ISBN 978-985-21-1117-1 УДК 61:615.1(0.034.44)(06)(476) ББК 5:52.8 И 66

Д.А. Крупень, Е.Р. Паршикова ОЦЕНКА IN VITRO АНТИМИКРОБНЫХ СВОЙСТВ ПОКРЫТИЙ ДЛЯ ХИРУРГИЧЕСКИХ ИМПЛАНТОВ НА ОСНОВЕ ХИТОЗАНА И ПЕКТИНА

Научный руководитель: канд. мед. наук, доц. А.В. Жура

Кафедра хирургических болезней

Белорусский государственный медицинский университет, г. Минск УЗ «Городская клиническая больница скорой медицинской помощи», г. Минск

D.A. Krupen, E.R. Parshikova IN VITRO EVALUATION OF ANTIMICROBIAL PROPERTIES OF COATINGS FOR SURGICAL IMPLANTS BASED ON CHITOSAN AND PECTIN

Tutor: Ph.D., associate professor Zhura A.V.

Department of Surgical Diseases Belarusian State Medical University, Minsk City clinical emergency hospital, Minsk

Резюме. Данное исследование призвано расширить область применения сетчатых имплантов в хирургии.

Ключевые слова: сетчатые импланты, Staphylococcus aureus, Escherichia coli, воспалительный процесс в ране, хитозан, пектин, мультислойное нанопокрытие.

Resume. This research is intended to expand the scope of mesh implants in surgery.

Keywords: mesh implants, Staphylococcus aureus, Escherichia coli, inflammation in the wound, chitosan, pectin, multilayer nanocoating.

Актуальность. Современные принципы хирургического лечения грыж включают в себя использование ненатяжных методов закрытия грыжевого дефекта, позволяющих минимизировать натяжение тканей, а также эффективно предотвратить развитие рецидивов. Вместе с тем, ненатяжные методы пластики имеют ряд особенностей и ограничений, связанных с использованием дополнительных пластических материалов, таких как сетчатые импланты и протезы. Относительным противопоказанием для установки хирургических сеток служит наличие воспалительного процесса в ране. При контаминации раны, например, при ущемленной грыже с некрозом кишки, установка сетки несет определенные риски воспалительных послеоперационных осложнений, которые приводят к длительно текущему гнойному процессу, купировать который без удаления трансплантата в настоящий момент практически невозможно.

Одним из вариантов предупреждения таких осложнений может стать модификация сетчатых имплантов мультислойными нанопокрытиями с антибактериальными антиадгезивными и/или бактерицидными свойствами.

Цель: оценить *in vitro* антимикробные свойства хирургических имплантов на основе хитозана и пектина.

Задачи:

1. Провести анализ результатов на микрофотографиях стёкол, полученых в результате исследования

2. На основе подсчёта количества бактерий на микрофотографиях разных нанопокрытий выявить, которое из них обладает наибольшим бактерицидным эффектом.

Материалы и методы. В ходе работы были изготовлены четыре варианта покрытий на основе хитозана, а также пектина с включением молекулярного серебра:

- 1) хитозан-пектин,
- 2) хитозан-Ад-пектин,
- 3) хитозан-пектин-Ад,
- 4) хитозан-Ад-пектин-Ад.

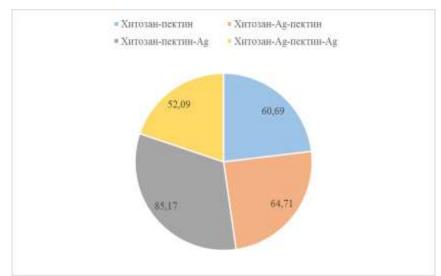
Как контрольные образцы использовали нестерильные стекла без покрытий.

Исследуемые, контрольные образцы помещали в пробирки с триптиказо-соевым бульоном (ТСБ), содержащим взвеси тест-культур грамположительных (Staphylococcus aureus) и грамотрицательных бактерий (Escherichia coli) в концентрации 1,0*10⁵ КОЕ/мл. Тару с ТСБ оставляли при температуре 37°С на 1 сутки. После образцы пинцетом извлекали из ТСБ, после чего для удаления излишков суспензионной бактериальной культуры погружали в стерильный физиологический раствор. Сушили образцы в естественных условиях, фиксировали препараты метанолом в течение 10 минут.

Проводился визуальный подсчет количества клеток в выбранных полях зрения площадью 1000 мкм², которые предварительно сохраняли в виде серий микрофотографий. При подсчёте учитывались клетки с сохраненной формой и структурой, а также клетки с нарушенной целостностью стенки. После подсчета каждой микрофотографии по каждому образцу высчитывалось среднее количество клеток на 1000 мкм².

Статистическая обработка данных проводилась в программах Microsoft Excel 2010 и Statistica 10.0.

Результаты и их обсуждение. Используя электронную микроскопию видно, что контрольные образцы были практически полностью покрыты микробными клетками, а количество повреждённых клеток было несущественное (3%). В отношении E.coli все разработанные образцы покрытий показали антибактериальное действие (p<0,05). Для покрытия хитозан-пектин отмечалось уменьшение количества бактерий на 39,64% по сравнению с контролем. Для покрытия хитозан-Ад-пектин имело место снижение количества бактерий на 43,68% по сравнению с контролем. Такое снижение количества клеток можно гипотетически связать с антиадгезивным действием полисахаридного нанопокрытия. Стоит отметить, что доля поврежденных клеток (61% и 65% соответственно) была значительно выше на образцах с покрытием, по сравнению с контролем (3%), основываясь на чём можно сделать вывод о неблагоприятной среде обитания для клеток (p<0,05). У образца, покрытого хитозан-Ад-пектин-Ад уменьшилось количество бактериальных клеток на 65,51% по сравнению с контрольной группой образцов (p<0,05). При покрытии образца хитозан-пектин-Ад среднее количество бактериальных клеток упало на 85,09% по сравнению с контрольным образцом (p<0,001). Таким образом, наилучших результатов удалось достичь при применении покрытий со встроенным в состав серебром в конце молекулы.


В отношении *S.aureus* наилучший результат показало покрытие хитозан-пектин, при котором среднее количество клеток на 1000 мкм^2 было в 23,97 раза (на 95,83%) меньше, чем в контроле (p<0,001).

Средние в этой группе показатели были у покрытий хитозан-пектин-Ag и хитозан-Ag-пектин-Ag: снижение в 1,4 (на 28,23%) и 1,65 раза (на 39,48%) соответственно по сравнению с контрольными образцами (p>0,05).

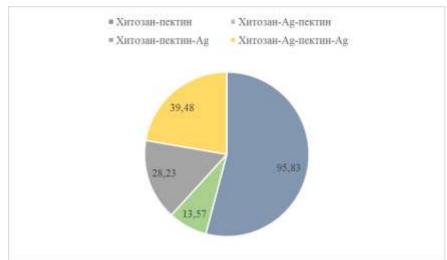

В случае же с покрытием хитозан-Аg-пектин антибактериальное действие практически не отмечается. Для этого покрытия снижение количества клеток составило 1,16 раз, что меньше всего на 13,57%, если сравнивать с контрольными образцами. (таблица 1; рисунок 1, 2).

Табл. 1. Оценка антимикробных свойств мультислойных нанопокрытий на основе хитозана и пектина

	Контроль	хитозан-	хитозан-Ag-	хитозан-	хитозан-Ag-
		пектин	пектин	пектин-Ag	пектин-Ag
	Количество бактерий на 1000 мкм^2 ,				
	Значение ± стандартное отклонение				
E. coli	305±65	185±30	170±50	45±5	95±25
Количество повреждён- ных клеток <i>E. coli</i> , %	2,67%	60,69%	64,71%	85,17%	52,09%
S. aureus	1030±90	45±30	890±140	740±150	625±25
Количество повреждён- ных клеток S. aureus, %	0%	95,83%	13,57%	28,23%	39,48%

Рис. 1 – Количество повреждённых клеток E.coli. на 1000 мкм², %

Рис. 2 – Количество повреждённых клеток S.aureus. на 1000 мкм², %

Выводы: таким образом, покрытие хитозан-пектин-Ад показало статистически значимые результаты при использовании против как грамотрицательных, так и грамположительных микроорганизмов и, как следствие, может рассматриваться как перспективное потенциальное антибактериальное покрытие для хирургических имплантов.

Проанализировав полученные результаты, можно сделать следующие выводы:

- 1 наибольшей эффективностью против представителя грамотрицтельной флоры E.coli среди 4 разработанных вариантов покрытий обладает мультислойное нанопокрытие хитозан-пектин-Ag;
- 2 при использовании покрытии хитозан-пектин-Ag среднее количество микроорганизмов E.coli было на 85,09% меньше, чем в контрольном образце (p<0,001)
- 3 отношении *S.aureus* как представителя грамположительной флоры наилучший результат показала пленка хитозан-пектин;
- 4 среднее количество клеток S.aureus на 1000 мкм² при использовании пленки хитозан-пектин было в 23,97 раза (на 95,83 %) меньше, чем в контрольном образце (p<0,001).

Литература

- 1. Arciola, C. R. Implant infections: adhesion, biofilm formation and immune evasion / C. R. Arciola, D. Campoccia, L. Montanaro // Microbiology. 2018. Vol.16. P. 397–409.
- 2. Zhu, X. Layer-by-layer assemblies for antibacterial applications / X. Zhu, X. Jun Loh // Biomater. Sci. $-2015.-Vol.12.-P.\ 1505-1518.$
- 3. Banerjee, I. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms / I. Banerjee, R. C. Pangule, R. S. Kane // Adv. Mater. 2011. Vol.114. P. 8883–8942.
- 4. Имплантат-ассоциированные инфекции, связанные с проблемой биопленкообразования / Л.С. Бузолева [и др.]. // Современные проблемы науки и образования. 2016. №5. С. 10–18.
- 5 Жура, А. В. Исследование биологической активности мультислойных полисахаридных покрытий в эксперименте / А. В. Жура, В. Г. Козлов, С. И. Третьяк // Актуальные вопросы и современные подходы в оказании хирургической помощи в Республике Беларусь : сб. материалов респ. науч. конф. с международным участием и XXVIII Пленума Правления Белорусской ассоциации хирургов Минск, 2021. С. 132–133.