К. В. Юрченко

МУТАГЕНЕЗ IN SILICO ВАРИАБЕЛЬНЫХ УЧАСТКОВ АМИНОКИСЛОТ-НОЙ ПОСЛЕДОВАТЕЛЬНОСТИ EGF

Научный руководитель канд. биол. наук, доц. В. В. Хрусталёв, ассист. В. В. Побойнев

Кафедра общей химии Белорусский государственный медицинский университет, Минск

K. V. Yurchenko MUTAGENESIS IN SILICO OF VARIABLE FRAGMENTS OF EGF'S AMINO ACID SEQUENCE

Tutor: PhD, associate professor V. V. Khrustalev, assistant V. V. Poboinev

Department of General Chemistry Belarusian State Medical University, Minsk

Резюме. Статья содержит сведения о мутагенезе in silico вариабельных участков аминокислотной последовательности комплекса EGF, связанного с EGFR. Полученная информация необходима для разработки стратегии борьбы с резистентностью опухолевых клеток к таргетной терапии – к созданию нового ингибитора активации рассматриваемого рецептора.

Ключевые слова: EGFR, EGF, человеческий ген, мутагенез in silico.

Resume. This article includes information about mutagenesis in silico of variable fragments of amino acid sequences for complex of EGF bound by EGFR. The results are needed for creation of a strategy for fighting cancer cell's resistance with target therapy – for the design of a new type of receptor's activation blockader.

Keywords: EGFR, EGF, human gene, mutagenesis in silico.

Актуальность. Современные блокаторы рецептора эпидермального фактора роста представляют собой моноклональные антитела, их антиген-связывающие фрагменты или нанотела. Эти препараты отличаются весьма высокой стоимостью. В данной работе мы приступили к дизайну блокатора EGFR, представляющего собой модификацию его родного лиганда – относительно короткого пептида EGF, содержащего 2 аминокислотные замены. Первая замена должна существенно повышать сродство будущего блокатора к первому бета-бочонку надмембранной части EGFR, а вторая – значительно снижать сродство блокатора ко второму бета-бочонку. В результате связывания рецептора с таким блокатором первый бета-бочонок не сможет соединиться со вторым за счёт совместного связывания EGF в такой конформации, при образовании которой активируется подмембранная часть рецептора.

Цель. Целью данной работы являлся поиск in silico аминокислотных замен в EGF человека, способных превратить его в таргетный противоопухолевый препарат.

Задачи:

1. Провести in silico мутагенез вариабельных участков в структуре EGF человека.

2. Рассчитать изменение энергии взаимодействия в результате каждой амино-кислотной замены.

3. Предложить дизайн таргетных препаратов.

Материалы и методы. Для мутагенеза in silico и расчёта энергии использовалась программа Swiss-PdbViewer [1]. Структура комплекса EGF с EGFR взята из международной базы данных Protein Data Bank под идентификатором 1IVO. Установление характера связей между EGF и EGFR произведено с помощью Protein Interactions Calculator [2].

Путём внесения точечных замен в десяти положениях был установлен характер новых взаимодействий аминокислот друг с другом и произведено сравнение с оригинальным комплексом. Для дальнейшего анализа отобраны наиболее перспективные аминокислотные замены.

Результаты и их обсуждение. Для исходного комплекса характерны следующие взаимодействия – 21 гидрофобное взаимодействие (на расстоянии 5 Ангстрем), 1 взаимодействие между ароматическими аминокислотами (в пределах 4.5-7 Ангстрем), 3 водородных связи внутри главной цепи, 14 водородных связей между главной и боковой цепями, 11 водородных взаимодействий между боковыми цепями, 5 ионных взаимодействий (на расстоянии в 6 Ангстрем) и 3 катион-□ взаимодействия (в пределах 6 Ангстрем).

Номер	Остаток	Цепь	Номер	Остаток	Цепь
14	LEU	А	26	LEU	С
14	LEU	A	30	ALA	С
17	LEU	A	38	ILE	С
45	TYR	А	21	MET	С
45	TYR	A	23	ILE	С
68	ALA	А	26	LEU	С
69	LEU	A	23	ILE	С
69	LEU	A	25	ALA	С
69	LEU	A	26	LEU	С
98	LEU	A	26	LEU	С
101	TYR	А	25	ALA	С
325	LEU	А	15	LEU	С
348	LEU	А	44	TYR	С
350	VAL	А	15	LEU	С
357	PHE	А	13	TYR	С
382	LEU	А	44	TYR	С
382	LEU	А	47	LEU	С
412	PHE	А	47	LEU	С
415	ALA	A	47	LEU	С
417	VAL	A	47	LEU	С
438	ILE	A	47	LEU	С

Табл. 1. Белок-белковые гидрофобные взаимодействия в пределах 5 Ангстрем между А и С цепями исходного комплекса.

Табл. 2. Исходные значения энергии фолдинга для каждой аминокислоты, образующей межмолекулярные гидрофобные контакты, в оригинальном комплексе, кДж/моль.

TYR13	LEU15	MET21	ILE23	ALA25	LEU26	ALA30	ILE38	TYR44	LEU47
-78.625	-17.434	-40.589	-21.259	-11.566	-10.865	-36.023	2.015	-100.858	-23.937

Данные положения в С цепи (таблица 1) относятся к вариабельным участкам EGF, в которых возможны замены аминокислот, влияющие на аффинность EGF к EGFR с сохранением стабильности его структуры. Также для фиксирования факта изменений при мутагенезе были определены энергетические значения фолдинга исходных аминокислот в С цепи (таблица 2).

В оригинальном комплексе, а также в вариантах с заменами ТҮR13-PHE13, LEU15-ILE15, LEU47-ILE47 насчитывается 21 гидрофобное взаимодействие между элементами цепей, однако есть структурное различие – при замене ТҮR на PHE связь устанавливается между PHE357 A цепи и PHE13 C цепи. В случае замены LEU15-ILE15 исчезает связь между LEU325 A цепи и LEU15 C цепи, но образуются 2 новые – PRO349 A цепи и ILE15 C цепи, VAL350 A цепи и ILE15 C цепи. Для замены LEU47-ILE47 количество связей не изменяется. В вариантах MET21-ARG21, ILE23-VAL23, ALA30-ARG30 таких взаимодействий уже меньше – 20: для первого варианта исчезает связь между ТҮR45 A цепи и MET21 C цепи; в ILE23-VAL23 пропадает связь одна связь между TYR45 и ILE23 и изменяется существующая связь между LEU69-ILE23 на LEU69-VAL23; в случае замены ALA30-ARG30 пропадает связь LEU14-ALA30. Для ILE23-ARG23, ALA25-ARG25, ALA25-GLN25 характерно 19 взаимодействий в сравнении с оригиналом: в первом случае исчезает TYR45-ILE23, LEU69-ILE23; для ALA25-ARG25 и ALA25-GLN25 исчезают одни и те же связи LEU69-ALA25 и TYR101-ALA25.

Как для исходного комплекса, так и для вариантов с заменами характерна одна и та же связь между ароматическими аминокислотами – связь между PHE357 A цепи и TYR13 C цепи (за исключением варианта с заменой TYR13 на PHE13, в котором образуется связь между PHE357 и PHE13 A и C цепей соответственно).

Вообще, следует отметить влияние замен на аффинность – замены в С цепи в положениях TYR13 и LEU15 снижают сродство к рецептору; замены MET21, ILE23, ALA25, LEU26, ALA30 и ILE38 сродство повышают, а замены TYR44 и LEU47 её также снижают. В целом, большинство замен носят нерадикальный характер, однако существуют две радикальные замены для ALA25 – это замены на GLN25 и ARG25. Более того, имеет смысл отметить то, что алгоритм снижает устойчивость комплекса при замене любого остатка на GLY, но значительно повышает её при замене любого остатка на ARG.

В исходном комплексе внутри главной цепи имеется 3 водородные связи:

- 1. между GLN16 А цепи (донор) и CYS31 С цепи (акцептор);
- 2. между GLY18 А цепи (донор) и CYS33 С цепи (акцептор);
- 3. между CYS33 С цепи (донор) и GLN16 А цепи (акцептор).

Эти связи сохраняются при любых изученных в этой работе вариантах замен.

Однако изменяются донорно-акцепторные углы и расстояние между ними.

Между главной и боковой цепью в исходном комплексе и его вариантах в образованных связях имеются различия.

В оригинальном комплексе имеется 14 водородных связей:

- 1. THR15 А цепи (донор) и GLU40 С цепи (акцептор);
- 2. SER99 А цепи (донор) и ALA25 С цепи (акцептор);
- 3. ASP355 А цепи (донор) и GLY12 С цепи (акцептор) две связи;
- 4. GLN384 А цепи (донор) и GLN43 С цепи (акцептор) две связи;
- 5. HIS409 А цепи (донор) и ARG45 С цепи (акцептор);
- 6. LYS465 А цепи (донор) и LEU47 С цепи (акцептор);
- 7. LYS465 А цепи (донор) и TRP49 С цепи (акцептор);
- 8. ASN32 С цепи (донор) и GLY18 А цепи (акцептор) две связи;
- 9. GLY39 С цепи (донор) и ASN12 А цепи (акцептор);
- 10. ARG45 С цепи (донор) и GLN384 А цепи (акцептор);
- 11. LEU47 С цепи (донор) и HIS409 А цепи (акцептор).

В случае замен ТҮR13-PHE13, LEU15-ILE15, MET21-ARG21, ILE23-VAL23, LEU26-ARG26, LEU47-ILE47, ALA25-GLN25 таких взаимодействий становится уже меньше – 11: исчезают связи между ASP355 и GLY12.

В случае замен ILE23-ARG23, ALA30-ARG30 таких взаимодействий 13, однако между ними существуют различия. Всё также отсутствуют связи между ASP355 и GLY12. В первом варианте устанавливается новый контакт – между ARG23 С цепи (донор) и LEU14 А цепи (акцептор) – две связи. Во втором варианте устанавливаются связи:

- 1. между ARG30 С цепи (донор) и LYS13 А цепи (акцептор);
- 2. между ARG30 С цепи (донор) и LEU14 А цепи (акцептор).

Между боковыми цепями в оригинальном комплексе, а также при всех вариантах замен за исключением ILE23-ARG23, имеется 11 белок-белковых водородных связей. Для замены ILE23-ARG23 их число равно 13 – появляются 2 новые связи между ARG23 C цепи и TYR45 A цепи.

Для исходного комплекса EGF с EGFR и вариантов TYR13-PHE13, LEU15-ILE15, MET21-ARG21, ILE23-VAL23, ILE23-VAL23, LEU47-ILE47, ALA25-ARG25 и ALA25-GLN25 характерно одно и то же число ионных взаимодействий (таблица 3). Однако в случае вариантов LEU26-ARG26 и ALA30-ARG30 имеются отличия. При первом варианте появляется новая связь GLU90 A цепи – ARG26 C цепи; во втором варианте GLU90 той же цепи связывается с ARG30 C цепи в сравнении с оригиналом.

Табл. 3. Белок-белковые ионные взаимодействия внутри wild-type комплекса EGF с EGFR и в вариантах с заменами (TYR13-PHE13, LEU15-ILE15, MET21-ARG21, ILE23-VAL23, ILE23-ARG23, LEU47-ILE47, ALA25-ARG25, ALA25-GLN25).

Номер	Оста-	Цепь	Номер	Оста-	Цепь
	ТОК			ТОК	
13	LYS	А	40	GLU	С
29	ARG	A	46	ASP	С

90	GLU	А	28	LYS	С
355	ASP	А	41	ARG	С
409	HIS	A	46	ASP	С

В исходном комплексе и вариантах ТҮR13-PHE13, LEU15-ILE15, MET21-ARG21, ILE23-VAL23, ILE23-ARG23, ALA30-ARG30, LEU47-ILE47 и ALA25-GLN25 устанавливаются 3 одинаковых катион-□ взаимодействия (таблица 4). Для замен LEU26-ARG26 и ALA25-ARG25 количество связей равно 4 – в первом варианте добавляется связь TYR89 А цепи с ARG26 С цепи; во втором варианте - четвёртая связь образуется между TYR101 А цепи и ARG25 С цепи.

Таб 4. Белок-белковые катион-□ взаимодействия внутри wild-type комплекса EGF с EGFR и вариантах с заменами (TYR13-PHE13, LEU15-ILE15, MET21-ARG21, ILE23-VAL23, ILE23-ARG23, ALA30-ARG30, LEU47-ILE47, ALA25-GLN25).

Номер	Оста-	Цепь	Номер	Оста-	Цепь
	ТОК			ток	
49	TRP	С	29	ARG	А
89	TYR	А	28	LYS	С
357	PHE	А	41	ARG	С

Вывод. В ходе проделанной работы были определены 10 участков в вариабельных фрагментах EGF для мутагенеза in silico. Отобраны несколько замен, влияющих на аффинность, но являющихся консервативными – с низкой вероятностью приводящих к серьёзным структурным перестройкам в EGF. К таким заменам относятся – понижающие сродство со вторым бета-бочонком замены TYR13-PHE13, LEU15-ILE15, и, в особенности, LEU47-ILE47; и мутация, повышающие сродство лиганда к первому бета-бочонку рецептора – замена ILE23-VAL23. Ещё одна замена, существенно повышающая сродство EGF к первому бочонку, по характеру является радикальной (ALA25-ARG25), но ALA25 находится в короткой спирали 3/10, не взаимодействующей с остальными фрагментами EGF.

Литература

1. Guex, N. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling / N. Guex, M. C. Peitsch // Electrophoresis. - 1997. - Vol. 18, issue 15. - P. 2714-2723.

2. Tina, K. G. PIC: Protein Interactions Calculator / K. G. Tina, R. Bhadra, N. Srinivasan / Nucleic Acids Research. - 2007. - Vol. 35, issue 2. - P. 473-476.