*Третьяков Д. С.*ЯДЕРНО-ЦИТОПЛАЗМАТИЧЕСКИЙ ТРАНСПОРТ КРУПНЫХ ОБЪЕКТОВ

Научный руководитель канд. биол. наук, доц. Чаплинская Е. В. Кафедра биологии

Белорусский государственный медицинский университет, г. Минск

Ядро содержит множество белков, необходимых для обеспечения его уникальных функций. Эти белки синтезируются в цитозоле и затем попадают в ядро через ядерные поры, содержание которых в ядрах активно функционирующих клеток составляет 3000-4000, что занимает 10% поверхности ядерной оболочки. В свою очередь из нуклеоплазмы в цитоплазму идет транспорт субъединиц рибосом и молекул иРНК. При этом некоторые транспортируемые частицы (например, субъединицы рибосом) имеют достаточно большие размеры. В связи с вышеизложенным, виделось важным выяснение установленных механизмов транспорта крупных объектов через ядерные поры.

Ядерная пора представляет собой ядерный поровый комплекс (ЯПК), состоящий из больших белковых гранул, сгруппированных в октагональную структуру. Центральный канал поры имеет вариабельный внутренний диаметр (от 10 до 26 нм) и находится внутри транспортера (центральной гранулы), способного расширяться. Ионы и маленькие белки (9 нм и менее) проходят через ядерные поры за счет диффузии. Белки, размер которых превышает 9 нм, проходят через ЯПК в результате активного селективного транспорта. Максимальный диаметр частиц, проходящих через ядерную пору, составляет 26-27 нм (диаметр рибосом составляет примерно 15-20 нм, их размер находится на верхнем пределе пропускания ядерной поры). Транспорт белков через ЯПК представляет собой высокоселективный процесс. Сигнал, присутствующий в молекуле белка и направляющий его в ядро клетки, представляет собой короткую последовательность аминокислот, так называемый сигнал ядерной локализации (NLS). Циркулирующие белки помимо NLS содержат также NES - сигнал ядерного экспорта. В процессах активного транспорта участвуют рецепторы импорта и экспорта, а также специфический белок Ran-GTFаза, влияющий на их способность связываться с транспортируемым белком. Существует несколько моделей транспорта (модель «эстафетной палочки», модель гидрофобного сита) молекул через ЯПК, на основании которых можно сделать вывод, что передвижение транспортируемого комплекса через пору связано с его взаимодействием с нуклеопоринами, содержащими FG-повторы.

Таким образом, задокументировано, что субъединицы рибосом и крупные молекулы белков поступают из эндонуклеарного пространства в цитозоль по механизму активного транспорта и, вероятно, взаимодействуя с FG-повторами нуклеопоринов; при этом, перечисленные частицы обязательно имеют в своем составе «сигнализирующую» последовательность аминокислот, благодаря которой распознаются транспортными элементами ЯПК и презентуются нуклеоплазме.