Малах О.Н., Крестьянинова Т.Ю.

Протекторный эффект гипобарической гипоксии при радиоактивном поражении организма

УО «Витебский государственный университет им. П.М. Машерова», г. Витебск, Беларусь

Несмотря на обширные исследования, радиобиологи не достигли единого представления о механизме действия химических радиопротекторов, что является следствием ограниченности современных познаний о развитии радиационного поражения при поглощении энергии ионизирующего излучения живыми организмами. Следует отметить протекторный эффект гипоксии при радиоактивном поражении организма, однако отсутствуют сведения о применении гипобарической

Физико-химическая биология как основа современной медицины: тез. докл. Респ. конф. с междунар. участием, посвящ. 110-летию В.А. Бандарина (Минск, 24 мая 2019 г. : в 2 ч. ч. 2)

гипоксии при данном поражении. В связи с этим целью исследования было изучить влияние предварительной гипобароадаптации на организм экспериментальных животных при радиоактивном воздействии. Эксперимент проведен на взрослых белых беспородных крысах массой 150-200 г, которые были разделены на 4 группы: 1-я группа – контрольные животные; 2-я группа – подопытные, адаптированные в течение 6 дней в барокамере на высоте 6000 м над уровнем моря к действию гипоксии; 3-я группа – подопытные животные, подвергшиеся радиоактивному воздействию; 4-я группа – подопытные, адаптированные в течение 6 дней в барокамере на высоте 6000 м над уровнем моря к действию гипоксии и на 7-й день подвергшиеся радиоактивному воздействию. Гипобароадаптация осуществлялась в барокамере на высоте 6000 м над уровнем моря. В 1-й день длительность сеанса адаптации составляла 10 мин, на 2-й - 20, на 3-й - 30 мин, 4-5-й - перерыв, на $6-\ddot{u} - 10$ мин, на $7-\ddot{u} - 20$ мин, на $8-\ddot{u} - 30$ мин. Экспериментальным радиоактивным воздействием было однократное гаммаоблучение в дозе 1Гр (мощность облучения 3,24 Гр в час) при помощи установки «Агат-Р».

При адаптации к гипоксии возрастает содержание углеводных ресурсов, так как они способны продуцировать энергию, как при наличии кислорода, так и без него путем анаэробного гликолиза. Так, концентрация глюкозы в сыворотке крови после курса гипобароадаптации на высоте 6000 м составляла 9,86±0,89 ммоль/л, что было выше на 76%, чем в контроле, где концентрация была 5,59±0,1 ммоль/л (p<0,001). После радиоактивного воздействия содержание глюкозы в сыворотке крови составляло 9,24±2,17 ммоль/л, что было выше на 39,5%, чем в контроле. Следует отметить, что при сравнении групп, которые подверглись влиянию разных стрессоров (гипобароадаптация на высоте 6000 м и воздействие радиации), различия данного показателя не являются достоверными. Таким образом, изменения углеводного обмена после адаптации к гипоксическому воздействию сходны с таковыми при радиоактивном поражении и выражаются в повышении уровня глюкозы. Причем значительное увеличение данного показателя наблюдается после курса гипобароадаптации на высоте 6000 м. В сыворотке крови животных, предварительно адаптированных к гипоксии и затем подвергшихся радиоактивному воздействию, содержание глюкозы повысилось на 78,1% и составило 7,16±1,32 ммоль/л. Вместе с тем различия данного показателя по сравнению с животными с радиоактивным поражением являются недостоверными.

Пигментообразующая функция печени характеризуется динамикой уровня билирубина. Так, после адаптации к гипоксии на высоте 6000 м

содержание данного показателя составляло 1,25±0,13 мкмоль/л, что превосходило аналогичный показатель контрольной группы в 3 раза, где концентрация была 0.42 ± 0.01 мкмоль/л (p<0.001). Однако не обнаружена достоверность различия этого показателя в группах адаптированных животных. Содержание билирубина после радиоактивного воздействия составляло 0,89±0,49 мкмоль/л, что было в 2 раза больше, чем в контроле и 1,5 раза меньше, чем у животных, адаптированных к гипоксии соответственно. Предварительная адаптация к гипоксии вызывала достоверное повышение уровня билирубина на 52,5% (p<0.001), с 0.42 ± 0.01 мкмоль/л в контроле до 0.80 ± 0.43 мкмоль/л. Вместе с тем данный показатель был ниже на 10.1% по сравнению с неадаптированными животными, что свидетельствует о положительном влиянии предварительной гипобароадаптации на пигментообразующую функцию печени.

Таким образом, при адаптации к гипоксии в условиях искусственного нежилого высокогорья динамика метаболических показателей, характеризующих углеводный обмен ближе по своему характеру к изменениям, возникающим при радиоактивном воздействии. Предварительная адаптация к гипобарической гипоксии снижает выраженность метаболических изменений у крыс с радиоактивным поражением, что проявляется в повышении содержания глюкозы и понижении уровня билирубина.