Якимчук Я. В. СТРУКТУРА ТИРОТРОПОЦИТОВ ПРИ ИНТОКСИКАЦИИ СВИНЦОМ

Научный руководитель: канд. мед. наук, ассист. Большакова О. В.

Кафедра гистологии и эмбриологии Крымский федеральный университет имени В. И. Вернадского Медицинская академия имени С. И. Георгиевского, г. Симферополь

Актуальность. Антропогенное загрязнение окружающей среды солями тяжёлых металлов, среди которых приоритетное место занимают соединения свинца, продолжает прогрессивно нарастать. Эффекты общетоксического воздействия свинца на организм выделены как техногенные заболевания и формируют нозологическую группу микроэлементозов. Важное место в регуляции указанных процессов отводят гипофизу, который принимает непосредственное участие в осуществлении филогенетически детерминированных реакций стресса у млекопитающих.

Цель: изучить морфологические изменения в тиротропоцитах гипофиза при хроническом поступлении соединений свинца в организм экспериментальных животных.

Материалы и методы. Исследования проведены на мышах - самцах линии BALB/с. Первая группа животных состояла из 5 интактных самцов (контроль), которая получала дистиллированную воду. Вторая группа из 5 мышей в течение 90 суток ежедневно перорально получала водный раствор ацетата свинца в дозе 0,01мг/г. Весь материал залит в эпон-аралдитовые блоки с последующим изготовлением полутонких и ультратонких срезов.

С целью изучения структуры гипофиза были использованы методы электронной микроскопии и морфометрии. Идентификацию тиротропоцитов осуществляли согласно размерам, структурным особенностям и расположению гранул в цитоплазме.

Результаты и их обсуждение. На 90-е сутки интоксикации среди тиротропоцитов выявляются 2 группы клеток. Одни — более темные с лучшей сохранностью ультраструктуры и большим содержанием секреторных гранул; другие — светлые — со значительными дистрофическими изменениями. Популяция клеток 1-го типа малочисленна, составляет около 16 % всех тиротропоцитов. Клетки имеют небольшие размеры и сохраняют округлополигональную форму. Ядра имеют незначительные инвагинации кариолеммы. Ядрышко обычно одно небольшое, прилежит к ядерной мембране. Перинуклеарное пространство неравномерно расширено и в ряде участков продолжается в вакуоли цитоплазмы. Выявляются небольшие темные митохондрии преимущественно в околоядерной зоне. Цистерны эндоплазматической сети представлены отдельными фрагментами, в большинстве случаев они значительно расширены и продолжаются в вакуоли. Гормонсодержащие гранулы расположены вдоль плазмолеммы, формируя один прерывающийся ряд, а в отдельных небольших участках сгруппированы в 2 ряда. Значительная часть цитоплазмы вакуолизирована и содержит мелкие и средние вакуоли.

Тиротропоциты 2-го типа подвергаются баллонной дистрофии с формированием очень больших сливных вакуолей, либо 2-3 крупных вакуолей и множеством мелких в остальной части цитоплазмы (клетки тиреоидэктомии). Общая площадь вакуолей увеличивается в 13,06 раза по сравнению с контролем. В цитоплазме органеллы почти полностью разрушены: обнаруживаются одиночные мелкие митохондрии с деструктированными кристами, фрагменты цистерн гранулярной эндоплазматической сети, рибосомы.

Гормонсодержащие гранулы формируют один ряд редко расположенных гранул вдоль плазмолеммы, среди которых примерно в равной мере встречаются полупустые и полные.

Выводы. Свинцовая интоксикация ведет к комплексным морфологическим изменениям паренхимы, стромы, сосудистого русла гипофиза. Вариабельность изменений тиротропоцитов проявляется от баллонной дистрофии (клетки тиреоидэктомии) до клеток с хорошо сохранной структурой.