electricity: electric 

charges at rest. In this Chapter we begin our study of charges in motion.  

It is known the charges can move in electric field.  

A directed flow of charged particles is called an electric current. There are 

two conditions for an electric current existence: 

1. The presence of free charges. 

2. The presence of an electric field.  

The materials are divided into two categories: conductors and insulators 

(dielectrics). Bodies which allow the charges to pass through are called 

conductors, e. g. metals, human body, Earth etc. Bodies which do not allow  

the charges to pass through are called insulators, e. g. glass, mica, ebonite, 

plastic etc. Nearly all natural materials fall into one or the other of these two 

very distinct categories. However, a few materials (notably silicon and 

germanium) fall into an intermediate category known as semiconductors. 

From the atomic point of view, the electrons in an insulating material are 

bound very tightly to the nuclei. In a good conductor, on the other hand, some  

of the electrons are bound very loosely and can move about freely within  

the material (although they cannot leave the object easily) and are often referred 

to as free electrons or conduction electrons. In a semiconductor, there are very 

few free electrons, and in an insulator, almost none. 

 

10.10. DIRECT CURRENT. OHM’S LAW. RESISTANCE 

 

To produce an electric current it is necessary to apply a potential difference 

at conducting material. One way of producing a potential difference along a wire 

is to connect its ends to the opposite terminals of a battery (fig. 10.21). 

 

Fig. 10.21. A simple electric circuit (a). Schematic drawing of the same circuit (b) 

 

On any diagram of a circuit a battery is symbolized by the symbol . 
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The electric current is defined as the net amount of charge flowing through 

cross section of a conductor per unit time. Thus, the average current I is  

defined as: 

,
q

I
t

      (10.21) 

where Δq is the amount of charge that passes through the conductor during  

the time interval Δt. 

Electric current is measured in amperes (abbreviated A). When the flow of 

charge past any cross section is 1 coulomb per second, the current is 1 ampere. 

Thus, 1 A = 1 C/1 s. Ampere is a large unit for current. In practice smaller units 

are often used, such as the milliampere (l mA = 10
–3

 A) and microampere  

(1 μA = 10
–6

 A). 
 

Example 10.14. Current is flow of charge.  

A steady current of 2.5 A exists in a wire for 4.0 min. (a) How much total 

charge passed by a given point in the circuit during those 4.0 min? (b) How 

many electrons would this be? 

Solution. Current is flow of charge per unit time, I = Δq/Δt, so the amount 

of charge passing a point is the product of the current and the time interval.  

To get the number of electrons (b), we divide the total charge by the charge on 

one electron. 

a) Since the current was 2.5 A, or 2.5 C/s, then in 4.0 min (= 240 s)  

the total charge that flowed past a given point in the wire was 

Δq = IΔt = (2.5 C/s)(240 s) = 600 C. 

b) The charge on one electron is 1.60
.
10

–19
 C, so 600 C would consist of 

21

19

600 C
3 8 10  electrons

1 60 10 C/electron
. .

.
 

 

Current is a scalar quantity. The arrows in fig. 10.21, b  do not indicate 

vectors: they merely show direction of flow along a conductor, not a direction in 

space. The direction of the current is taken to be the direction of the flow of 

positive charge, even if the actual charge carriers are negative and move in the 

opposite direction. 

George Simon Ohm established the relationship between potential 

difference and current, which is known as Ohm‘s Law. The law states that  

the steady current I flowing through a conductor is directly proportional to  

the potential difference U between the two ends of the conductor: 

,
U

I
R

      (10.22) 

where the constant R is known as the resistance of a conductor. The SI unit for 

resistance is called the ohm and is abbreviated Ω: 1 Ω = 1 V/1 A. 
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In a circuit diagram a resistor and a resistance is represented by 

the symbol. Resistance R depends on the conductor geometrical size (fig. 10.22), 

the material the conductor is made of, and the temperature of the conductor.  

 

Fig. 10.22. Current I is driven by a potential difference U applied between the ends  

of a conductor of length l and cross section S 

 

It is found experimentally that the resistance of a conductor R is directly 

proportional to the length of the conductor l and is inversely proportional to its 

area of cross section S: 

ρ
,

l
R

S
      (10.23) 

where ρ, the constant of proportionality, is called specific resistance or electrical 

resistivity of the material of the conductor and depends on the material used. 

If l = l m, S = l m
2
, then ρ = R. The electrical resistivity ρ of a material is 

defined as the resistance R offered to current flow by a conductor of unit length l 

having unit area of cross section S. The unit of ρ is Ω·m. It is a constant for  

a particular material. The electrical resistivity ρ of a material depends somewhat 

on temperature. 

The reciprocal of electrical resistivity ρ, is called electrical conductivity σ:  

1
σ

ρ
.      (10.24) 

The unit of conductivity σ is Ω
–1

 m
–1

. 

For most conductors, a temperature increase causes an increase in 

resistance. If the temperature change is not too great, the resistance R of metals 

usually increases nearly linearly with temperature. An empirical relationship for 

the temperature dependence of the resistance R of metals is given by formula: 

0 0[1 α( )],R R T T      (10.25) 

where R0 is the resistance at some reference temperature T0 (such as 0 °C or 

20 °C); R is the resistance at a temperature T; α is the temperature coefficient of 

resistance.  

Resistance R is a property of an object, whereas resistivity ρ is a property 

of a material. 

Example 10.15. Current is flow of charge.  

A steady current of 2.5 A exists in a wire for 4.0 min. (a) How much total 

charge passed by a given point in the circuit during those 4.0 min? (b) How 

many electrons would this be? 
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Solution. Current is flow of charge per unit time, I = Δq/Δt, so the amount 

of charge passing a point is the product of the current and the time interval.  

To get the number of electrons (b), we divide the total charge by the charge on 

one electron. 

a) Since the current was 2.5 A, or 2.5 C/s, then in 4.0 min (= 240 s)  

the total charge that flowed past a given point in the wire was 

Δq = IΔt = (2.5 C/s)(240 s) = 600 C. 

b) The charge on one electron is 1.60
.
10

–19
 C, so 600 C would consist of  

21

19

600 C
3 8 10 electrons

1 60 10 C/electron
. .

.
 

 

Example 10.16. Speaker wires.  

Suppose you want to connect your stereo to 

remote speakers (fig. 10.23). (a) If each wire must 

be 20 m long, what diameter copper wire should 

you use to keep the resistance less than 0.10 Ω per 

wire? (b) If the current to each speaker is 4.0 A, 

what is the potential difference, or voltage drop, 

across each wire? The resistivity of copper is 

1.68·10
–8

 Ω·m. 

Solution. We use equation 
ρl

R
S

 to get  

the area S, from which we can calculate the wire‘s 

radius using S = πr
2
. The diameter is 2r. In (b) we 

can use Ohm‘s law, U = IR. 
8

6 2ρ (1 68 10 m) (20 m)
3 4 10 m

0 10 

l .
S . .

R .
 

The cross-sectional area S of a circular wire is S = πr
2
. The radius must 

then be at least 31 04 10 m 1 04 mm
π

S
r . . . 

The diameter is twice the radius and so must be at least 2r = 2.1 mm. 

b) From V = IR we find that the voltage drop across each wire is 

U = IR = 4.0 A · 0,10 Ω = 0.40 V. 

NOTE. The voltage drop across the wires reduces the voltage that reaches 

the speakers from the stereo amplifier, thus reducing the sound level a bit. 

 

Example 10.17. Stretching changes resistance.  

Suppose a wire of resistance R could be stretched uniformly until it was 

twice its original length. What would happen to its resistance? 

Fig. 10.23. Example 10.16 
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Solution. If the length l doubles, then the cross-sectional area S is halved, 

because the volume (V = Sl) of the wire remains the same. From 
ρl

R
S

we see 

that the resistance would increase by a factor of four 
1

2/ 4
2

. 

 

Example 10.18.  

A uniform copper wire, having mass of 2.23·10
–3

 kg carries a current of  

1 A, has potential difference of 1.7 V across its ends. Find its length and area  

of cross section. The wire is now uniformly stretched to double its length, find 

the new resistance. Density of copper is 8.92·10
3
 kg·m

–3
 and its resistivity is 

1.7·10
–8

 Ω·m. 

Solution. Suppose l and S be the length and area of cross section of  

the given copper wire. Volume V of the wire is V = Sl 
3

3 3

mass 2 23 10 kg

density 8 92 10 kg m

.
V Sl

.
 

or        
6

310
m

4
Sl . 

Also, resistance of the copper wire is given by 
8 110 m ,

l

S
 

or      
ρ 1 7

1 7 
1

l U . V
R . .

S I A
 

Combining 
6

310
m

4
Sl  and we get 

8 1

8

1 7 
10  m

ρ 1 7 10  m

l R .
.

S .
 

Also, S = 5·10
–8

 m
2
. 

6
2 3 8 1 210

m 10 m 25 m    or   5 m
4

l l .  

Since volume remains constant, 1 1,V Sl S l  where l1 = 2l and  1
2

S
S . 

Then 1
1

1

ρ 2 ρ
ρ 4ρ 4 ,  where  

/2

l l l l
R R R

S S S S
 

8

1 8 2

4 1 7 10  Ω m 5 m
6 8 

5 10  m

.
R . . 

 

Example 10.19. Resistance thermometer.  

The variation in electrical resistance with temperature can be used to make 

precise temperature measurements. Platinum is commonly used since it is 

relatively free from corrosive effects and has a high melting point. Suppose at 

20.0 °C the resistance of a platinum resistance thermometer is 164.2 Ω. When 
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placed in a particular solution, the resistance is 187.4 Ω. The temperature 

coefficient of resistivity of platinum α is equal to 3.927·10
–3

 (C
o
)

–1
. What is  

the temperature of this solution? 

Solution. Since the resistance R is directly proportional to the resistivity ρ, 

we can combine equation 
ρ l

R
S

 with equation 0 0[1 α( )]R R T T  to find R 

as a function of temperature T, and then solve that equation for T. 

We use the equation 0 0[1 α( )]R R T T . 

Here R0 = ρ0l/S is the resistance of the wire at T0 = 20.0 °C. We solve this 

equation for T and find 

0
0 3 o 1

0

187 4 164 2 
20 0 C 56 0 C

α 3 927 10 (C ) (164 2 )

R R . .
T T . . .

R . .
 

NOTE. Resistance thermometers have the advantage that they can be used 

at very high or low temperatures where gas or liquid thermometers would be 

useless. 

 

10.11. RESISTORS IN SERIES AND IN PARALLEL 

 

There are active and passive elements of electrical circuit. Active elements 

can generate energy (voltage and current sources, batteries), passive ones cannot 

generate energy (resistors, capacitors and inductors). A resistor is a circuit 

element that dissipates electrical energy (usually as heat). Devices that are 

modeled by resistors: light bulbs, heating elements (stoves, heaters, etc.), long 

wires. 

When two or more resistors are connected end to end as shown  

in fig. 10.24, they are said to be connected in series. 

 

Fig. 10.24. Resistors in series 

 

Any charge that passes through R1 in fig. 10.24 will also pass through R2 

and then R3. Hence the same current I passes through each resistor I = I1 = I2 = I3. 

We let U represent the potential difference (voltage) across all three 

resistors in fig. 10.24. We assume all other resistance in the circuit can be 
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ignored, so U equals the terminal voltage supplied by the battery. We let U1, U2 

and U3 be the potential differences across each of the resistors, R1, R2 and R3, 

respectively, as shown in fig. 10.24. From Ohm's Law U = IR one can write  

U1 = IR1, U2 = IR2 and U3 = IR3. Because the resistors are connected end to end 

the total voltage U is equal to the sum of the voltages across each resistor: 

U1 + U2 + U3 = υ0 – υ1 + υ1 – υ2 + υ2 – υ3 = υ0 – υ3 = U. 

Thus, 

U = U1 + U2 + U3 = IR1 + IR2 + IR3.   (10.26) 

Let‘s determine the equivalent (or effective) single resistance Req of  

the series combination. The equivalent single resistance Req is related to U by 

U = IReq. 

Hence, IReq = IR1 + IR2 + IR3, 

or 

Req = R1 + R2 + R3.     (10.27) 

Thus, the equivalent resistance of a number of resistors in series 

connection is equal to the sum of the resistance of individual resistors. 
Consider resistors of resistances R1, R2 and R3 are connected in parallel,  

so that the current from the source splits into separate branches as shown  

in fig. 10.25. 

   

Fig. 10.25. Resistors in parallel 

 

In parallel circuit the total current I that leaves the battery splits into three 

separate paths. Let I1, I2 and I3 be the currents through each of the resistors,  

R1, R2 and R3, respectively. Because electric charge is conserved, the current I 

flowing into a junction A (where the different wires or conductors meet) must 

equal the current flowing out of the junction. Thus, 

I = I1 + I2 + I3.      (10.28) 

When resistors are in parallel, the potential difference U across each 

resistor is the same (U = U1 = U2 = U3). Applying Ohm‘s Law to each resistor 

one can write:  

,1
1

U
I

R
  ,2

2

U
I

R
  3

3

U
I .

R
   (10.29) 
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Let‘s determined what single resistor Req will draw the same current I as 

these three resistances in parallel: 

eq

U
I .

R
      (10.30) 

Thus,    
eq 1 2 3

,
U U U U

R R R R
        (10.31) 

or      
eq 1 2 3

1 1 1 1
.

R R R R
        (10.32) 

Thus, when a number of resistors are connected in parallel, the sum  

of the reciprocal of the resistance of the individual resistors is equal  

to the reciprocal of the effective resistance of the combination. 

 

Example 10.20. Circuit with series and parallel resistors.  

How much current is drawn from the battery shown in fig. 10.26, a? 

    
a         b 

Fig. 10.26. Circuit for Example 10.20 (a).        Fig. 10.26. (b) Equivalent circuit, showing 

       the equivalent  resistance  of 290 Ω for the 

             two parallel resistors in fig. 10.6, a 

 

Solution. The current I that flows out of the battery all passes through  

the 400 Ω resistor, but then it splits into I1 and I2 passing through the 500 Ω and 

700 Ω resistors. The latter two resistors are in parallel with each other. We look 

for something that we already know how to treat. So let‘s start by finding  

the equivalent resistance, Rp, of the parallel resistors, 500 Ω and 700 Ω. Then we 

can consider this Rp to be in series with the 400 Ω resistor. 

The equivalent resistance, Rp, of the 500 Ω and 700 Ω resistors in parallel 

is given by 

1 1 11 1 1
0 0020 0 0014 0 0034 

500 700 p

. . . .
R

 

This is l/Rp, so we take the reciprocal to find Rp. It is a common mistake to 

forget to take this reciprocal. Notice that the units of reciprocal ohms, Ω
–1

, are  

a reminder.  
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Thus    
1

1
290 

0 0034 
pR .

.
 

This 290 Ω is the equivalent resistance of the two parallel resistors, and is 

in series with the 400 Ω resistor as shown in the equivalent circuit of fig. 10.26, b. 

To find the total equivalent resistance Req, we add the 400 Ω and 290 Ω 

resistances together, since they are in series, and find 

Req = 400 Ω + 290 Ω = 690 Ω. 

The total current flowing from the battery is then 

eq

12 0 V
0 0174 A 17 mA

690 

U .
I . .

R
 

 

10.12. ELECTRIC ENERGY AND ELECTRIC POWER 

 

If I is the current flowing through a conductor of resistance R in time Δt, 

then the quantity of charge flowing is Δq = IΔt. If the charge Δq flows between 

two points having a potential difference U, then the work ΔW done in moving 

the charge is the product of potential difference U and the charge Δq: 

ΔW = U·Δq = U·IΔt.     (10.33) 

The unit of the work W is Joule (J). 

Then, electric power P is defined as the rate of doing electric work and is 

equal to the product of current I and voltage U: 
W

P IU .
t

      (10.34) 

For resistors the electric power P can be written as:  
2

2
( )

U U
P IU I IR I R U .

R R
   (10.35) 

When resistors are in parallel, the potential difference U across each 

resistor is the same and electric power P can be found as: 
2

U
P .

R
 

When resistors are connected in series, the same current I passes through 

each resistor and electric power P can be found as: P = I
2
R. 

The SI unit of electric power P is the Watt (W): 1 W = 1 J/s. 

A resistor dissipates power when a current passes through it. The energy is 

released in the form of heat. For a steady current I, the amount of heat Q 

produced in time Δt is equal to the work ΔA done in moving the charges: 

Q = PΔt = UIΔt.     (10.36) 

For a resistance R,       Q = I
2
RΔt          (10.37) 
2

U
Q t .

R
      (10.38) 
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The above relations were experimentally verified by Joule and are known 

as Joule‘s Law of heating. By equation (10.37) Joule‘s law implies that when 

current flows through a conductor, the heat produced Q is directly proportional 

to the square of the current I, directly proportional to resistance R of a conductor 

and the time Δt of passage of current. Also by equation (10.38), the heat 

produced Q is directly proportional to the square of the voltage U and inversely 

proportional to resistance R for a given U. This is also known as Joule heat that 

is dissipated in R. 

Example 10.21. Headlights.  

Calculate the resistance of a 40-W 

automobileheadlight designed for 12 V. 

Solution. We solve equation P = U
2
/R for R: 

2 2(12 V)
3 6 

(40 W)

U
R . .

P
 

NOTE. This is the resistance when the bulb is burning brightly at 40 W. 

When the bulb is cold, the resistance is much lower, as we saw in equation 

(10.25). Since the current is high when the resistance is low, lightbulbs burn out 

most often when first turned on. 

 

Example 10.22.  

A 100 W bulb and a 400 W bulb are joined in parallel to the mains. Which 

bulb will draw more current? 

Solution. Let U be the voltage of the mains and I1, I2 are the currents 

through the two bulbs. In case of parallel combination of the bulbs, U is  

the same for these two bulbs: P1 = I1·U  and  P2 = I2·U, 

or      1 1

2 2

100 W 1

400 W 4

I P

I P
 

1
1 2

2

1
   or   

4

I
I I .

I
 

NOTE. 400 W bulb will draw more current. 

Example 10.23.  

An electric kettle draws a current of 10 A when connected to the 230 V 

mains supply. Calculate: (a) the power of the kettle; (b) the energy produced in  

5 minutes; (c) the rise in temperature if all the energy produced in 5 minutes is 

used to heat 2 kg of water. (Specific heat capacity of water c = 4200 J kg
–1

 K
–1

.) 

Solution. We use equation P = IU to calculate power P of the kettle: 

a) P = IU = 10 A × 230 V = 2300 W = 2.3 kW. 

b) Heat energy produced in 5 minutes: Q = Pt = 2300 W × 5 × 60 s =  

690 000 J. 

Fig. 10.27. Example 10.21 
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c) Heat Q produced is absorbed by water: Q = energy gained by water.  

We solve equation Q = mcΔT for ΔT: 

1 1

690 000 J
82 1 K

2 kg 4200 J kg K

Q
T . .

mc
 

NOTE. Rise in temperature of the water is 82.1 K. 

 

10.13. ELECTROMOTIVE FORCE. OHM’S LAW  

FOR A COMPLETE CIRCUIT 

 

To maintain a steady current, there must be a device (such as a battery or 

an electric generator) in the circuit wherein the potential rises along the direction 

of the current. For the potential to rise along the direction of the current there 

must be a source which converts some form of nonelectric energy (chemical, 

mechanical, or light, for example) to electrical energy. Such a device is called  

a source of electromotive force or of emf. An emf device is a (charge pump) 

device that maintains a constant potential difference between a pair of terminals. 

The symbol ε is usually used for emf. The emf ε of a device is the work Af per 

unit charge q that the nonelectrostatic force does in moving charge from low 

potential terminal to high potential terminal: 

ε
fA

.
q

      (10.39) 

The unit of the emf = ε is Volt (V). 

A battery itself has some resistance, which is called its internal resistance: 

it is usually designated r. A real battery is modeled as if it were a perfect emf ε 

in series with a resistor r as shown in fig. 10.28. Since this resistance r is inside 

the battery one can never separate it from the battery.  

 

Fig. 10.28. A battery in a complete circuit 
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The work Af that the nonelectrostatic force does in moving charge from low 

potential terminal to high potential terminal is given by:  

Af = ε·q = ε(I·t).     (10.40) 

The work Af can be also written as (if all work Af is converted into  

the heating of the conductor А = Q):  

Af = I
2
(R + r)·t.     (10.41)  

Comparing equations (10.20) and (10.21) gives: 

ε = I(R + r).      (10.42) 

For a complete circuit, Ohm‘s Law assumes the following form: 
ε

I .
R r

     (10.43)  

where Rt = R + r is the total resistance of the entire circuit, which is equal to  

the sum of the external resistance R of the circuit and the internal resistance r of 

the source of emf. 

When connected to a load resistance R, so that a current I flows through  

the circuit there is an internal drop in voltage equal to (I·r). Thus the terminal 

voltage of the battery is therefore: 

U = ε – Ir.     (10.44) 

The potential drop across the external resistance R can be written as:  

U = IR.      (10.45) 

The internal resistance r of the source of emf is low. When the external 

resistance R of the circuit drops (R → 0), current becomes very high and can 

cause damage. The largest amount of current in circuit is called the short-circuit 

current Ish:     sh

ε
I .

r
          (10.46) 

Example 10.24. Battery with internal resistance.  

A 65.0 Ω resistor is connected to the terminals of a battery whose emf is 

12.0 V and whose internal resistance is 0.5 Ω. Calculate: (a) the current in  

the circuit, (b) the terminal voltage of the battery, Uab, (c) the power dissipated 

in the resistor R and in the battery‘s internal resistance r. 

 

Fig. 10.29. Example 24 

Solution. We first consider the battery as a whole, which is shown in  

fig. 10.29 as an emf ε and internal resistance r between points a and b. Then we 

apply U = IR to the circuit itself. 
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a) From the equation relating emf ε to terminal voltage, we have  

Uab = ε – Ir. We apply Ohm‘s law to this battery and the resistance R of  

the circuit: Uab = IR. Hence IR = ε – Ir or ε = I(R + r), and so  
2 2(0 183 A) (65 0 ) 2 18 W,RP I R . . .  

b) The terminal voltage is 

ε 12 0 V (0 183 A)(0 5 ) 11 9 VabU Ir . . . . . 

c) The power dissipated in R is 2 2(0 183 A) (65 0 ) 2 18 W,RP I R . . .  

and in r is 2 2(0 183 A) (0 5 ) 0 02 WrP I r . . . . 

 

10.14. ALTERNATING CURRENT 

 

When a battery is connected to a circuit, 

the current moves steadily in one direction. 

This is called a direct current, or dc. Electric 

generators at electric power plants, however, 

produce alternating current, or ac. 

Sometimes capital letters are used, DC and 

AC. An alternating current reverses direction 

many times per second and is commonly 

sinusoidal, as shown in fig. 10.30. The charges 

in a wire first move in one direction and then 

in the other. The current supplied to homes 

and businesses by electric companies is ac 

throughout virtually the entire world. It is 

easier and cheaper to produce as well as 

transmit AC than DC. 

An alternating current is one that 

changes continuously in magnitude and 

periodically in direction. The alternating currents varying according to harmonic 

law have the most important practical significance. It is represented by a sine 

curve (fig. 10.30, b). The mathematical form of an alternating voltage as  

a function of time is: 

0 0sin2π sinωU U ft U t .     (10.47) 

The voltage oscillates between +U0 and –U0, and U0 is referred to as  

the peak voltage. U is the instantaneous value of voltage at an instant of time t. 

The frequency f is the number of complete oscillations made per second 

(measured in Hertz, the unit ―hertz‖ means cycles per second 1/sec); and  

ω = 2 f — is angular frequency (radians/sec). In many countries, f = 50 Hz is 

used.  

Fig. 10.30. (a) Direct current, 

(b) Alternating current 
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From equation U = IR, if a voltage U exists across a resistance R, then  

the current I through the resistance is  

0
0sinω sinω

UU
I t I t .

R R
    (10.48) 

The quantity I0 = U0/R is the peak current. The current is considered 

positive when the electrons flow in one direction and negative when they flow in 

the opposite direction. It is clear from fig. 10.30, b that an alternating current is 

as often positive as it is negative. Thus, the average current is zero. This does 

not mean, however, that no power is needed or that no heat is produced  

in a resistor. Electrons do move back and forth, and do produce heat. Indeed,  

the power transformed in a resistance R at any instant is 
2 2 2

0 sin ωP I R I R t .      (10.49) 

Because the current is squared, we see that the power is always positive, as 

graphed in fig. 10.31. The quantity sin
2
ωt varies between 0 and 1; and it is not 

too difficult to show that its average value is 
1
/2 as indicated in fig. 10.31.  

 

Fig. 10.31. Power delivered to a resistor in an AC circuit 

 

Thus, the average power developed, is  

2
0

1

2
P I R.      (10.50) 

Since power can also be written P = U
2
/R = (U0

2
 R) sin

2
 ωt, we also have 

that the average power is 
2
01

2

U
P .

R
     (10.51) 

The average or mean value of the square of the current or voltage is thus 

what is important for calculating average power: 2 2
0

1

2
I I  and 2 2

0

1

2
U U . 

The square root of each of these is the rms (root-mean-square) value of  

the current or voltage:  

2 0
00 707 ,

2
rms

I
I I . I     (10.52) 
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2 0
00 707

2
rms

U
U U . U .    (10.53) 

The rms values of U and I are sometimes called the effective values. They 

are useful because they can be substituted directly into the power formulas, 

equations (10.50, 10.51), to get the average power: 

2 2
0

1
;

2
rmsP I R I R      (10.54) 

2 2
01

2

rmsU U
P .

R R
     (10.55) 

Thus, a direct current whose values of I and U equal the rms values of I 

and U for an alternating current will produce the same power. Hence it is usually 

the rms value of current and voltage that is specified or measured. For example, 

in a country, standard line voltage is 120 V ac. The 120 V is Urms; but the peak 

voltage U0 is 

0 2 170 VrmsU U . 

In much of the world (Europe, Australia, Asia) the rms voltage is 240 V, so 

the peak voltage is 340 V. 

 

Example 10.25. Hair dryer. 

(a) Calculate the resistance and the peak current in a 1000-W hair dryer 

connected to a 120-V line; (b) What happens if it is connected to a 240-V line in 

Britain? 

Solution. We are given P and Urms, so Irms = P/Urms, and 0 2 rmsI I .Then 

we find R from U = IR. 

a) We solve rns rmsP I U  for the rms current: 

1000 W
8 33 A

120 V
rms

rms

P
I . .

U
 

Then 0 2 11 8 ArmsI I . .  

The resistance is 
120 V

14 4 
8 33 A

rms

rms

U
R . .

I .
 

b) When connected to a 240 V line, more current would flow and  

the resistance would change with the increased temperature. But let us make  

an estimate of the power transformed based on the same 14.4 Ω resistance.  

The average power would be 
2 2(240 V)

4000 W
(14 4 Ω)

rmsU
P .

R .
 

NOTE. This is four times the dryer’s power rating and would undoubtedly 

melt the heating element or the wire coils of the motor. 
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PROBLEMS 

1. A potential difference of 400 volt is applied across the ends of  

a conductor of resistance 80. Calculate the number of electrons flowing through 

it in one second. Charge of the electron is 1.6·10
–19

 C. (Answer: 3.125·10
19

) 

2. A wire of resistance 1 Ω is drawn out so that its length is increased by 

twice its original length. Find its new resistance. (Answer: 4 Ω) 

3. At room temperature (27.0 °C) the resistance of a heating element is  

100 Ω. What is the temperature of the element if the resistance is found to be 

117 Ω, given that the temperature coefficient of the material of the resistor is 

1.70·10
–4

 °C
–1

. (Answer: 1027 °C) 

4. Three resistors 2 Ω, 4 Ω and 5 Ω are combined in parallel. What is  

the total resistance of the combination? If the combination is connected to  

a battery of emf 20 V and negligible internal resistance, determine the current 

through each resistor, and the total current drawn from the battery. (Answer: 

20/19 Ω, 10 A, 5 A, 4 A, 19 A) 

5. A storage battery of emf 8.0 V and internal resistance of 0.5 Ω is being 

charged by a 120 V DC supply using a series resistor of 15.5 Ω. What is  

the terminal voltage of the battery during charging? What is the purpose of 

having a series resistor in the charging circuit? (Answer: 11.5 V) 

6. A bulb of 484 Ω is producing light when connected to 220 V main 

supply. What is the electric power of the bulb? (Answer: 100 W) 

7. An electric heater having resistance equal to 5 Ω is connected to electric 

source. If it produces 180 J of heat in one second, find the potential difference 

across the electric heater. (Answer: 30 V) 

8. An ac voltage, whose peak value is 180 V, is across a 210 Ω resistor. 

What is the value of the rms and peak currents in the resistor? (Answer: 127 V, 

606 mA) 

TESTS 

1. Electric current flows when: 

a) there is some potential difference; 

b) there is some resistances; 

c) atoms arrange themselves;  

d) all of the above. 

2. Ohm‘s law deals with the ratio between: 

a) current and potential difference;  

b) capacity and charge; 

c) potential and capacity;  

d) induced potential and flux. 
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3. When the resistance of the conductor is increased then the current will: 

a) increase;    b) decrease; 

c) remains the same;  d) none of these. 

4. If the current I flowing through conductor under an applied potential U, 

then according to Ohm‘s law: 

a) U ~ I
2
;  b) U ~ 1/I;  c) I ~ U;  d) none of these. 

5. A wire has resistance R. Another wire identical to the first but having 

twice the diameter, has a resistance of: 

a) R/4;  b) 4/R;   c) R/2;  d) 2R. 

6. Resistance of a conductor depends on its: 

a) length;     b) volume; 

c) area of cross-section;  d) temperature. 

7. The resistance of a coil with a current of 12 A at 120 V is: 

a) 0.1 Ω;  b) 10 Ω;  c) 1440 Ω;  d) 132 Ω. 

8. When the temperature of a metallic conductor is increased its resistance: 

a) always decreases;  b) always increases; 

c) remains the same;   d) None of these. 

9. The reciprocal of resistance is: 

a) specific resistance;  b) effective resistance; 

c) conductance;   d) current. 

10. Net resistance joined in series is: 

a) sum of reciprocal of individual resistance;  

b) sum of all the individual resistance; 

c) product of resistances;  

d) reciprocal of product of resistances. 

11. The length of the conductor is halved. Then its conductivity be; 

a) halved;  b) doubled; c) unchanged;  d) quadrupled. 

12. What is the equivalent resistance 

between points P and Q in the circuit shown in 

fig. 10.32? 

a) 1 Ω;  b) 2 Ω; 

c) 3Ω;  d) None of these. 

13. The temperature coefficient of the resistance of a wire is 0.00125 °C
–1

. 

At 300 °K its resistance is 1 Ω. The resistance will become 2 Ω at a temperature: 

a) 1154 K; b) 1100 K; c) 1127 K; d) 1400 K. 

14. There are three resistance 2, 3, 5 Ω connected in parallel to a battery of 

10 V of negligible resistance. The potential drop across 3 Ω resistance is: 

a) 2 V;  b) 5 V;  c) 3V;  d) 10 V. 

Fig. 10.32. Test 12 
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15. The electron (e = 1.6·10
–19

 C) in hydrogen atom circles round  

the proton with a speed of 2.18·10
6
 m/s in an orbit radius 5.3·10

–11
 m. What is 

current constituted by it? 

a) 1.05 mA;  b) 10.5 mA; 

c) 0.105 mA;  d) none of the above. 

16. Assuming that e = 1.6·10
–19

 C, the number of electron passing per sec. 

through a wire carrying 1 A of current is: 

a) 0.625·10
19

;  b) 1.5·10
19

;  c) 1.6·10
19

;  d) 6.25·10
16

. 

17. An electric heater operating at 220 V boils 5 liter of water in 5 minutes. 

If it is used on 110 V, it will boil the same amount of water in: 

a) 10 minutes;  b) 20 minutes;  

c) 15 minutes;  d) 25 minutes. 

18. A constant voltage is applied between the two ends of a uniform 

metallic wire. Some heat is developed in it. The heat developed is doubled if: 

a) the length of the wire is doubled; 

b) the radius of the wire is doubled; 

c) both the length and radius of the wire are doubled; 

d) both the length and radius of the wire are halved. 

19. A coil has a resistance 20 Ω at 0 °C and 21 Ω at 200 °C. What is  

the temperature coefficient of metal used for the coil: 

a) 2·10
–4

 K
–1

;  b) 2·10
–4

 K
–1

;  c) 8·10
–4

 K
–1

;  d) 1·10
–4

 K
–1

. 

20. An electric lamp is marked 100 W. It is working on 200 V. The current 

through the lamp is given as: 

a) 5A;  b) 2 A;  c) 0.5 A;  d) 1.0 A. 

21. Two electric bulbs whose resistances are in the ratio 1 : 2 are connected 

in series to a constant voltage source. The powers dissipated in them have  

the ratio: 

a) 1 : 2;  b) 1 : 1;  c) 2 : 1;  d) 4 : 1. 

22. Two electric bulbs whose resistances are in the ratio 1 : 2 are connected 

in parallel to a constant voltage source. The powers dissipated in them have  

the ratio: 

a) 1 : 2;  b) 1 : 1;  c) 2 : 1;  d) 4 : 1. 

23. Efm is measured in 

a) Joule;    b) Joule · Coulombs; 

c) Joule / Coulomb;  d) Joule / Coulomb/metre. 

24. The emf of a battery is 3V and internal resistance 0.2 Ω. The difference 

of potential at the terminals of battery when connected across the external 

resistance of 1 Ω is: 

a) 1.67 V;  b) 2.5 V;  c) 2.67 V;  d) 3.67 V. 
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25. What is the peak current in a 2.8-kΩ resistor connected to a 120 V rms 

ac source. 

a) 60.6 mA; b) 60 A;  c) 6 A;  d) 606 mA. 

26. The peak value of an alternating current passing through a 1500 W 

device is 4.0 A. What is the rms voltage across it? 

a) 530 mV; b) 530 V;  c) 50 V;  d) 350 V. 

27. A heater coil connected to a 240 V ac line has a resistance of 40 Ω. 

What is the average power used?  

a) 1440 W; b)140 W;  c) 1000 W; d) 1400 W. 

 

 

11. MAGNETIC FIELD 
 

As well known all charges create electric fields, and these fields can be 

detected by other charges resulting in electric force. However, when charges are 

moved they create a new completely different field. This is the magnetic field. 

So any moving charge or an electric current produces a magnetic field  

in the surrounding space. In turn the magnetic field exerts a force only on 

moving charge or electric current and on the magnetized bodies. 

The magnetic field is characterized by its magnitude B and direction.  

The magnetic field B is a vector and is represented by lines called lines  

of magnetic field. The vector B direction is tangent to this line at any point  

of the field. The strength of the magnetic field is proportional to the closeness of 

the lines.  

 

11.1. THE MAGNETIC FIELD PRODUCED  

BY ELECTRIC CURRENT 

 

At first let‘s look a magnetic fields created by two main form of electric 

current: a magnetic fields of a straight current and a of current-carrying coil 

(solenoid) that illustrated in fig. 11.1. 

A straight wire with electric current I going through it produces a magnetic 

field going in circles around it (fig. 11.1, a). The magnitude B of this magnetic 

field is equal to 

0μμ
,

2π
А

I
В

b
      (11.1) 

where I is a value of electric current, b is a distance from the wire, μ is the 

magnetic permeability of medium and μ0 = 4π·10
–7

 H/m is magnetic constant  

(the magnetic permeability of vacuum).  
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a           b 

Fig. 11.1. Magnetic fields B of a straight current-carrying wire (a) and a current-carrying coil 

(solenoid) (b) 

 

A solenoid is many loops of wire with a current going through. When  

the length of the solenoid is much larger than its radius, the magnetic field inside 

a solenoid is strong and uniform and is weak outside. The field lines inside the 

solenoid are nearly parallel, uniformly spaced, and close together (fig. 11.1, b). 

The magnitude B of the magnetic field in a solenoid is equal to 

0μμ
,

2

I
В n

r
      (11.2) 

where I is a value of electric current, r is a radius of a loop, n is an amount of  

the loops.  

Magnetic field direction can be determined using the right hand rule  

(fig. 11.2). The right-hand rule gives the direction of the magnetic field lines that 

encircle a current-carrying wire. If the wire is grasped in the right hand with  

the thumb in the direction of the current, the fingers will curl in the direction of B. 

 

Fig. 11.2. Right-hand rule for determining the direction of B  
 

B
B
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11.2. FORCE ON AN ELECTRIC CURRENT IN A MAGNETIC FIELD 

(AMPERE’S FORCE) 

 

It was found that a magnetic field exerts a force on a current-carrying wire. 

The force F (it is named after Ampere) on  

a wire carrying a current I with length l in  

a uniform magnetic field В is given by formula: 

F = I · l · B sin θ.  (11.3) 

where θ is the angle between the current direction 

and the magnetic field B. 

Equation (11.3) serves as a practical 

definition of B: ,
F

В
I· l

if θ = π/2. 

The SI unit for magnetic field В is the tesla 

(T), 1 T = 1 N/A·m. Another unit sometimes used 

to specify magnetic field is the gauss (G):  

1 G = 10
–4

 T. It is necessary to note that  

the magnetic field of the Earth at its surface is about 0.5 G = 50 μT. 

The direction of the force F is given by another right-hand rule, as 

illustrated in fig. 11.4, c. Orient your right hand so that outstretched fingers can 

point in the direction of the conventional current I, and when you bend your 

fingers they point in the direction of the magnetic field lines B. Then your 

thumb points in the direction of the force F on the wire. 

As one can see from equation (11.3), the force F depends on the angle θ 

between the current direction and the magnetic field. When the current is 

perpendicular to the field lines (θ = 90°) the force is strongest Fmax = IBl. When 

the wire is parallel to the magnetic field lines (θ = 0°) there is no force at all  

(F = 0). At other angles, the force F is proportional to sinθ. 

  
a      b     c 

Fig. 11.4. (a) Force on a current-carrying wire placed in a magnetic field B; (b) same, but 

current I reversed; (c) right-hand rule for setup in (b) 

 

Example 11.1. Magnetic force on a current-carrying wire.  
A wire carrying a 30 A current has a length l = 12 cm between the pole 

faces of a magnet at an angle θ = 60° (fig. 11.5). The magnetic field is 

Fig. 11.3. Current-carrying wire 

of length l in a magnetic field 
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approximately uniform at 0.90 T. We ignore the field beyond the pole pieces. 

What is the magnitude of the force on the wire? 

 

Fig. 11.5. Example 11.1. Current-carrying wire in a magnetic field. Force on the wire is 

directed into the page 

Solution. The force F on the 12-cm length of wire within the uniform field 

B is F = IlBsinθ = (30 A) · (0.12 m) · (0.90 T) · (0.866) = 2.8 N. 

 

Example 11.2. Measuring a magnetic 

field.  
A rectangular loop of wire hangs 

vertically as shown in fig. 11.6. A magnetic 

field B is directed horizontally, perpendicular 

to the wire, and points out of the page at all 

points as represented by the symbol . The 

magnetic field B is very nearly uniform along 

the horizontal portion of wire ab (length  

l = 10.0 cm) which is near the center of the 

gap of a large magnet producing the field. 

The top portion of the wire loop is free of the 

field. The loop hangs from a balance which measures a downward magnetic 

force (in addition to the gravitational force) of F = 3.48·10
–2

 N when the wire 

carries a current I = 0.245 A. What is the magnetic field at the center of magnet?  

Solution. Three straight sections of the wire loop are in the magnetic field: 

a horizontal section and two vertical sections. We apply F = IlBsinθ to each 

section and use the right-hand rule. The magnetic force on the left vertical 

section of wire points to the left; the force on the vertical section on the right 

points to the right. These two forces are equal and in opposite directions and so 

add up to zero. Hence, the net magnetic force on the loop is that on  

the horizontal section ab, whose length is l = 0.100 m. The angle θ between B 

and the wire is θ = 90°, so sinθ = 1. Thus 
23 48 10

1 42 T
(0 245 A) (0 100 m)

F . N
B . .

I l . .
 

Fig. 11.6. Measuring a magnetic field B 
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NOTE. This technique can be a precise means of determining magnetic 

field strength. 

Since a current in a wire creates its own magnetic field, two current 

carrying wires placed close together exert magnetic forces on each other. 

Parallel wires with current flowing in the same direction, attract each other and 

parallel wires with current flowing in the opposite direction, repel each other 

(fig. 11.7).  

 
a       b 

Fig. 11.7. Antiparallel currents (in opposite direction) exert a repulsive force on each other 

(a). Parallel currents in the same direction exert an attractive force on each other (b) 

 

The force between two parallel wires carrying a current is used to define 

the SI unit of current is Ampere: one Ampere is definite as that current flowing 

in each of two long parallel conductors 1m apart, which result in a force of 

exactly 2·10
–7

 N/m of 1 m length of each conductor. 

 

11.3. FORCE ON AN ELECTRIC CHARGE MOVING IN A MAGNETIC 

FIELD (LORENTZ’S FORCE) 

 

If a particles of charge q moves through a magnetic field B with a velocity 

υ then a force F (named after Lorentz) acts on it: 
sinθ,F q B       (11.4) 

θ is angle between υ and В. The force F is greatest when the particle moves 

perpendicular to В (θ = 90°): maxF q B. 

The force F is zero, if the particle moves parallel to the field lines B  

(θ = 0°). The direction of the force F is perpendicular to the magnetic field B 

and to the velocity υ of the particle. It is given again by a right-hand rule (for  

q > 0): you orient your right hand so that your outstretched fingers point along 

the direction of the particle‘s velocity υ and when you bend your fingers they 

must point along the direction of B. Then your thumb will point in the direction 

of the force F. This is true only for positively charged particles, and will be ―up‖ 

for the positive particle shown in fig. 11.8. For negatively charged particles,  

the force is in exactly the opposite direction ―down‖ in fig. 11.8. 
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Fig. 11.8. Force on charged particles due to a magnetic field is perpendicular to the magnetic 

field direction. If υ is horizontal, then F is vertical 
 

Example 11.3. Magnetic force on ions during a nerve pulse.  

Estimate the magnetic force due to the Earth‘s magnetic field on ions 

crossing a cell membrane during an action potential. Assume the speed of  

the ions is 10
–2

 m/s. 

Solution. Using F = q υ B, set the magnetic field of the Earth to be roughly 

B ≈ 10
–4

 T, and the charge q ≈ e ≈ 10
–19

 C. 

F ≈ (10
–19

 C) · (10
–2

 m/s) · (10
–4

 T) = 10
–25

 N. 

NOTE. This is an extremely small force. Yet it is thought migrating 

animals do somehow detect the Earth’s magnetic field, and this is an area of 

active research. 

 

Example 11.4. Electron’s path in a uniform magnetic field.  
An electron travels at 2.0·10

7
 m/s in a plane perpendicular to a uniform 

magnetic field of 10 mT. Describe its path quantitatively. 

Solution. An electron at point P (fig. 11.9) is moving to the right, and  

the force on it at this point is downward as shown (use the right-hand rule and 

reverse the direction for negative charge). The electron is thus deflected toward 

the page bottom. A moment later, say, when it reaches point Q, the force is still 

perpendicular to the velocity and is in the direction shown. 

Because the force is always perpendicular to υ, the magnitude of υ does not 

change — the electron moves at constant speed. If the force on a particle is 

always perpendicular to its velocity υ, the particle moves in a circle (fig. 11.9) 

and has a centripetal acceleration a = υ
2
/r. 

We find the radius of curvature using Newton‘s second law. The force is 

given by F = q υ B as sin θ = 1. 

F = ma. 
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Fig. 11.9. Example 11.4. Force F exerted by a uniform magnetic field on a moving charged 

particle (in this case, an electron) produces a circular path 

 

We insert F and a into Newton‘s second law: 
2m

q B .
r

 

We solve it for r and find the radius of circle and period T of rotation  

,
m

r
qB

  
2π 2πr m

T .
qB

 

The radius of circle is directly proportional to speed of a charge, period T 

of a charge rotation doesn‘t depend on a speed magnitude and both values are 

inverse proportional to magnitude of magnetic field. To get r we put in  

the numbers: 
31 7

2

19

(9 1 10 kg) (2 9 10 m/s)
1 1 10 m 1 1 cm

(1 6 10 C) (0 010 T)

. .
r . . .

. .
 

NOTE. Thus a charged particle moves in a circular path with constant 

centripetal acceleration in a uniform magnetic field. 

PROBLEMS 

1. a) What is the force per meter of length on a straight wire carrying  

a 7.40 A current when perpendicular to a 0.90 T uniform magnetic field?  

b) What if the angle between the wire and field is 45.0°? (Answer: a) 6.7 N/m; 

b) 4.7 N/m) 

2. How much current is flowing in a wire 4.20 m long if the maximum 

force on it is 0.900 N when placed in a uniform 0.0800 T field? (Answer: 2.68 A) 

3. In a magnetic field with B = 0.5 T, for what path radius, will an electron 

circulate at 0.1 the speed of light (c = 3·10
8
 m/s)? What will be its kinetic 

energy? Given mass of electron 9.1·10
–31

 kg, its charge –1.6·10
–19

 C. (Answer: 

3.41·10
–4

 m; 4.095·10
–16

 J) 
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TESTS 

1. SI unit of the magnetic field B is: 

a) Oersted;  b) Tesla;  c) Gauss;  d) Maxwell. 

2. Current is passed through a straight wire. The lines of magnetic field 

produced by it are:  

a) circular and endless; 

b) oval in shape but endless; 

c) straight but endless; 

d) None of these. 

3. In an uniform magnetic field, lines of magnetic field are: 

a) inclined;  b) parallel; c) circular: d) perpendicular. 

4. When the direction of current is opposite in two parallel wires placed 

near each other, they will: 

a) attract each other;   b) repel each other; 

c) neither attract nor repel;  d) sometimes attract sometimes repel. 

5. Force acting on a moving charge in a magnetic field varies with  

the velocity υ as: 

a) 1/υ; b) υ;  c) υ
2
; d) υ

½
. 

6. Force acting on a moving charge in a magnetic field is maximum when 

velocity of charge is inclined to field at: 

a) 0°; b) 60°; c) 30°; d) 90°.  

7. A wire of length 2 m carries a current of 10 A. What is the force acting 

on it when it is placed at an angle 45° to the uniform magnetic field of 0.15 T: 

a) 1.5 N;  b) 3N; c) 3 2 ;N   d) 
3

2
N . 

8. An electron is moving parallel to the magnetic field B with velocity υ. 

The force acting on it is: 

a) Beυ;  b) Be/υ; c) zero;  d) eυ/B. 

9. The force acting on a charge q moving with velocity υ in the magnetic 

field B is given by: 

a) q/ υB;  b) υB/q;  c) qυB;  d) υ/Bq. 

10. An electron moving with velocity 10
6
 ms

–1
 enters a magnetic field and 

describes a circle of radius 0.1 m, the magnetic field B is: 

a) 1.8·10
–4

 T;  b) 5.5·10
–5

 T;  c) 1.4·10
–5

 T;  d) 14·10
–5

 T. 

11. An electron is moving with velocity 3·10
7
 ms

–1
 perpendicular to  

the magnetic field of 2.0 T. The magnitude of the force acting on it is: 

a) 96·10
–12

 N;  b) 9.6·10
–12

 N;  

c) 0.96·10
–12

 N; d) none of the above. 
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12. A particle having charge q enters with a uniform velocity υ  

in the magnetic field B, the radius of the path in which it moves is (m is  

the mass of particle): 

a) mυ/Bq;  b) Bυ/mq; c) mB/qυ;  d) none of the above. 

 

11.4. ELECTROMAGNETIC INDUCTION AND FARADAY’S LAW 

 

We know that there are two ways in which electricity and magnetism are 

related: 

1) an electric current produces a magnetic field; 

2) a magnetic field exerts a force on an electric current or moving electric 

charge.  

Here we deal with the reverse phenomena i. e. the production of an electric 

current from a magnetic field. This phenomenon of producing an electric current 

from a magnet or a magnetic field is known as electromagnetic induction. 

Faraday has found that a steady magnetic field produces no current in  

a conductor (fig. 11.10, c), but a changing magnetic field can produce an electric 

current (Fig. 11.10, a, b). Such a current is called an induced current. When  

the magnetic field changes, a current flows as if there were a source of emf in 

the circuit. Therefore an induced emf is produced by a changing magnetic field. 

 

Fig. 11.10. (a) A current is induced when a magnet is moved toward a coil. (b) The induced 

current is opposite when the magnet is moved away from the coil. Note that the galvanometer 

zего is at the center of the scale and the needle deflects left or right, depending on  

the direction of the current. In (c) no current is induced if the magnet does not move relative 

to  the coil.  It is  the relative  motion  that  counts: the magnet  can be held steady and the coil 

moved, which also induces an emf 
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Fig. 11.10 shows that if a magnet is moved quickly into a coil of wire,  

a current is induced in the wire. If the magnet is quickly removed, a current is 

induced in the opposite direction (B through the coil decreases). Furthermore, if 

the magnet is held steady and the coil of wire is moved toward or away from  

the magnet, again an emf is induced and a current flows. Motion or change is 

required to induce an emf. It doesn‘t matter whether the magnet or the coil 

moves. It is their relative motion that counts. 

 

11.5. FARADAY’S LAW OF INDUCTION 

 

Faraday investigated quantitatively what factors influence the magnitude of 

the emf induced. He found first of all that the more rapidly the magnetic field 

changes, the greater the induced emf. But the emf is not simply proportional to 

the rate of change of the magnetic field, B. Rather the emf is proportional to  

the rate of change of the magnetic flux, Ф, passing through the circuit or loop of 

area S. Magnetic flux Ф for a uniform magnetic field is defined as  

cosα,Ф B S BS      (11.5) 

here B┴ is the component of the magnetic field В perpendicular to the face of  

the loop, and α is the angle between В and normal to the surface of the loop  

(fig. 11.11).  

 

Fig. 11.11. Determining the magnetic flux through a flat loop of wire of area S 

 

The unit of magnetic flux Ф is called a weber: 1 Wb = 1 T·m
2
. Hence, one 

Weber may be defined as the amount of magnetic flux produced by uniform 

magnetic field of 1 Tesla normal to an area of 1 meter
2
.  

With this definition of flux Ф one can write down the results of Faraday‘s 

investigations: the emf εi induced in a circuit is equal to the rate of change of 

magnetic flux through the circuit: 

εi

Ф
.

t
      (11.6)  
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This fundamental result is known as Faraday's law of induction, and is 

one of the basic laws of electromagnetism.  

If the circuit contains N loops that are closely wrapped so the same flux 

passes through each, the emfs induced in each loop add together, so 

εi

Ф
N .

t
      (11.7)  

 

Example 11.5. A loop of wire in a magnetic field.  

A square loop of wire of side l = 5.0 cm is in a uniform magnetic field  

B = 0.16 T. What is the magnetic flux in the loop (a) when B is perpendicular to 

the face of the loop and (b) when B is at an angle of 30° to the area S of  

the loop? (c) What is the magnitude of the average current in the loop if it has a 

resistance of 0.012 Ω and it is rotated from position (b) to position (a) in 0.14 s? 

Solution. We use the definition ФB = BS to calculate the magnetic flux. 

Then we use Faraday‘s law of induction to find the induced emf in the coil, and 

from that the induced current (I = ε/R). 

The area of the coil is S = l
2
 = (5.0·10

–2
 m)

2
 = 2.5·10

–3
 m

2
, and the direction 

of S is perpendicular to the face of the loop. 

a) B is perpendicular to the coil‘s face, and thus parallel to S, so 

ФB = BS cos0
o
 = (0.16 T)·(2.5·10

–3
 m

2
)·l = 4.0·10

–4
 Wb. 

b) The angle between B and S is 30°, so 

ФB = BS cosθ
o
 = (0.16 T)·(2.5·10

–3
 m

2
)·cos 30° = 3.5·10

–4
 Wb. 

c) The magnitude of the induced emf is 
4ε 3 6 10 V

0 030 A 30 mA
0 012 

.
I . .

R .
 

The current is then 
4ε 3 6 10 V

0 030 A 30 mA
0 012 

.
I . .

R .
 

The minus signs in equation (11.6) is placed there to remind us in which 

direction the induced emf εi acts. Experiments show that an induced emf εi gives 

rise to a current whose magnetic field opposes the original change in flux. 
This is known as Lenz’s law. 

Let‘s apply Lenz‘s law to the relative motion between a magnet and a coil 

in fig. 11.10. The changing flux through the coil induces an emf εi, which 

produces a current in the coil. And this induced current produces its own 

magnetic field. In fig. 11.10, a the distance between the coil and the magnet 

decreases. The magnetic field (and number of field lines), and therefore the flux 

through the coil increases. The magnetic field of the magnet points upward.  

To oppose this upward increase, the magnetic field inside the coil produced by 

the induced current points downward. Thus, Lenz's law tells us that the current 

moves as shown (use the right-hand rule). In fig. 11.10, b the flux decreases 

(because the magnet is moved away), so the induced current produces an upward 



168 

magnetic field through the coil that is ―trying‖ to maintain the status quo. Thus 

the current in fig. 11.10, b is in the opposite direction from fig. 11.10, a. 

According to equation (11.5) induced emf εi can be produced by any one of 

the following methods: 

by changing the magnetic field В; 

by changing the area S of the circuit; 

by changing the angle α, i. e. the relative orientation of the field В and  

area S. 

Consider induced emf εi which is produced by changing the area S of the 

circuit (fig. 11.12). Assume that a uniform magnetic field В is perpendicular to 

the area bounded by the U-shaped conductor and the movable rod resting on it. 

 

Fig. 11.12. A conducting rod is moved to the right on a U-shaped conductor in a uniform 

magnetic field В that points out of the page 

 

If the rod moves at a speed υ, it travels a distance Δx = υΔt in a time Δt. 

Therefore, the area of the loop increases by an amount ΔS = l Δx = l υΔt  

in a time Δt. By Faraday's law there is an induced emf εi whose magnitude  

is given by: 

εi

Ф B S Bl t
Bl .

t t t
    (11.8) 

This equation (11.8) is valid as long as В, l and υ are mutually 

perpendicular. An emf εi induced by a conductor moving with a velocity υ at  

an angle α with a magnetic field B is given by: 

ε sinαi Bl .      (11.9)  

An emf εi induced on a conductor moving in a magnetic field is sometimes 

called motional emf. 

Right hand rule is used to determine the direction of the induced efm εi of  

a conductor moving in a magnetic field (fig. 11.13). If the first finger points in 

the direction of the magnetic field, the thumb points in the direction of motion of 

the conductor, then the central finger points in the direction of the induced efm. 
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Fig. 11.13. Right hand rule for determining the direction of the induced efm εi of a conductor 

moving with velocity υ in a magnetic field B 

 

Example 11.6. Pulling a coil from a magnetic field.  

A 100-loop square coil of wire, with side l = 5.00 cm and total resistance 

100 Ω, is positioned perpendicular to a uniform 0.600 T magnetic field, as 

shown in fig. 11.14.  

It is quickly pulled from the field at constant speed (moving perpendicular 

to B) to a region where B drops abruptly to zero. At t = 0, the right edge of  

the coil is at the edge of the field. It takes 0.100 s for the whole coil to reach  

the field-free region. Find: a) the rate of change in flux through the coil;  

b) the emf and current induced; c) how much energy is dissipated in the coil?  

d) What was the average force required (Fext)? 

 

Fig. 11.14. Example 11.6. The square coil in a magnetic field B = 0.600 T is pulled abruptly 

to the right to a region where B = 0 

 

Solution. We start by finding how the magnetic flux, ФB = BS, changes 

during the time interval Δt = 0.100 s. Faraday‘s law then gives the induced emf 

and Ohm‘s law gives the current. 
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a) The area of the coil is S = l
2
 = (5.00·10

–2
 m)

2
 = 2.50·10

–3
 m

2
. The flux 

through one loop is initially ФB = BS = (0.600 T)·(2.50·10
–3

 m
2
) = 1.50·10

–3
 Wb. 

After 0.100 s, the flux is zero. The rate of change in flux is constant (because  

the coil is square), equal to 
3

20 (1 50 10 Wb)
1 50 10 Wb/s

0 100 s

BФ .
. .

t .
 

b) The emf induced in the 100-loop coil during this 0.100 s interval is 

2ε ( 100) ( 1 50 10 Wb/s) 1 50 VBФ
N . . .

t
 

The current is found by applying Ohm‘s law to the 100-Ω coil: 

2ε 1 50 V
1 50 10 A 15 0 mA

100 

.
I . . .

R
 

By Lenz‘s law, the current must be clockwise to produce more B into  

the page and thus oppose the decreasing flux into the page. 

c) The total energy dissipated in the coil is the product of the power  

(P = I
2
R) and the time t: 

E = Pt = I
2
Rt = (1.50·10

–2
 A)

2
·(100 Ω)·(0.100 s) = 2.25·10

–3
 J. 

d) We can use the result of part (c) and apply the work-energy principle: 

the energy dissipated E is equal to the work A needed to pull the coil out of  

the field. Because A = Fd where d = 5.00 cm, then  
3

2

2 25 10 J
0 0450 N

5 00 10 m

A .
F . .

d .
 

Alternate Solution (d) We can also calculate the force directly using  

F = I·l·B, which here for constant B is F = IlB. The force the magnetic field 

exerts on the top and bottom sections of the square coil of fig. 11.14 are in 

opposite directions and cancel each other. The magnetic force Fm exerted on  

the left vertical section of the square coil acts to the left as shown because  

the current is up (clockwise). The right side of the loop is in the region where  

B = 0. Hence the external force, to the right, needed to just overcome  

the magnetic force to the left (on N = 100 loops) is 

Fext = NIlB = (100)·(0.0150 A)·(0.0500 m)·(0.600 T) = 0.0450 N, 

which is the same answer, confirming our use of energy conservation above. 

 

Example 11.7. Does a moving 

airplane develop a large emf?  

An airplane travels 1000 km/h in 

a region where the Earth‘s magnetic 

field is about 5·10
–5

 T and is nearly 

vertical (fig. 11.15). What is the 

potential difference induced between 

the wing tips that are 70 m apart? Fig. 11.15. Example 11.7. A moving airplane 



171 

Solution. We consider the wings to be a 70-m-long conductor moving 

through the Earth‘s magnetic field. We use equation (11.9) to get the emf. 

Since υ = 1000 km/h = 280 m/s, and B , we have εi Bl  

εi = Blυ = (5·10
–5

 T)·70 m · 280 m/s ≈ 1 V. 

 

Example 11.8. Electromagnetic blood-flow measurement.  
The rate of blood flow in our body‘s vessels can be measured using  

the apparatus shown in fig. 11.16, since blood contains charged ions. Suppose 

that the blood vessel is 2.0 mm in diameter, the magnetic field is 0.080 T, and 

the measured emf is 0.10 mV. What is the flow velocity υ of the blood? 

 

Fig. 11.16. Example 11.8. Measurement of blood velocity from the induced emf 

 

Solution. The magnetic field B points horizontally from left to right  

(N pole toward S pole). The induced emf acts over the width l = 2.0 mm  

of the blood vessel, perpendicular to B and υ (fig. 11.16). We can then use 

equation εi = Blυ to get υ. We solve for υ in equation εi = Blυ: 
4

3

ε (1 0 10 V)
0 63 m/s

(0 080 T) (2 0 10 m)

i .
. .

Bl . .
 

 

11.6. SELF-INDUCTANCE 

 

Let us consider circuit contains a coil of N turns (fig. 11.17). When  

a changing current passes through the coil (or solenoid), a changing magnetic 

flux is produced inside the coil, and this in turn induces an emf in that same coil 

(fig. 11.17). This induced emf opposes the change in flux (Lenz‘s law). For 

example, if the current through the coil is increasing, the increasing magnetic 

flux induces an emf that opposes the original current and tends to retard its 

increase. If the current is decreasing in the coil, the decreasing flux induces an 

emf in the same direction as the current, thus tending to maintain the original 

current. 
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Fig. 11.17. The current I in the circuit causes a magnetic field B in the coil and hence  

a magnetic  flux  Ф through  the coil.  When  the current changes, the flux Ф changes also and 

a self-induced emf appears 

 

Self-inductance occurs when a changing current in a circuit results in  

an induced emf that opposes the change in the circuit itself. Self-inductance 

occurs because some of the magnetic flux produced in a circuit passes through 

that same circuit.  

For a coil carrying current I, there is a magnetic field produced around it. 

The value of B at each point is proportional to the current. Therefore  

the magnetic flux Ф passing through the every loop of the coil is also 

proportional to the current I in the coil:  

Ф ~ I   or   Ф = LI,     (11.10) 

where L is constant of proportionality and is called the self-inductance or 

inductance.  

If current I is equal to 1 (unit) then from equation (11.10) L = Ф. Hence,  

the self-inductance L of a circuit is equal to the flux linked with it when a unit 

current flows through the circuit. 

According to Faraday‘s law the emf εi induced in a coil of self-inductance  

L is:  

εi

Ф I
N L .

t t
     (11.11) 

Let ΔI/Δt be equal to a unit then the emf εi = –L. Hence, self-inductance L 

of a circuit is numerically equal to the induced emf εi set up in it, when the rate 

of change of current through the circuit is unity. The self-inductance L is 

measured in henries H:  

1 Volt
1 Henry

1 ampere/sec
. 

The magnitude of L depends on the geometry and on the presence of  

a ferromagnetic material. 

Circuits always contain some inductance, but often it is quite small unless 

the circuit contains a coil of many turns. A coil that has significant self-

inductance L is called an inductor. 

Inductance is shown on circuit diagrams by the symbol:  . 



173 

Example 11.9. Solenoid inductance. 

(a) Determine a formula for the self-inductance L of a tightly wrapped and 

long solenoid containing N turns of wire in its length l and whose cross-

sectional area is S. (b) Calculate the value of L if N = 100, l = 5.0 cm,  

S = 0.30 cm
2
 and the solenoid is air filled. 

Solution. To determine the inductance L, it is usually simplest to start with 

equation 
NФ

L
I

, so we need to first determine the flux Ф. 

The magnetic field inside a solenoid (ignoring end effects) is constant:  

B = μonI, where the number of loops per unit length n = N/l. 

The flux is Ф = BS = μoNIS/l, so 
2

0μ N SNФ
L .

I l
 

b) Since μo = 4π·10
–7

 T·m/A, then 
7 2 5 2

2

(4π 10 T m/A) (100) (3 0 10 m )
7 5 μH

5 0 10 m

.
L . .

.
 

NOTE. Magnetic field lines “stray” out of the solenoid (see fig. 11.1, b), 

especially near the ends, so our formula is only an approximation. 

 

Example 11.10. 

A solenoid that has a length equal to 25.0 cm, a radius equal to 0.800 cm, 

and 400 turns is in a region where a magnetic field of 600 G exists and makes an 

angle of 60° with the axis of the solenoid. (a) Find the magnetic flux through the 

solenoid. (b) Find the magnitude of the average emf induced in the solenoid if 

the magnetic field is reduced to zero in 1.40 s. 

Solution. We can use its definition to find the magnetic flux through  

the solenoid and Faraday‘s law to find the emf induced in the solenoid when  

the external field is reduced to zero in 1.4 s. 

a) Express the magnetic flux Ф through the solenoid in terms of N, B, S, 

and θ: Ф = NBS cos θ = NBπR
2
 cos θ. 

Substitute numerical values and evaluate Ф: 

Ф = 400·(60.0 mT)·3.14·(0.00800 m) 2·cos 600 = 2.41 mWb. 

b) Apply Faraday‘s law to obtain the emf induced in the solenoid: 

0 2 41 mWb
ε 1 72 mV

1 40 s
i

Ф .
. .

t .
 

 

11.7. MUTUAL INDUCTION 

 

If two coils of wire are placed near each other, as in fig. 11.18, a changing 

current in one will induce an emf in the other. According to Faraday‘s law,  

the emf ε2 induced in coil 2 is proportional to the rate of change of magnetic flux 

passing through it. This flux is due to the current I1 in coil 1 (which is called  
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the primary coil), and it is often convenient to express the emf in coil 2 (which is 

called the secondary coil) in terms of the current in coil 1. 

 

Fig. 11.18. A changing current in one coil will induce a current in the second coil 

 

We let Ф21 be the magnetic flux in each loop of coil 2 created by  

the current in coil 1. If coil 2 contains N2 closely wrapped loops, then N2 ·Ф21 is 

the total flux passing through coil 2. If the two coils are fixed in space, N2·Ф21 is 

proportional to the current I1 in coil 1; the proportionality constant is called  

the mutual inductance, M21, defined by 

2 21
21

1

N Ф
M .

I
     (11.12)  

The emf ε2 induced in coil 2 due to a changing current in coil 1 is, by 

Faraday‘s law,  

21
2 2ε

Ф
N .

t
     (11.13) 

Let us combine this with equation (11.12) rewritten as Ф21 = M21 I1 / N2 

and obtain 

1
2 21ε

I
M .

t
 

This relates the change in current in coil 1 to the emf it induces in coil 2. 

The mutual inductance of coil 2 with respect to coil 1, M21, is a ―constant‖  

in that it does not depend on I1; M21 depends on ―geometric‖ factors such as  

the size, shape, number of turns, and relative positions of the two coils, and also 

on whether iron (or some other ferromagnetic material) is present. For example, 

if the two coils in fig. 11.18 are farther apart, fewer lines of flux can pass 

through coil 2, so M21 will be less. 

Suppose we consider the reverse situation: when a changing current in  

coil 2 induces an emf in coil 1. In this case, 

2
1 12ε ,

I
M

t
 

where M12 is the mutual inductance of coil 1 with respect to coil 2. It is possible 

to show that M12 = M21.  



175 

Hence, for a given arrangement we do not need the subscripts and we can 

let M = M12 = M21, so that  

2
1ε

I
M

t
     (11.14a) 

and         1
2ε

I
M .

t
       (11.14b) 

The SI unit for mutual inductance is the henry (H), where  

1 H = l V·s/A = l Ω·s. 

 

Example 11.11. 

Two coils have mutual inductance of 1.5 H. If the current in the primary 

circuit is raised to a value of 50 A in one second after closing the circuit, what is 

the induced efm in the secondary? 

Solution. Here, mutual inductance of the coils M = 1.5 H. Rate of change 

of current in the primary is: 
50 A

50 A/s
1 s

I
.

t
 

Then the induced efm in the secondary is: 

ε 1 5 H 50 A/ 75 V
I

M . s .
t

 

 

Example 11.12. Solenoid and coil.  

A long thin solenoid of length l and cross-sectional area S contains N1 

closely packed turns of wire. Wrapped around it is an insulated coil of N2 turns, 

fig. 11.19. Assume all the flux from coil 1 (the solenoid) passes through coil 2, 

and calculate the mutual inductance I1. 

 

Fig. 11.19. Example 11.12. A long thin solenoid of length l and cross-sectional area S 

contains N1 closely packed turns of wire. Wrapped around it is an insulated coil of N2 turns 

 

Solution. We first determine the flux produced by the solenoid, all of 

which passes uniformly through coil N2, using equation for the magnetic field 

inside the solenoid: 

1
0 1μ ,

N
B I

l
 

where n = N1/l is the number of loops in the solenoid per unit length, and is  

the current in the solenoid. 
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The solenoid is closely packed, so we assume that all the flux in the solenoid 

stays inside the secondary coil. Then the flux Ф21 through coil 2 is 

1
12 0 1μ

N
Ф BS I S.

l
 

Then the mutual inductance is 0 1 22 21

1

μ N N SN Ф
M .

I l
 

NOTE. We calculated M21; if we had tried to calculate M12, it would have 

been difficult. Given M12 = M21 = M, we did the simpler calculation to obtain M. 

Note again that M depends only on geometric factors, and not on the currents. 

 

11.8. ENERGY STORED IN A MAGNETIC FIELD 

 

Since an inductor of inductance L in a circuit serves to oppose any change 

in the current I through it, work must be done by an external source such as  

a battery in order to establish a current in the inductor. One can conclude  

that energy can be stored in an inductor. The role played by an inductor  

in the magnetic case is analogous to that of a capacitor in the electric case.  

The power P, or rate at which an external emf εext works to overcome the self-

induced emf εi and pass current I in the inductor is  

ext
extεL

W
P I .

t
 

If only the external emf and the inductor are present, then εext = –εi which 

implies 

ext εL i

W I
P I IL .

t t
 

If the current is increasing with ΔI/Δt > 0, then P > 0 which means that  

the external source is doing positive work to transfer energy to the inductor. 

Thus, the internal energy UB of the inductor is increased. On the other hand,  

if the current is decreasing with ΔI/Δt < 0, we then have P < 0. In this case,  

the external source takes energy away from the inductor, causing its internal 

energy to go down. The total work done by the external source to increase  

the current form zero to I is then:  

2
ext

1

2
W LI .  

This is equal to the magnetic energy stored in the inductor:  

2
B

1

2
W LI . 

The above expression is analogous to the electric energy stored in  

a capacitor:     
2

1

2
E

q
W .

C
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We comment that from the energy perspective there is an important 

distinction between an inductor and a resistor. Whenever a current I goes 

through a resistor, energy flows into the resistor and dissipates in the form of 

heat regardless of whether I is steady or time-dependent (recall that power 

dissipated in a resistor is PR = IUR = I
2
R). On the other hand, energy flows into 

an ideal inductor only when the current is varying with ΔI/Δt > 0. The energy is 

not dissipated but stored there; it is released later when the current decreases 

with ΔI/Δt < 0. If the current that passes through the inductor is steady, then 

there is no change in energy since PL = LI(ΔI/Δt) = 0. It makes sense to say 

there is no energy in inductor with no current. 

The energy stored in the magnetic field generated by the current flowing 

through the inductor can be also given by: 
2 2

,
2 2 2

LI IФ Ф
W

L
     (11.15)  

as Ф = LI.  

If the current that passes through the inductor is steady, then change in 

energy since PL = LI(ΔI/Δt) = 0. It makes sense to say there is no energy in 

inductor with no current. 

The energy per unit volume or magnetic energy density is: 
2

0

1
energy density ,

2 μμ
B

B
w     (11.16) 

where μ0 is permeability of free space (μ0 = 4π·10
–7

 T·m/A), μ is the magnetic 

permeability of the material.  

This equation is analogous to that for an electric field: 2
0

1
εε

2
Ew E .

 

 

Example 11.13. Energy stored in solenoid.  

Calculate the energy associated with the magnetic field of a 200-turn 

solenoid in which a current of 1.75 A produces a magnetic flux of 3.70·10
–4

 Wb 

in each turn. 

Solution. The energy W stored in the solenoid when it is carrying a current 

I is 21

2
W LI . To determine the inductance L, it is usually simplest to start 

with equation 
NФ

L
I

 

L = (200)·(3.70·10
–4

)/1.75 = 4.23·10
–2

 H. 

Thus, the energy W stored in the solenoid is:  
2 2 2(4 23 10 H) (1 75 )

0 065 J.
2 2

LI . . A
W .  
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Example 11.14. Energy density.  

Compare the energy density stored in Earth‘s electric field near its surface 

to that stored in Earth‘s magnetic field near its surface.  

Solution. We can compare the energy density stored in Earth‘s electric 

field to that of Earth‘s magnetic field by finding their ratio. We‘ll take Earth‘s 

magnetic field to be 0.3 G and its electric field to be 100 V/m. 

The energy density in an electric field E is given by: 
2

0
1

ε
2

Ew E . 

The energy density in a magnetic field B is given by: 
2

0

1

2 μ
B

B
w .  

Express the ratio of wB to wE to obtain: 
2

2 4
3

2 7 2 12 2 2 2
0 0

1 T
0 3 G

10  G 8 09 10
μ ε (4π 10 N/A ) (8 854 10 C /N m ) (100 V/m)

B

E

.
w B

. .
w E .

 

 

11.9. LC CIRCUIT AND ELECTROMAGNETIC OSCILLATIONS 

 

In any electric circuit, there can be three basic components: resistance R, 

capacitance C, and inductance L, in addition to a source of emf. Let‘s consider 

an LC circuit, one that contains only a capacitance C and an inductance, L,  

fig. 11.20. This is an idealized circuit in which we assume there is no resistance. 

Let us suppose the capacitor in fig. 11.20, A is initially charged so that one plate 

has charge q0 and the other plate has charge –q0, and the potential difference 

across it is U = q/C. Suppose that at t = 0, the switch is closed (fig. 11.20, B). 

The capacitor immediately begins to discharge.  

 
A        B 

Fig. 11.20. (A) an LC sircuit: a capacitor C be charged q0 and connected to an inductor L.  

(B) The switch is closed in the LC circuit. At the instant shown, the current is increasing so  

the polarity of induced emf in the inductor is as shown 
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The moment the circuit is completed, the charge on the capacitor starts 

decreasing, giving rise to current in the circuit. Let q and I be the charge and 

current in the circuit at time t. Since ΔI/Δt is positive, the induced emf in L will 

have polarity as shown, i. e. Ub < Ua.  

We know that a capacitor C and an inductor L can store electrical and 

magnetic energy, respectively. When a capacitor (initially charged) is connected 

to an inductor, the charge on the capacitor and the current in the circuit exhibit 

the phenomenon of electromagnetic oscillations similar to oscillations in 

mechanical system. 

Let us now try to visualize how this electrical oscillation takes place  

in the circuit. Fig. 11.21, a shows a capacitor with initial charge q0 connected to 

an ideal inductor. The electrical energy stored in the charged capacitor is 

2
20
0

1 1

2 2
E

q
W CU .

C  
 

Fig. 11.21. Electromagnetic oscillations in LC circuit 
 

Since, there is no current in the circuit, energy in the inductor is zero  

(WB = 0). Thus, at times t = 0, t = T/2, t = T and so on (where T = 1/ν is  

the period; and angular frequency (
1

ω 2πν
LC

) all the energy is stored in 

the electric field of the capacitor: 
2

01

2
E

q
W W .

C
 

At t = 0, the switch is closed and the capacitor starts to discharge  

(fig. 11.21, b). As the current increases, it sets up a magnetic field in  

the inductor and thereby, some energy gets stored in the inductor in the form of 

magnetic energy:  

2
B

1

2
W LI . 

As the current reaches its maximum value I0 (at t = T/4, 3T/4 and so on,  

as in fig. 11.21, c), all the energy is stored in the magnetic field of the inductor 

(WE = 0): 

2
B 0

1

2
W W LI . 

a b c d e 
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You can easily check that the maximum electrical energy equals  

the maximum magnetic energy. The capacitor now has no charge and hence no 

energy. The current now starts charging the capacitor, as in fig. 11.21, d. This 

process continues till the capacitor is fully charged (at t = T/2) (fig. 11.21, e). 

But it is charged with a polarity opposite to its initial state in fig. 11.21, a.  

The whole process just described will now repeat itself till the system reverts to 

its original state. Thus, the energy oscillates between being stored in the electric 

field of the capacitor and in the magnetic field of the inductor. The total energy 

W is constant, and energy is conserved (fig. 11.22). 

 

Fig. 11.22. Energy WE and WB stored in the capacitor and the inductor as a function of time. 

Note  how  the energy  oscillates between electric and magnetic. The dashed line at the top is 

the (constant) total energy: W = WE + WB 

 

Natural frequency ν of oscillation of the LC circuit is given by: 

1

2π
.

LC
      (11.17) 

At any time the sum of electric and magnetic energy stored in the capacitor 

and in the inductor has the constant value that is equal to the maximum electrical 

energy in the capacitor and to the maximum magnetic energy in the inductor: 
2

2 2 2
0 0

1 1 1

2 2 2 2

q
W LI CU LI .

C
 

 

Example 11.15. LC circuit.  

A 1200 pF capacitor is fully charged by a 500 V dc power supply. It is 

disconnected from the power supply and is connected, at t = 0, to a 75 mH 

inductor. Determine: a) the initial charge on the capacitor; b) the maximum 

current; c) the frequency ν and period T of oscillation; d) the total energy 

oscillating in the system. 

Solution. We use the analysis above, and the definition of capacitance  

q = CU. 

a) The 500 V power supply, before being disconnected, charged  

the capacitor to a charge of q0 = CU = (1.2·10
–9

 F)·500 V = 6.0·10
–7

 C. 
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b) The maximum current, Imax, is 
7

0
max 0

9

6 0 10 C
ω 63 mA

0 075 H (1 12 10 F)

q .
I q .

LC . .

 

c) The frequency v can be obtained from: 
ω 1

17 kHz,
2π 2π LC

 

and the period T is 
51

6 0 10 sT . . 

d) Finally the total energy is 
2 7 2

40
9

(6 0 10 C)
1 5 10 J

2 2(1 2 10 F)

q .
W . .

C .
 

PROBLEMS 

1. The magnetic field perpendicular to a single 15.6 cm diameter circular 

loop of copper wire decreases uniformly from 0.550 T to zero. If the wire is  

2.05 mm in diameter, how much charge moves past a point in the coil during 

this operation? (Answer: 4.21 C) 

2. What is the mutual inductance of a pair of coils, if a current change  

of 6 A in one coil causes the flux in the second coil of 2000 turns to change by 

12·10
–4

 Wb. (Answer: 0.4 H) 

3. A coil that has a self-inductance of 2.00 H and a resistance of 12.0 Ω  

is connected to an ideal 24.0 V battery. (a) What is the steady-state current?  

(b) How much energy is stored in the inductor when the steady-state current is 

established? (Answer: 2.0 A; 4.0 J) 

4. An LC circuit has an inductance of 3.0 mH and a capacitance of 10 μF. 

Calculate (a) the angular frequency and (b) the period of oscillation. (Answer: 

5800 rad/s; 1.1 ms) 

5. A capacitor C = 25 μF is charged to voltage of 200 V and then 

discharges on inductance L = 10 mH. Calculate the whole energy oscillated  

in the circuit, the maximum value of current and oscillation frequency. (Answer: 

0.5 J; 10 A; 318 Hz) 

TESTS 

1. The unit of magnetic flux in SI system is: 

a) Oersted;  b) Henry;  c) Tesla;  d) Weber. 

2. The varying magnetic field through a conductor produces electromotive 

force. This is in accordance with: 

a) Faraday‘s law; 

b) Lenz‘s law; 

c) Laplace‘s law; 

d) Ampere‘s law. 
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3. A magnet is taken towards a coil and is moved (i) quickly (ii) slowly, 

then the induced emf is: 

a) larger in first case;  b) larger in second case; 

c) equal in both cases;  d) None of the above. 

4. ‖The induced emf is always in such a direction so as to oppose  

the change that causes it‖ is called: 

a) Lenz‘s law;    b) Faraday‘s law; 

c) Kirchoff‘s law;   d) Joule‘s law. 

5. The expression for the induced emf contains a negative sign εi
Ф

.
t

 

What is the significance of the negative sign? 

a) the induced emf opposes the changes in the magnetic flux; 

b) the induced emf is produced only when the magnetic flux decreases; 

c) the induced emf is opposite to the direction of the flux; 

d) none of above. 

6. The induced emf in a coil rotating in a magnetic field is maximum when 

the angle between the plane of the coil and direction of the field is: 

a) π/4; 

b) zero; 

c) π/2; 

d) some angle other than mentioned above.  

7. If line of magnetic field is parallel to a surface, then the magnetic flux 

through the surface is: 

a) small but not zero; 

b) infinite; 

c) zero; 

d) large but not infinite. 

8. The unit of self-inductance in SI system is: 

a) Henry;  b) Tesla;  c) Weber;  d) Oersted. 

9. When a conductor of length l is moved perpendicular to a uniform 

magnetic field B with uniform velocity υ, the emf induced is: 

a) B l υ;  b) B l/υ;  c) B υ/l;  d) none of these. 

10. An airplane is moving north horizontally with a speed of 720 km/h at  

a place where vertical component of earth‘s field is 0.5·10
–4

 T. What  

is the induced emf set up between the tips of the wings 10 m apart? 

a) 1.0 V;  b) 0.1 V;  c) 10 V;  d) 0.01 V. 
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12. GEOMETRICAL OPTICS 
 

12.1. THE RAY MODEL OF LIGHT 
 

In a transparent homogeneous medium light travels in straight lines. This 

ray model is useful in describing many aspects of light such as reflection, 

refraction, and the formation of images by mirrors and lenses.  

The speed of light in vacuum and in air is c = 3·10
8
 m/s. In other 

transparent materials the light speed  is always less than in vacuum. The ratio 

of the speed of light in vacuum to the speed  in a given material is called  

the absolute index of refraction n of this material: 

υ

c
n .      (12.1) 

The refraction index n is different for various materials and it is never less 

than one. The refractive index of a medium is a measure of light speed in  

the medium:           υ
c

.
n

           (12.2) 

The relation between light speeds in two mediums is called the relative 

refractive index of the second medium with respect to the first one n21:  

2 1
21

1 2

υ

υ

n
n .

n
     (12.3) 

Reflection Law. When light strikes the surface of an object, some  

of the light is reflected. The rest can be absorbed by the object (and transformed 

to thermal energy) or transmitted through (in case of transparent medium like 

glass or water).  

When a light ray strikes a flat surface divided two media (fig. 12.1), we 

define the angle of incidence α as the angle between an incident ray and  

the normal (perpendicular) to the surface, and the angle of reflection, γ as  

the angle between the reflected ray and the normal. The law of reflection is:  

the incident ray, the normal to the surface and the reflected ray lie in the same 

plane; the angle of reflection equals to the incidence angle: 

α = γ.      (12.4) 

 
Fig. 12.1. Law of reflection 
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12.2. IMAGE FORMATION BY A FLAT MIRROR 

 

When light is incident upon a rough surface, even microscopically rough 

such as this page, it is reflected in many directions, as shown in fig. 12.2. This is 

called the diffuse reflection (fig. 12.2). Reflection from a mirror is known as 

specular reflection (fig. 12.3) (―Speculum‖ is Latin for mirror.)  

     

Fig. 12.2. Diffuse reflection    Fig. 12.3. Specular reflection 
 

A flat mirror is one with a smooth flat reflecting surface. Fig. 12.4 shows 

how an image is formed by a plane mirror according to the ray model. Each ray 

that reflects from the mirror and enter the eye appear to come from a single 

point (called the image point) behind the mirror, as shown by the dashed lines. 

That is, our eyes and brain interpret any ray that enters an eye as having traveled 

straight-line path. The point from which each ray seems to come is one point on 

the image. For each point on the object, there is a corresponding image point. 

 

Fig. 12.4. Formation of a virtual image by a plane mirror 
 

The image appears as far behind the mirror as the object is in front.  

The perpendicular distance from mirror to image (the image distance) is equals 

the perpendicular distance from object to mirror (the object distance). From  

the geometry, we can also see that the height of the image is the same as that of 

the object.  

This image would not appear on paper or film placed at the location of  

the image, therefore it is called a virtual image. This is to distinguish it from  

a real image in which the light does really pass through the image and which 

therefore could appear on film or on a while sheet of paper or screen placed at 

the position of the image. Our eyes can see both real and virtual images, as long 

as the diverging rays enter our pupils. 
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12.3. REFRACTION. SNELL’S LAW 

 

Refraction is the bending of a light ray when it 

enters a medium where the refractive index is 

different (fig. 12.5). The amount of bending depends 

on the indices of refraction of the two media and is 

described quantitatively by Snell’s Law:  

– the incident ray, the normal to the surface and 

the refrected ray lie in the same plane; 

– the ratio of the sine of the angle of incidence α 

to the sine of the angle of refraction β is equal to  

the reciprocal of the ratio of the refractive indices:  

2

1

sinα
,

sinβ

n

n
      (12.5) 

where n1 is the absolute index of refraction of the first medium; n2 is the 

absolute index of refraction of the second medium.  

 

12.4. PHENOMENON OF TOTAL INTERNAL REFLECTION 

 

When the light is travelling from medium with bigger refractive index  

to the medium with smaller refractive index (for example, from water to air),  

the angle of refraction is greater than angle of incidence. If the angle of 

incidence increases, the angle of refraction approaches to 90°. The angle of 

incidence at which the angle of refraction is equal to 90° is called the critical 

angle αcr. For angles of incidence greater than αcr, there is no refracted ray, all 

of the incident light is reflected (fig. 12.6). This effect is called total internal 

reflection. The formula for critical angle αcr is derived from Snell‘s Law:  

2 2
cr

1 1

sinα sin 90 =
n n

.
n n

     (12.6) 

 

 

Fig. 12.6. To a total internal reflection 
 

The phenomenon of total internal reflection is used for the fiber optics. 

Fig. 12.5. Snell‘s Law 
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12.5. THIN LENSES. RAY TRACING 

 

A thin lens is a transparent object with two refracting surfaces.  

The thickness of lens is negligible compared to radii of curvature of these 

surfaces. A straight line passed through the curvature centers of these surfaces is 

the principal axis of the lens. 

The lens can be convex or concave. If the lens is convex, a parallel beam of 

light passing through the lens is focused to a point on the axis called focal point. 

In this case the lens is called a converging lens. The focal point placed at  

the principal axis of the lens is called a principal focal point. The distance of  

the principal focal point from the center of the lens is called the focal length. 

If the lens is concave, a parallel beam of light passing through the lens is 

diverged. This lens is called a diverging lens. The focal point F of a diverging 

lens is defined as the point from which refracted rays seem to be emanating.  

The distance from F to the lens is called the focal length, just as for  

a converging lens (fig. 12.7).  

 

Fig. 12.7. Convex and concave lenses and its principal focuses  

 

The image produced by a converging lens can be constructed using just two 

of three rays (fig. 12.8): 

1. A ray which is parallel to the optical axis refracts through principal focal 

point behind the lens.  

2. A ray which passes through the principal focal point in front of the lens 

refracts parallel to the optical axis.  

3. A ray which passed through the optical center of the lens does not refract 

at all. 

 

Fig. 12.8. Principal rays for converging lenses 
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The point where the refracted rays are crossing is the image of the object 

point. Actually, any two of these rays will suffice to locate the image point, but 

drawing the third ray can serve as a check. 

Converging lens can form both real and virtual image depending on  

the location of object with respect to foсal distance of lens. Diverging lens can 

form virtual images only.  

For diverging lens the image produced by two of three rays (fig. 12.9): 

1) a ray passing through the optical center of the lens; 

2) a ray parallel to the principal axis, which refracts through the lens and 

appears to have come from the principal focus; 

3) a ray heading towards the principal focus (on the opposite side of  

the lens) is refracted by the lens goes parallel to the principal axis. 

 

Fig. 12.9. Principal rays for diverging lenses 

 

The real image is located on the opposite side of the lens and it may be 

projected on a screen or film. The virtual image is located on the same side of 

the lens as the object and can‘t be projected on a screen or film. But the eye does 

not distinguish between real and virtual images — both are visible. 

 

12.6. THE THIN LENS EQUATION. MAGNIFICATION 

 

Optical power is the degree to which a lens converges or diverges light.  

It is equal to the reciprocal of the focal length of the device:  
1

D .
F

      (12.7) 

The shorter the focal length, the stronger the refraction in the lens and  

the larger the value of the optical power. For converging lenses the optical 

power is positive, while for diverging lenses it is negative. The most common 

unit of the optical power measurements is diopter (D): 1 D = 1 m
–1

. 
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The thin lens equation relates the object distance, image distance and focal 

length:      
1 1 1

.
d f F

           (12.8) 

where d is the distance (measured along the axis) from the object to the lens; f is 

the distance (measured along the axis) from the image to the lens; F is the focal 

length of the lens (fig. 12.10). 

 
Fig. 12.10. Scheme for the thin lens equation 

 

When using this equation, signs are very important. Distance d from  

the object to the lens is always positive. Distance f from the image to the lens is 

positive for real images and negative for virtual ones. Focal length F is positive 

for converging lenses and negative for diverging ones. 

The magnification of the lens is given by: 

,
H f

M
h d

      (12.9) 

where H is a size of an image; h is a size of an object.  

A magnifying glass (also called a hand lens) is a convex lens that is used to 

produce a virtual magnified image of an object (fig. 12.11).  

 
Fig. 12.11. Magnifying glass 
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Magnification of the magnifying glass can be found as:  

0 ,
df

M
d F

      (12.10) 

where d0 is the distance of the best vision (d0 = 25 cm), F is focal length. 

 

Example 12.1. 

What is the position and the size of the image of a 7.6-cm-high leaf placed 

at 1m from a +50-mm-focal-length camera lens? 

Solution. 

d = 1 m = 100 cm; 

F = 50 mm = 5 cm; 

f = ? 

H = ? 

1 1 1 1 1
,

5 cm 100 cmf F d
 f = 5.26 cm. 

The magnification is: 
5 26 cm

0 0526
100 cm

H f .
M . .

h d
 

So: H = M·h = 0.0526·7.6 cm = 0.4 cm. 

The image is 4 mm high. 

 

Example 12.2.  
An object is placed 10 cm from a 15-cm-focal-length converging lens. 

Determine the image position and size.  

Solution. 

d = 10 cm; 

F = 15 cm; 

f = ? 

H = ? 

1 1 1 1 1 1
,

15 cm 10 cm 30 cmf F d
 f = –30 cm. 

Because f is negative, the image must be virtual and located on the same 

side of the lens as the object. The magnification: 

30 cm
3

10 cm

H f
M .

h d
 

The image is three times as large as the object and it is upright. 

TESTS 

1. A light ray has an angle of incidence of 34°. The reflected ray will make 

what angle with the reflecting surface? 

a) 34°;  b) 56°;  c) 66°;  d) 74°. 
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2. The critical angle for diamond (n = 2.42) submerged in water (n = 1.33) is: 

a) 17°;   b) 24°;  c) 33°;  d) 49°. 

3. Calculate the index of refraction for a substance in which light travels at 

1.97 · 10
8
 m/s. 

a) 1.97;  b) 0.66;  c) 1.42;  d) 1.52. 

4. The critical angle of zircon is 31°. Which of the following incident 

angles would result in total internal reflection? 

a) 17°;  b) 34°;  c) 42°; 

d) A and C; e) B and C. 

5. A object is placed between F and 2F for a diverging lens. The virtual 

image will be located:  

a) between F and 2F; 

b) between the lens and F; 

c) farther than 2F; 

d) there is insufficient information to answer the question. 

6. The focal length of a converging lens is 15 cm. An object is placed  

40 cm away from the lens. The image will be: 

a) smaller and real;  

b) larger and real; 

c) the same size and real; 

d) smaller and virtual; 

e) larger and virtual. 

PROBLEMS 

1. A sharp image is located 373 mm behind a 215-mm-focal-length 

converging lens. Find the object distance by calculation. (Answer: 508 mm) 

2. It is desired to magnify reading material by a factor of 2.5X when  

a book is placed 9 cm behind a lens. Describe the type of image this would be. 

What type of lens is needed? What is the power of the lens in diopters? 

(Answer: 6.7 D upright, magnified; converging lens) 

3. An object is located 1.5 m from an 8-D lens. By how much does  

the image move if the object is moved 0.9 m closer to the lens? (Answer:  

0.02 m) 

4. What is the focal length of a magnifying glass of 3.8X magnification 

for a normal eye? (Answer: 6.6 cm) 
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13. THE WAVE NATURE OF LIGHT 
 

13.1. ELECTROMAGNETIC WAVES SPECTRUM 

 

The electromagnetic spectrum is distribution of electromagnetic waves 

according to their wavelength or frequency. The electromagnetic spectrum 

includes radio waves, infrared, visible and ultraviolet light, X-rays and  

γ-radiation. The wavelength and frequency are different for different type of 

electromagnetic waves, but a speed of these waves in air and vacuum is constant 

for all of them and equal to 
8 m

3 10
s

c . 

Radio waves have wavelengths λ > 1 mm; they are used to transmit radio 

and television signals. Infrared (IR) is invisible waves with wavelengths  

1 mm > λ > 760 nm. Most of the radiation emitted by heated objects is infrared. 

Visible light (760 nm > λ > 400 nm) is a small part of the electromagnetic 

spectrum that human eye can respond. Ultraviolet (UV) is an electromagnetic 

radiation with a wavelength from 400 nm to 80 nm, shorter than that of visible 

light but longer than X-rays. UV radiation is present in sunlight. A small dose of 

ultraviolet radiation is beneficial to humans, but larger doses cause cataracts and 

skin cancer. X-rays have great penetrating power and are used extensively  

in medical applications as a diagonistic tool. Their wavelength range is  

80 nm > λ > 10
–5

 nm. γ-radiation have wavelengths of less than λ < 10
–5

 nm. 

They are more penetrating than X-rays. Gamma rays are generated by 

radioactive atoms. 

 

13.2. LIGHT INTERFERENCE 

 

Light is a transverse, electromagnetic wave that can be seen by humans.  

An electromagnetic wave consists of oscillating electric and magnetic fields.  

An electromagnetic wave traveling along an x axis has an electric field E and  

a magnetic field B with magnitudes that depend on x and t: 

0 0 sin ω( ),      sin ω( ),
υ υ

x x
E E t B B t   (13.1) 

B0 = E0/υ   or   E0 = B0·υ, 

where E0 and B0 are the amplitude values of the electric field strength and  

the magnetic induction respectively; υ ω( )
υ

x
t

 
is the phase, ω = 2πυ is  

the angular frequency; t is a time; υ is the velocity, x is the coordinate. 

The wave nature of light was first illustrated through experiments on 

diffraction and interference.  
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The interference is superimposition of waves resulting in a steadily in time 

non uniform distribution of wave energy, with a maxima and minima of light 

intensity. 

To produce the interference of light it is necessary to have two waves or 

two wave sources with the same frequency and constant phase difference. They 

are called coherent waves or coherent sources correspondently.  

Two independent sources of light cannot be coherent because the waves 

emitted by them would not have the same phase or constant difference in phase. 

However if the light from the single light source is splited in two beams, these 

beams may be the coherent waves of light.  

For two coherent waves or sources of light the distribution of energy  

in the surrounding medium is not uniform at all points. There are certain 

regions, where the intensity of light is maximum. Also, there are other regions, 

where the intensity of light is minimum. Thus the energy due to sources of light 

is redistributed. This phenomenon of redistribution of energy in a medium due 

to superimposition of coherent waves of light is called the interference of light. 

At the any point where superimposition of coherent waves occurs  

the amplitude of oscillator of the electrical field is equal to 

2 2
1 2 1 22 cos( υ),E E E E E     (13.2) 

where E1 and E2 are the electrical amplitude of the first and second waves,  

Δυ = (υ1 – υ2) — their phase difference.  

If these waves are not coherent their phase difference changes in time very 

quickly and (cosΔφ) changes from (–1) to (+1) about 10
9
 times per second! Its 

average value is equal to zero, so the human eye can see the average amplitude 

only: 2 2
1 2E E E  and average intensity I = I1 + I2.  

But if these waves are coherent, their phase difference is constant in time 

so the amplitude of resulting oscillation is constant in time too and defined by 

(13.2).  

At the points where Δυ = 2πk (k = 0, ±1, ±2 …) cos Δυ = +1, so  

the amplitude of an electrical field oscillator will be maximum:  

2 2
max 1 2 1 2 1 22E E E E E E E .    (13.3a) 

Hence the intensity of light at such points becomes maximum too:  

1 2 1 22I I I I I .  

This is called constructive interference.  

At some other points, where Δυ = π(2k + 1) (k = 0, ±1, ±2 …) will be  

cos Δυ = –1, so the amplitude of an electrical field oscillators will be minimum:  

2 2
min 1 2 1 2 1 22E E E E E E E .  (13.3b) 

Hence the intensity of light at such points is minimum:  

1 2 1 22I I I I I . 
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This is called destructive interference. 

If E1 = E2 the destructive interference intensity is equal to zero (see 13.3, b). 

There are no light energy losses at the interference of light. The loss of 

energy at the points of destructive interference appears as the increase of energy 

at the points of constructive interference.  

A simple experiment of the interference of light was demonstrated by 

Thomas Young in 1801. It provides solid evidence that light is a wave. 

The light from the single light source goes through two slits S1 and S2 that 

serves as a coherent sources. At the screen one has seen the interference pattern 

called fringes, consisting of alternating light and dark bars, where 

correspondently maximum and minimum of wave interference has occurred. 

The path difference of the two rays coming through two slits to the point M 

(fig. 13.1) on the screen is: 

Δd = d2 – d1,      (13.4) 

and phase difference is: 

2π
υ

λ
d .       (13.5) 

 

Fig. 13.1. Light interference 

 

If the path difference equals a whole number of wavelengths, then 

constructive interference takes place and a bright fringe will appear on  

the screen: 

Δd = kλ (Δυ = 2πk), k = 0, ±1, ±2 …   (13.6) 

The value of k is called the order of the interference fringe. The first order 

(k = 1), for example, is the first fringe on each side of the central fringe (which 

is at Δυ = 0, k = 0). 

If the ray‘s paths differ by a half number of wavelengths, destructive 

interference occurs and dark fringes will appear: 

λ
(2 1) ,  if  υ (2 1)π,  0, 1, 2 

2
d k k k ...  (13.7) 
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In daily life, we observe that a thin layer of an oil spread over water surface 

and a thin soap film appear colored in sunlight. This production of colors is due 

to interference of light. 

 

13.3. DIFFRACTION OF LIGHT 

 

The first convincing wave theory for light was established in 1678 by 

Dutch physicist Christian Huygens. Huygens‘ wave theory is based on  

a geometrical construction and allows to tell where a wave front will be at any 

time in the future if we know its present position. Huygens‘ principle is:  

All points on a wave front serve as point sources of a coherent spherical 

secondary wavelets. Due to its interference the next new position of the wave 

front will be a surface tangent to these secondary wavelets.  

Huygens‘ principle is particularly useful for analyzing what happens when 

waves impinge on an obstacle and the wave fronts are partially interrupted. 

Huygens‘ principle predicts that wave bends behind an obstacle.  

This phenomenon of bending around obstacles by light waves and its 

spreading into regions of geometrical shadow of an object is called diffraction. 

Each element of a wave front starting from a source of light becomes the source 

of secondary coherent wavelets, which spread out into space. The phenomena of 

diffraction occurs due to interference of the secondary wavelets that forms a new 

wave front (fig. 13.2).  

 
Fig. 13.2. Single slit diffraction 

 

A large number of equally spaced parallel slits is called a diffraction 

grating. Grating can be made by precision machining of very fine parallel lines 

on a glass plate. The untouched spaces between the lines serve as the slits.  

The sum of the slit width a and the opaque section b is called the period grating d: 

d = a + b.       (13.8) 
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We assume parallel rays of light are incident on the grating as shown in  

fig. 13.3. The slits are narrow enough to produce the coherent diffracted beams, 

and interference can occur. 

 

Fig. 13.3. Diffraction grating 

 

Principal maxima diffraction grating occurs under condition:  

d sin υ = kλ, k = 0, ±1, ±2 …    (13.9) 

Suppose the light striking a diffraction grating is not monochromatic. Then 

for all diffraction orders except k = 0, each wavelength will produce a maximum 

at a different angle υ. If white light strikes a grating, the central (k = 0) 

maximum will be a sharp white peak. But for all other orders, there will be  

a distinct color spectrum (fig. 13.4). 

 

Fig. 13.4. Simplified diagram of diffraction of white light on a diffraction grating 

 

 

 

k = 2 

 

 

k = 1 

 

 

k = 0 

 

 

k = –1 

 

 

k = –2 
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13.4. DISPERSION OF LIGHT 

 

Color is related to the wavelengths or frequencies of the light. Visible light 

has wavelengths in air in the range of about 400 nm (violet) to 750 nm (red), this 

is known as the visible spectrum.  

White light passing through a prism is separated into different colors  

(fig. 13.5). The colors in the order of decreasing deviation are violet, indigo, 

blue, green, yellow, orange and red. The deviation is maximum for violet color 

and minimum for red color. 

 

Fig. 13.5. The visible spectrum 

 

The phenomenon of dependence of light speed (or the index of refraction) 

in a material on the wave frequency (or wavelength) is called dispersion of 

light. 

This phenomenon goes to the splitting of white light into its spectrum, on 

passing through a prism (fig. 13.6). This happens because the index of refraction 

of a material depends on the wavelength. White light is a mixture of all visible 

wavelengths, and when it incident on a prism, the rays of different wavelength 

are bent to varying degrees. Because usually the index of refraction is greater for 

the shorter wavelengths, violet light is bent the most and red the least, as 

indicated. Rainbows are a spectacular example of light dispersion by drops of 

water. 

 
Fig. 13.6. Dispersion of light 

 

As light moves from one medium into another where it travels with  

a different speed, the frequency remains the same. The wavelength changes as 

the speed changes. When the light goes from air into a material with index of 

refraction n, the wavelength becomes: 



197 

λ
λ ,n

n
      (13.10) 

where λ is the wavelength in vacuum or air and λn is the wavelength in  

the material with index of refraction n.  

TESTS 

1. Which of the following types of electromagnetic waves have the longest 

wavelength: 

a) radio waves;  b) visible light; 

c) infrared rays;  d) X-rays. 

2. Monochromatic light enters from one medium to the other. Which one of 

the following properties does not change: 

a) amplitude;   b) velocity; 

c) wavelength;   d) frequency. 

3. What happens to pattern in Young‘s experiment when the monochromatic 

source is replaced by the white light source? 

a) all bright fringes become white; 

b) all bright fringes get colored from violet to red; 

c) only the central fringe is white, all other fringes are colored; 

d) no fringes are observed. 

4. In Young‘s experiment the sources should be: 

a) incoherent;   b) coherent; 

c) of any two colors; d) of any frequency. 

5. Huygens‘ principle of secondary waves: 

a) allows to find focal length of a thick lens; 

b) is a geometrical method to find a wave front; 

c) is used to determine the velocity of light. 

6. Two sources are said to be coherent if the waves produced by them have 

the same: 

a) wavelength; 

b) amplitude; 

c) amplitude and wavelength; 

d) wavelength and constant phase difference. 

7. The bending of light around the corners of an obstacle is called: 

a) dispersion;   b) refraction; 

c) diffraction;   d) interference.  

8. The dispersion of light in a medium implies that: 

a) lights of different wavelengths have the different speeds; 

b) lights of different frequencies have the different speeds; 
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c) refractive indices are different for different wavelengths; 

d) all the above. 

9. When rays from sun passes through a glass prism, the emergent beam 

shows all colors of the rainbow. This is due to the phenomenon of: 

a) scattering;   b) dispersion; 

c) diffraction;   d) polarization. 

10. When white light passes through a glass prism, we get spectrum on the 

other side of the prism. In the emergent beam the ray which is deviated most is: 

a) red ray;   b) violet ray; 

c) yellow ray;   d) green ray. 

PROBLEMS 

1. The two slits in Young‘s experiment for producing interference fringes 

are 0.51 mm apart. Interference fringes of width 0.2 cm are observed on a screen 

placed 200 cm away from the slits. Find the wavelength of light. (Answer:  

510 nm) 

2. If a diffraction grating has 600 slits per mm and the second diffraction 

maximum is observed at 30° of the central maximum, find the wave length of 

light. (Answer: 417 nm) 

3. A diffraction grating has 300 slits per mm, wave length of light is  

λ = 500 nm. How many diffraction maxima will be observed at the screen? 

(Answer: 13) 

 

13.5. QUANTUM PROPERTIES OF LIGHT.  

PHOTOELECTRIC EFFECT 

 

In 1990 German physicist Max Planck proved that light has both particle 

and electromagnetic wave properties at the same time. A propagation of light 

can be described by a wave with frequency ν and wavelength λ = υ/ν. And 

according to the quantum theory light has particle properties in their interaction 

with matter. Each particle of light is called the photon (a ―particle‖ concept) and 

has energy E, that relates to wave frequency (a ―wave‖ concept) by 

λ

c
E h h .      (13.10) 

The proportionality constant h is called Plank‘s constant. It has  

the numerical value h = 6.63·10
−34

 J·s = 4.14·10
−15

 eV·s. The electron volt (eV) 

is a small unit of energy:  

1 eV = 1.6·10
−19

 J. 

The quantum properties of light have been proved by a photoelectric effect. 
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The photoelectric effect is phenomenon 

of emission of electrons from substances 

when light of suitable wavelength fall at 

them (fig. 13.7). Photoelectric effect occurs 

in many materials, but it is most easily 

observed with metals.  

This effect can be observed using  

the device shown in fig. 13.8. A metal plate 

P and a smaller electrode C are placed inside 

an vacuum glass tube, called a photocell. 

Electrodes are connected to an ammeter and a battery. When the photocell is in 

the dark, the ammeter reads zero. But when light of suitable wavelength 

illuminates the plate, the ammeter indicates a current flowing in the circuit. This 

is the photoelectric current which is produced when electrons ejected from plate 

C reach the plate P.  

 

Fig. 13.8. Device for photoelectric effect 
 

The plate P can be given a positive potential. If this potential is increased, 

more and more photoelectrons are able to reach P. When all photoelectrons 

emitted from C are able to reach the plate P the photoelectric current is 

maximum and called the saturation current (fig. 13.9).  

 

Fig. 13.9. Photoelectric current 

Fig. 13.7. Photoelectric effect scheme 
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If a negative potential is applied to the plate P, the photoelectrons get 

retarded. As negative potential of P is increased, more and more electrons are 

stopped. When the potential of P is so much negative that even the fastest and 

most energetic electrons fail to reach P. The photoelectric current will reduce to 

zero. The minimum negative potential that reduce the photoelectric current to 

zero is called stopping potential. The photoelectric current will be cut off, when 

the photoelectron with maximum kinetic energy is stopped: 
2
max

0

υ
,

2

m
eV      (13.11) 

where e is charge of electron, V0 is the stopping potential, m is mass of electron, 

maxυ  is maximum velocity of electron.  

This relation is known as Einstein’s photoelectric equation: 
2

out

υ
+W ,

2

m
hv      (13.12) 

Wout is some minimum energy required just to get an electron out through  

the surface. Wout is called the work function (work of electron exit). Note that 

the photoelectric effect does not occur if the frequency is below a certain cutoff 

frequency minυ  or, equivalently, if the wavelength is greater than the 

corresponding cutoff wavelength: 

max
out

λ ,
W

hc
     (13.13) 

where c is speed of light. 

 

Example 13.1. 
Calculate the energy of a photon of blue light, λ = 450 nm in air (or 

vacuum). 

Solution. 

34 8
19

7

6 63 10 J s 3 10 m/s
4 4 10 J.

λ 4 5 10 m

c .
E h h .

.
 

 

Example 13.2. 

What is the kinetic energy and the speed of an electron ejected from  

a sodium surface whose work function is Wout = 2.28 eV when illuminated by 

light of wavelength (a) 410 nm, (b) 550 nm? 

Solution. For λ = 410 nm, the energy of the photons: 

194 85 10 J 3 03 eV
λ

c
E h h . . .  

This energy is greater than Wout, then electrons will be ejected with varying 

amounts of kinetic energy, with a maximum of 

Ek = hv – Wout = 3.03 eV – 2.28 eV = 0.75 eV = 1.2·10
–19

 J. 
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19
5

max 31

2 2 1 2 10 J
υ 5 1 10 m/s

9 11 10 kg

kE .
. .

m .
 

For λ = 550 nm, 
193 61 10 J 2 26 eV

λ

c
E h h . . .  

Since this photon energy is less than the work function, no electrons are 

ejected. 

TESTS 

1. Photoelectric effect reveals the: 

a) wave nature of radiation; 

b) particle nature of radiation; 

c) both wave as well particle nature; 

d) none of these. 

2. The current in a photocell: 

a) decreases with increase of intensity of incident light; 

b) increases with increase of intensity of incident light; 

c) decreases with increase of frequency of incident light; 

d) increases with increase of frequency of incident light. 

3. The threshold wavelength for sodium is 500 nm. Its work function is: 

a) Wout = 4·10
–19

 J;  b) Wout = 2·10
–19

 J; 

c) Wout = 6·10
–19

 J;  d) Wout = 8·10
–19

 J. 

4. The photoelectric cutoff wavelength of certain metal is 200 nm.  

The maximum kinetic energy of photoelectrons released by a wavelength of  

300 nm is: 

a) 2 eV;  b) 3 eV;  c) 4 eV;  d) no electron can be ejected. 

5. Photoelectric cell is device which converts: 

a) electrical energy into light energy;  

b) light energy into electrical energy; 

c) electrical energy into sound energy; 

d) light energy into elastic energy. 

PROBLEMS 

1. The work function of metal is 3.45 eV. Calculate what should be  

the maximum wavelength of light that can eject photoelectrons from the metal. 

(Answer: 360 nm) 
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14. ATOMIC PHYSICS 
 

14.1. RUTHERFORD’S MODEL OF ATOM 

 

Rutherford obtained an important insight 

into the structure of atom by means of 

performing experiments on the scattering of  

α-particles on thin gold foil. On the basis of this 

experiment Rutherford suggested that the atom 

must consist of a tiny but massive positively 

charged nucleus, containing over 99.9 % of  

the mass of the atom, surrounded by electrons 

some distance away. The electrons would be 

moving in orbits about the nucleus — much as 

the planets move around the Sun — because if 

they were at rest, they would fall into the 

nucleus due to electrical attraction (fig. 14.1). 

Rutherford‘s experiments suggested that the nucleus must have a radius of 

about 10
–15

 m. The radius of atoms was estimated to be about 10
–10

 m (if  

the nucleus were the size of a baseball, the atom would have the diameter of  

a big city several kilometers across). So an atom would be mostly empty space. 

Based wholly on classical physics, the Rutherford model was unable to 

explain stability of atom. According to the Rutherford model, electrons orbit  

the nucleus, and since their paths are curved the electrons are accelerating. 

Hence they should give off light like any other accelerating electric charge. 

Since light carries off energy and energy is conserved, the electron‘s own energy 

must decrease to compensate. Hence electrons would be expected to spiral into 

the nucleus. 

 

14.2. BOHR’S THEORY OF THE HYDROGEN ATOM 

 

Rutherford‘s model was replaced in a few 

years by the Bohr‘s atomic model, which 

incorporated some early quantum theory. 

According to Bohr‘s atom model the electrons 

could only orbit the nucleus in particular 

circular orbits with fixed angular momentum 

and energy (fig. 14.2). They were not allowed 

to spiral into the nucleus, because they could 

not lose energy in a continuous manner; they 

could only make quantum leaps between fixed 

energy levels.  

Fig. 14.1. Rutherford‘s ―planetary‖ 

model of the atom 

Fig. 14.2. The Bohr‘s atom model 
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Bohr’s theory of the hydrogenic (one-electron) atom is based on  

the following postulates: 

1. An atom can exist in certain allowed or stationary states, with each state 

having a definite value for its total energy E1, E2, E3 … En (fig. 14.3). When  

the atom is in one of these states it is stable and does not radiate energy. 

 

Fig. 14.3. The Bohr atom (a). Energy level diagram (b) 

 

2. An atom emits or absorbs energy only when an electron moves from one 

the stable state with energy En to another stable state with energy Ek.  

In a transition from its initial state to its final state, a photon is either emitted (if 

En > Ek) or absorbed (if En< Ek ) and the energy hν of the photon is equal to  

the difference in the energy of the two states: 

n kh E E .     (14.1) 

Example of the light emission is illustrated in fig. 14.4. The electron jumps 

from an stationary orbit of higher energy E2 to an stationary orbit of lower 

energy E1 and a photon of energy hν = E2 – E1 is emitted. 

 

Fig. 14.4. Emission of photon 

 

The electron can absorb energy from some source and jump from a lower 

energy level to a higher energy level and then emits energy jumping from  

a higher energy level to a lower energy level as shown in the following fig. 14.5. 
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Fig. 14.5. The various ways of an energy absorption and energy emission 

 

Thus from the Bohr model of the atom follows that electrons exist only in 

the certain energy levels within an atom. The electron energy in these levels has 

well defined values and electrons jumping between them must absorb or emit 

the energy equal to the difference between them. The energy emitted as  

the electron moves to a lower energy level can be in the form of a photon  

(a particle of light). The wavelength λ of the emitted light can be related to its 

energy: 

λ

hc
h E.     (14.2) 

 

14.3. ENERGY STATES OF A HYDROGEN ATOM 

 

The above postulates can be used to calculate allowed energies of the atom 

for different allowed orbits of the electron. The theory developed should be 

applicable to hydrogen atoms and ions having just one electron. Thus, within  

the Bohr atom framework, it is valid for He
+
, Li

++
, Be

3+
 etc.  

Energy states of the hydrogen atom for different allowed orbits of  

the electron can be described by equation: 

0
2 2

13 6 eV
n

E ,
E .

n n
     (14.3) 

where n is the principal quantum number, that labels the orbit radii and also  

the energy levels, E0 = –13.6 eV. The lowest energy level or energy state has 

energy E1, and is called the ground state. The higher states, E2, E3, and so on, 

are called excited states. The fixed energy levels are also called stationary 

states. 

Notice that although the energy for the larger orbits has a smaller numerical 

value, all the energies are less than zero. Thus, E2 = –3.4 eV is a higher energy 

than E1 = –13.6 eV. Hence the orbit closest to the nucleus (r1) has the lowest 

energy E1 = –13.6 eV. If an electron is free and has kinetic energy, then the total 

energy E > 0. Since E > 0 for a free electron, then an electron bound to an atom 

needs to have E < 0. The minimum energy required to remove an electron from 
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an atom initially in the ground state is called the binding energy or ionization 

energy. The ionization energy for hydrogen has been measured to be 13.6 eV, 

and this corresponds precisely to removing an electron from the lowest state,  

E1 = –13.6 eV, up to E = 0 where it can be free. 

It is useful to show the various possible energy values as horizontal lines on 

an energy-level diagram. This is shown for hydrogen in fig. 14.6. The electron 

in a hydrogen atom can be in any one of these levels according to Bohr‘s theory. 

 

 

Fig. 14.6. Hydrogen energy diagram illustrating Lyman, Balmer and Paschen series formation 

 

The radiation of atoms that do not interact with one another consists of 

separate spectral lines. The emission spectrum of atoms is accordingly called  

a line spectrum. The atomic spectra show the energy structure of atoms 

therefore the studying of these spectra served as a key to cognition of  

the structure of atoms. It was noted first of all that the lines in the spectra of 
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atoms are arranged not chaotically, but are combined into groups or, as they are 

called, series of lines: 

0
2 2

1 1k nE E E
,

h h n k
     (14.4) 

where n = 1, 2, 3, 4,… ; k = n + 1, n + 2, n + 3 … Equation (14.4) is  

the generalized Balmer formula. 

Once in an excited state, an atom‘s electron can jump down to a lower 

state, and give off a photon in the process. This is, according to the Bohr model, 

the origin of the emission spectra. The vertical arrows in fig. 14.6 represent  

the transitions or jumps that correspond to the various observed spectral lines. 

The group of spectral lines that corresponds to transitions from any higher 

energy levels to certain low level forms spectral series. There are some spectral 

series in hydrogen emission spectrum:  

1. The Lyman series of lines corresponds to transitions or ―jumps‖ that 

bring the electron down to the ground state E1 (n = 1) from any exited energy 

levels k ≥ 2 (where n and k are the principal quantum numbers of the states). 

The lines of the Lyman series are located in the ultraviolet range of  

the spectrum. The frequencies of the Lyman series are obtained from formula 

(14.3) if n = 1 and k = 2, 3, 4, 5, …: 

0
2

1
(1 )

E

h k
,     (14.5) 

where k = 2, 3, 4, 5 … 

2. The Balmer series is characterized by the electron transitions from any 

exited energy levels k ≥ 3 to the second energy level E2 (n = 2), where n and k 

are the principal quantum numbers of the states. The spectral lines associated 

with this series are located in the visible part of theelectromagnetic spectrum. 

The frequencies of the Balmer series can be represented in the form: 

2 0
2

1 1
( )

4

kE E E

h h k
,    (14.6) 

where k = 3, 4, 5, 6 … 

3. The Paschen series is the emission lines corresponding to an electron 

transitions from k ≥ 4 to the third energy level E3 (n = 3). The lines of  

the Paschen series are located in the near infrared range of the spectrum.  

The frequencies of the Paschen series are given by formula: 

0
2

1 1
( )

9

E

h k
,     (14.7) 

where k = 4, 5, 6, 7 … 
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15. PHYSICS OF ATOMIC NUCLEUS 
 

An atomic nucleus consists of elementary particles called nucleons.  

A proton is a positively charged particles of mass 1.673·10
–27

 kg and charge 

1.6·10
–19

 C. A neutron is electrically neutral and its mass is 1.675·10
–27

 kg. 

A species of nucleus is represented as nuclear symbol XA

Z , where X is  

the chemical symbol of the element, Z is the atomic number (the number of 

protons inside the nucleus) and A is the mass number (the number of nucleons). 

The mass number of the nucleus can be written as:  

A = Z + N.      (15.1), 

where N is the number of neutrons. 

Nuclei with the same number of protons but different neutron numbers are 

isotopes of one another. 

The nuclear size depends on species of nucleus; it grows through  

the periodic table. The nuclear radius R and the atomic mass number A are 

related by formula: 
3

0 A,R R       (15.2) 

where R0 = 1.2·10
–15

 m — is the radius of hydrogen nuclear (proton). 

The nuclear charge is due to the protons contained in it. Each proton has  

a positive charge of ep = 1.6·10
–19

 C. Thus the nuclear charge is equal to: 

q = Ze,       (15.3) 

where Z is the atomic number of the nucleus (the amount of protons in nucleus). 

The unit of energy commonly used in atomic and nuclear physics is  

the electron volt (eV): 

1 eV = 1.6·10
–19

 C · 1 V = 1.6·10
–19

 J. 

Neutrons held together in the nucleus by the strong or nuclear forces. 

There are extremely short range forces confined only to the nucleus. At short 

distances, the nuclear forces are much stronger than electrostatic force of 

repulsion of protons inside the nucleus. Hence the nucleus is stable. 

 

15.1. BINDING ENERGY 

 

The amount of work required to be done to separate the nucleons an infinite 

distance apart is called the binding energy of the nucleus. The total mass of  

a stable nucleus is always less than the sum of the masses of its separate protons 

and neutrons: Mnucleus < (Z N )
p nm m . The difference between the mass of  

a nucleus and the sum of the masses of protons and neutrons constituting it is 

called the mass defect: 

ΔM = (Z N )
p nm m  – Mnucleus.    (15.4) 
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In formation of any nucleus a certain mass disappears. According to 

Einstein‘s theory, this mass defect must be appearing in the form of energy 

responsible for binding the nucleons together: 

E = ΔM · c
2
 = (Z N )

p nm m ·c
2
 – Mnucleus · c

2
. (15.5) 

The binding energy of a nucleus divided by the number of nucleons (or 

mass number A) is binding energy per nucleon: 

ε
A

E
.      (15.6) 

Fig. 15.1 shows the binding energy per nucleon as a function of A  

for stable nuclei. The curve rises as A increases and reaches a plateau at about 

8.7 MeV per nucleon above A ≈ 40. Beyond A ≈ 80, the curve decreases slowly, 

indicating that larger nuclei are held together a little less tightly than those in  

the middle of the Periodic Table. 

 

Fig. 15.1. Binding energy per nucleon as a function of mass number A 

 

15.2. NUCLEAR REACTIONS 

 

A nuclear reaction is the transformation of a stable atomic nucleus into the 

unstable one by bombarding it with a suitable particle.  

A nuclear reaction can be represented symbolically as follows: 
A A 3 1
Z Z+1 1

4
2X He Y Qp .    (15.7) 

Here the parent nucleus X is struck by a helium nucleus to give a daughter 

nucleus Y and proton. In this nuclear reaction Q represents the total kinetic 

energy change in the reaction. It is called reaction energy or Q-value of  

the reaction. It may be positive or negative. For Q > 0, the reaction is said to be 

exothermic; energy is released in the reaction, so the total kinetic energy is 
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greater after the reaction than before. If Q is negative (Q < 0), the reaction is 

said to be endothermic: the final total kinetic energy is less than the initial 

kinetic energy, and an energy input is required to make the reaction happen. 

In any nuclear reaction total energy, electric charge and nucleon number 

are conserved.  

 

15.3. RADIOACTIVITY. ALPHA, BETA, AND GAMMA RADIATION 

 

Nuclear stability depends on the atomic number Z and on the number of 

neutrons N. The light atomic nuclei contain practically as many neutrons as 

protons (N/Z = 1). They are the most stable. In case N/Z >1.6 the atomic nuclei 

are unstable and undergo a radioactive decay. 

Many unstable isotopes occur in nature, and such radioactivity is called 

natural radioactivity. Other unstable isotopes can be produced in the laboratory 

by nuclear reactions; these are said to have artificial radioactivity. Radioactive 

isotopes are sometimes referred to as radioisotopes or radionuclides. 

The most common types of radiation are called alpha, beta, and gamma 

radiation, named after the first three letters of the Greek alphabet. Gamma rays 

are very high-energy photons whose energy is even higher than that of X-rays. 

Beta particles are electrons, identical to those that orbit the nucleus, but they are 

created within the nucleus itself. Alpha particles are simply the nuclei of helium 

atoms, that is, every α-particle consists of two protons and two neutrons bound 

together. 

These types of radiation were classified according to their penetrating 

power. Alpha radiation can barely penetrate a piece of paper. Beta radiation can 

pass through as much as 3 mm of aluminum. Gamma radiation is extremely 

penetrating: it can pass through several centimeters of lead and still be detected 

on the other side.  

Each type of radiation has a different charge and hence is bent differently 

in a magnetic field (fig. 15.3); α-rays are positively charged, β-rays are 

negatively charged, and γ-rays are neutral.  

When a nucleus emits an α-particle, the remaining nucleus will be different 

from the original: it has lost two protons and two neutrons. Alpha decay 

proceeds according to the following scheme: 
A A 4 4
Z Z 2 2X Y α γ.     (15.8) 

A nucleus that decays spontaneously by emitting an electron or a positron 

(a positively charged particle with the mass of an electron) is said to undergo 

beta decay. In beta-minus (β
–
) decay, an electron is emitted by a nucleus: 
A A 0
Z Z+1 1X Y β v.

     (15.9) 
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Fig. 15.3. Deflection of alpha, beta and gamma radiation in magnetic field 

 

In beta-plus (β
+
) decay, a positron is emitted by a nucleus: 

A A 0
Z Z 1 1X Y β v.     (15.10) 

The symbol ν represents a neutrino, a neutral particle which has a very 

small mass, that is emitted from the nucleus along with the electron or positron 

during the decay process; v  is antineutrino. 

Beta-decay is accompanied by the interconversion between neutrons and 

protons inside a nucleus. 

 

15.4. RADIOACTIVE DECAY LAW 

 

A macroscopic sample of any radioactive isotope consists of a vast number 

of radioactive nuclei. These nuclei do not all decay at one time. Rather, they 

decay one by one over a period of time. This is a random process: we can not 

predict exactly when a given nucleus will decay. But we can determine, on  

a probabilistic basis, approximately how many nuclei in a sample will decay 

over a given time period, by assuming that each nucleus has the same 

probability of decaying in each second that it exists. 

Following to the radioactive decay law the number of undecayed nuclei N 

decreases exponentially with time t:  

N = N0e
–λt

,     (15.11) 

where λ is a constant characteristic of the given radioactive substance and known 

as the decay constant, N0 is the initial number of undecayed nuclei at the time  

t = 0.  
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There are two common time characteristics of how long any given type of 

radionuclides lasts. One measure is the half-life T1/2 of a radionuclide, which is 

the time at which a half of the initial number of nuclei N0 decays:  

1 2

ln2

λ
/T .     (15.12) 

The other measure is the mean life τ, which is the time at which N0 has 

been reduced to e
–1

 of their initial values: 
1

τ
λ

.      (15.13) 

 

15.5. NUCLEAR FISSION 

 

Nuclear fission is a process of breaking up the heavier nuclei into lighter 

ones with sufficient mass defect, which appears in the form of a tremendous 

amount of energy. For example, if a massive nucleus like uranium-235 absorbs  

a low energy (also called thermal) neutron, it breaks apart with the release of 

energy. This phenomenon was named nuclear fission because of its resemblance 

to biological fission (cell division).  

In a typical 
235

U fission event, a 
235

U nucleus absorbs a thermal neutron, 

producing a compound nucleus 
236

U in a highly excited state. This nucleus 

undergoes fission, rapidly emits three neutrons and splits into two fission 

fragments 
141

Ba and 
92

Kr in a typical case: 
235 236 141 92
92 92 56 36

1 1
0 0U U Ba Kr 3 200n n MeV .  (15.14) 

A tremendous amount of energy is released in a fission reaction because 

the mass of 
236

U is considerably greater than the total mass of the fission 

fragments plus released neutrons.  

The energy released in a fission of 1g of 
235
92 U  is equal to 82.000 MJ and 

corresponds to the burning of 3300 kg of coal or 2000 kg of gasoline. 

Neutrons released in each fission could be used to create a chain reaction. 

That is, the three secondary neutrons produced in the reaction bring about  

the fission of three more 
235
92 U  atoms and produce 9 neutrons, which in turn, can 

bring about the fission of nine 
235
92 U  atoms and so on. This process multiplies as 

shown schematically in fig. 15.3. 
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Fig. 15.3. Chain reaction 

 

15.6. ELEMENTARY PARTICLES 

 

Elementary particles are the particles which have no further structure. 

They are the ultimate building blocks of matter. The various elementary 

particles have been divided into the following four groups: 

1. Photons. 

2. Leptons. 

3. Mesons. 

4. Baryons. 

Photons are field particles linked with electromagnetic forces. Every 

photon is a quantum of radiation with no charge and no rest mass. The energy of 

a photon is E = hv. Every photon moves with the velocity of light.  

Leptons are particles whose masses are smaller than masses of mesons. 

Important members of this group are electron, positron and neutrino. Electron is 

a particle of mass 9.1·10
–31

 kg. It carries a charge –1.6·10
–19

 C, which is taken as 

a unit negative charge. It is a stable particle. Positron is anti-particle of electron. 

Mesons have rest mass 250–1000 times bigger than electron. They are 

regarded as particles of strong interaction. Most of them owe their existence to 

cosmic rays.  

Baryons have the rest mass equal to or greater than that of proton.  

The members of this class are proton and neutron.  
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TESTS 

1. Rutherford scattering of α-particles by atom shows that: 

a) the atom as a whole is positively charged; 

b) the atom consists of uniformly distributed positive and negative charged 

particles; 

c) there is no charged particles inside the atom; 

d) the atom has a very small positively charged core at the center. 

2. In Bohr‘s model of atom stationary orbits are postulated: 

a) in accordance with classical theory of electromagnetism; 

b) to meet the condition for dynamic equilibrium of electrons; 

c) to meet the condition that the electrons moving in these orbits do not 

radiate energy; 

d) none of the above. 

3. According to Bohr‘s atomic model: 

a) electrons radiate energy only when it jumps to another orbit; 

b) an atom has heavy, positively charged nucleus; 

c) electrons can move only in particular orbits; 

d) all of the above statements are true. 

4. Two elements having same number of protons but different number of 

neutrons are called: 

a) isobars; b) isotopes; c) isomers; d) isotones. 

5. When the electron jumps from orbit n1 to n2 orbit, the energy radiated is 

given by: 

a) hv = E2 – E1;  b) hv = E1 – E2; 

c) hv = E2 + E1;  d) hv = E2/E1. 

6. The spontaneous emission of high energy particles from the nucleus of 

the atom is called: 

a) radioactivity;  b) photoelectricity; 

c) thermoelectricity; d) nuclear fusion. 

7. The radius of the nucleus is directly proportional to (A = mass number): 

a) A
2
;  b) A ;  c) 3 A ;  d) A

3
. 

8. If radiations from radioactive substance pass through an electromagnetic 

field, then: 

a) all are deflected; 

b) only γ-rays are deflected; 

c) only α- and β-rays are deflected; 

d) only α-rays are deflected. 
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9. The γ-radiation consists of: 

a) photons;  b) electrons; 

c) protons;  d) neutrons. 

10. The atomic number ‗Z‘ of the nucleus is: 

a) number of protons in it; 

b) number of neutrons in it; 

c) number of electrons round it; 

d) number of deuterons. 

11. Alpha-particles consist of: 

a) electrons;  b) helium nuclei; 

c) protons;  d) none of these. 

12. Beta-particles consist of: 

a) high speed moving electrons; 

b) protons; 

c) neutrons; 

d) photons. 

13. A nucleus composed of: 

a) electrons and protons; 

b) neutrons and protons; 

c) electrons and neutrons; 

d) electrons, protons and neutrons. 

14. The nucleus 
238
92 U  has all the following except: 

a) 92 protons;   b) 146 neutrons; 

c) 238 nucleons;  d) 146 electrons. 

15. In the reaction: 
7 2 8
3 1 3Li H Li X,  X is: 

a) proton;    b) neutron; 

c) photon;   d) α-particle. 
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Appendix 

 

 
Fundamental Constants 

 

Quantity Symbol Approximate Value 

Speed of light in vacuum c 3.00 × 10
8
 m/s 

Gravitational constant G 6.67 × 10
–11

 N·m
2
/kq

2 

Avoqadro‘s number NA 6.02 × 10
23

 mol
–1 

Gas constant R 8.315 J/mol·K = 1.99 cal/mol·K =  

= 0.082 atm·liter/mol·K 

Boltzmann‘s constant k 1.38 × 10
–23

 J/K 

Charge on electron e 1.60 × 10
–19

 C 

Stefan–Boltzmann 

constant 
 5.67 × 10

–8
 W/m

2
·K

4 

Permittivity of free space 0 = (1/c
2

0) 8.85 × 10
–12

 C
2
/N·m

2 

Permeability of free space 0 4  × 10
–7

 T·m/A 

Planck‘s constant h 6.63 × 10
–34

 J·s 

Electron rest mass me 9.11 × 10
–31

 kg = 0.000549 u =  

= 0.511 MeV/c
2 

Proton rest mass mp 1.6726 × 10
–27

 kg = 1.00728 u =  

= 938.3 MeV/c
2 

Neutron rest mass mn 1.6749 × 10
–27

 kg = 1.008665 u =  

= 939.6 MeV/c
2
 

Atomic mass unit (1 u)  1.6605 × 10
–27

 kg = 931.5 MeV/c
2
 

 

 

Other Useful Data 

 

Joule equivalent (1 cal) 4.186 J 

Absolute zero (0 K) –273.15 °С 

Earth:  Mass 

Radius (meam) 

5.97 × 10
24

 kg 

6.38 × 10
3
 km 

Moon: Mass 

Radius (meam) 

7.35 × 10
22

 kg 

1.74 × 10
3
 km 

Sun:    Mass 

Radius (meam) 

1.99 × 10
30

 kg 

6.96 × 10
5
 km 

Earth-sun distance (meam) 149.6 × 10
6
 km 

Earth-moon distance (meam) 384 × 10
3
 km 
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The Greek Alphabet 

 

Alpha A  Nu N  

Beta B  Xi   

Gamma Г  Omicron O  

Delta   Pi П  

Epsilon Е  Rho P  

Zeta Z  Sigma   

Eta H  Tau T  

Theta   Upsilon   

Iota I  Phi  ,  

Kappa   Chi   

Lambda   Psi
 

  

Mu   Omega   

 

 

Mathematical Signs and Symbols 

 

  is proportional to  is less than or equal to 

 is equal to  is greater than or equal to
 

 is approximately equal to  sum of 
 

 is not equal to  average value of x  

 is greater than x change in x 

 is much greater than x  x approaches zero 

 is less than n! n (n – 1) (n – 2) … (1) of
 

 is much less than  
 

 

 

SI Derived Units and Their Abbreviations 

 

Quantity Unit Abbreviation In Terms of Base Units 

Force newton N kg·m/s
2
 

Energy and work joule J kg·m
2
/s

2
 

Power watt W kg·m
2
/s

3
 

Pressure pascal Pa kg/(m·s
2
) 

Frequency hertz Hz S
–1

 

Electric charge coulomb C A·s 

Electric potential  volt V kg·m
2
/(A·s

3
) 

Electric resistance  ohm  kg·m
2
/(A

2
·s

3
) 

Capacitance farad F A
2
·s

4
/(kg·m

2
) 

Magnetic field tesla  T kg/(A·s
2
) 

Magnetic flux weber Wb kg·m
2
/(A·s

2
) 

Inductance henry H kg·m
2
/(s

2
·A

2
) 
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Metric (SI) Multipliers 

 

Prefix Abbreviation Value 

exa E 10
18

 

peta P 10
15

 

tera T 10
12

 

giga G 10
9
 

mega M 10
6
 

kilo k 10
3
 

hecto h 10
2
 

deka da 10
1
 

deci d 10
–1

 

centi c 10
–2

 

milli m 10
–3

 

micro  10
–6

 

nano n 10
–9

 

pico p 10
–12

 

femto f 10
–15

 

atto a 10
–18

 

 

 

Elastic moduli 

 

Material Young’s modulus, E (N/m
2
) Shear modulus, G (N/m

2
) 

Solids 

Iron, cast 100 × 10
9
 40 × 10

9
 

Steel 200 × 10
9
 80 × 10

9
 

Brass 100 × 10
9
 35 × 10

9
 

Aluminum 70 × 10
9
 25 × 10

9
 

Concrete 20 × 10
9
  

Brick 14 × 10
9
  

Marble 50 × 10
9
  

Granite 45 × 10
9
  

Wood (pine) 

(parallel to grain)                   10 × 10
9 

(perpendicular to grain)         1 × 10
9
 

Nylon 5 × 10
9
  

Bone (limb) 15 × 10
9
 80 × 10

9
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Densities of Substances* 

 

Substance Density, p (kg/m
3
) 

Solids 

Aluminum 2.70 × 10
3
 

Iron and steel 7.8 × 10
3
 

Copper 8.9 × 10
3
 

Lead 11.3 × 10
3
 

Gold 19.3 × 10
3
 

Concrete 2.3 × 10
3
 

Granite 2.7 × 10
3
 

Wood (typical) 0.3–0.9 × 10
3
 

Glass, common 2.4–2.8 × 10
3
 

Ice 0.917 × 10
3
 

Bone 1.7–2.0 × 10
3
 

Liquids 

Water (4 °C) 1.00 × 10
3
 

Sea water 1.025 × 10
3
 

Blood, plasma 1.03 × 10
3
 

Blood, whole 1.05 × 10
3
 

Mercury 13.6 × 10
3
 

Alcohol, ethyl 0.79 × 10
3
 

Gasoline 0.68 × 10
3
 

Gases 

Air 1.29 

Helium 0.179 

Carbon dioxide 1.98 

Water (steam) (100 °C) 0.598 

 Densities are given at 0 °C and 1 atm pressure unless otherwise specified. 

 

 

Latent Heats (at 1 atm) 

 

Substance 

Melting 

point 

(°C) 

Heat of Fusion Boiling 

Point (°C) 

Heat of 

Vaporization 

kcal/kg* J/kg kcal/kg* J/kg 

Water 0 79.7 3.33 × 10
5
 100 539 22.6 × 10

5
 

Lead 327 5.9 0.25 × 10
5
 1750 208 8.7 × 10

5
 

Silver 961 21 0.88 × 10
5
 2193 558 23 × 10

5
 

Iron 1808 69.1 2.89 × 10
5
 3023 1520 63.4 × 10

5
 

Tungsten 3410 44 1.84 × 10
5
 5900 1150 48 × 10

5
 

 Numerical values in kcal/kg are the same in cal/g. 
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Resistivity and Temperature Coefficients (at 20 °C) 

 

Material Resistivity, ρ (Ω·m) 
Temperature 

Coefficients, α (°C)
–1

 

Conductors 

Silver 1.59 × 10
–8

 0.0061 

Copper 1.68 × 10
–8

 0.0068 

Gold 2.44 × 10
–8

 0.0034 

Aluminum 2.65 × 10
–8

 0.00429 

Tungsten 5.6 × 10
–8

 0.0045 

Iron 9.71 × 10
–8

 0.00651 

Platinum 10.6 × 10
–8

 0.003927 

Mercury 98 × 10
–8

 0.0009 

Nichrome (alloy of Ni, Fe, Cr) 100 × 10
–8

 0.0004 

Semiconductors  

Carbon (graphite) (3–60) × 10
–5

 –0,0005 

Germanium (1–500) × 10
–3

 –0,05 

Silicon 0,1–60 –0,07 

Insulators 

Glass 10
9
–10

12
  

Hard rubber 10
13

–10
15

  

 Values depend strongly on presence of even slight amounts of impurities. 

 

 

Indices of refraction* 

 

Material  

Vacuum 1.0000 

Air (at STP) 1.0003 

Water 1.33 

Ethyl alcohol 1.36 

Glass  

Fused quartz 1.46 

Crown glass 1.52 

Light flint 1.58 

Lucite or Plexiglas 1.51 

Sodium chloride 1.53 

Diamond 2.42 

 λ = 589 nm. 
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Rest Masses in Kilograms, Unified Atomic Mass Units, and MeV/c
2 

 

Object 
Mass 

kg u MeV/c
2
 

Electron 9.1094 × 10
–31

 0.00054858 0.51100 

Proton 1.67262 × 10
–27

 1.007276 938.27 

 atom 1.67353 × 10
–27

 1.007825 938.78 

Neutron 1.67493 × 10
–27

 1.008665 939.57 

 

 

The Types of Radioactive Decay 

α decay: 
A A 4 4
Z Z 2 2N N He  

 

β decay: 
A A
Z Z 1N N e v  

 
A A
Z Z 1N N e v  

 
A A
Z Z 1

*N e N e  [EC]v  

 
A A
Z Z

**N N γ  

 

* Electron capture; ** indicates the excited state of a nucleus. 
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