ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ МЕТОДА ТЕПЛОВИЗИОГРАФИИ ПРИ ЛЕЧЕНИИ ДЕФЕКТОВ МЯГКИХ ТКАНЕЙ

¹Терешко Д.Г., ¹Чугульков В.А., ²Фёдоров К.А.

¹Военно-медицинский институт в учреждении образования «Белорусский государственный медицинский университет», г. Минск,

Республика Беларусь

²Государственное учреждение «432 ордена Красной Звезды главный военный клинический медицинский центр Вооруженных Сил Республики Беларусь», г. Минск, Республика Беларусь

Актуальность. Различные методы термографии уже давно известны в медицине. Однако с развитием новых методов диагностики, таких как ультразвуковая допплерография, магнитно-резонансная томография, компьютерная томография с ангиографией и других, метод термографии в медицине остался без внимания. Несмотря на это, метод не был забыт и его развитие было продолжено в других сферах: промышленное использование, охота, вооружение и военная техника. Новый виток развития произошел с изобретением лазерных сенсоров и компьютерной техники. Совмещение этих разработок с термографией вывело в свет тепловизиограф. На этом этапе интерес к методу тепловизиографии в медицине возник снова. Метод приобрел свою популярность у хирургов, в частности у реконструктивных микрохирургов. Минно-взрывные, огнестрельные, и другие механические повреждения мягких тканей, а также термические и химические ожоги, к сожалению, являются по статистике весьма распространенной проблемой во всем мире. В большинстве случаев для качественной диагностики кровоснабжения кожи применяется метод УЗ-допплерографии. Исходя из сегодняшней обстановки в мире, можно сделать вывод, что аппарат УЗ-допплерографии, который способен определить местоположения перфорантов, не всегда может быть использован хирургом, особенно в полевых условиях, так как имеет большие габариты, требует определенных условий и специализированного оборудования для работы. В качестве альтернативы компактный тепловизиограф более практичен и удобен в использовании.

Цель. Изучить возможность применения метода тепловизиографии в военно-полевой хирургии на примере реконструктивных операций при посттравматических дефектах мягких тканей конечностей.

Материалы Тепловизор методы. улавливает минимальные инфракрасные излучения, трансформирует их в электрический сигнал, а затем изображение. цветное Получаемый В электросигнал пропорционален мощности инфракрасной волны, что дает возможность точно определять температуру. Портативная модель тепловизора имеет собственный диапазон цветового соответствия температур, что в полной мере позволяет оценивать кровоснабжение и жизнедеятельность исследуемых тканей. Сверяться с данной шкалой на практике нет необходимости, так как программа "FLIR One" позволяет вывести значение температуры в заданной пользователем точке. Диапазон измерения от -20 до 400° С. Разрешающая способность матрицы - 160x120px. Температурный шаг в спектре составляет 0,1 °C.

Для анализа отобраны 86 пациентов, прооперированных в ГУ «432 ГВКМЦ ВС РБ» с основным или сопутствующим диагнозом: обширный дефект мягких тканей. Исходя из цели исследования было сформировано 2 группы: пациенты, обследованные УЗ-допплерографией 51 (59,3%) І группа и пациенты, обследованные тепловизором 35 (40,7%) ІІ группа. Изучаемый период составил 5 лет.

Результаты. Удельный вес пациентов в первой группе с выполненной свободной пластикой и несвободной 32 (37,2%) и 19 (22,1%) соответственно. Во второй группе на долю свободной пластики пришлось 22 (25,6%) пациента и 13 (15,1%) на несвободную. По гендерному признаку распределения в группах примерно одинаковы, соотношение мужчин 73 (84,9%) и женщин 13 (15,1%) 6:1. Возраст пациентов варьировал от 18 до 86 лет, средний возраст составил 46 \pm 4,37 лет. Экспериментальным путем определены характеристики двух методов диагностики. По таким сравниваемым критериям как определение жизнеспособности тканей пред-, интро- и постоперационно, противопоказания к изображение возможность сохранить И безболезненность применению, тепловизиографии проведения процедуры метод не уступает допплерографии. Особенности применения тепловизиографии – это скорость проведения процедуры, лёгкость и простота применения, бесконтактность и обученного использование без специально человека. Процедура тепловизиографии неинвазивна, может выполняться параллельно с работой хирурга, моментально документирует в цифровом формате полученные данные, позволяет проводить исследование как до операции с целью визуализации перегородочно-кожных вероятного расположения перфорантов, интраоперационно с целью контроля кровоснабжения лоскута на разных этапах его выделения, а также после операции с целью мониторинга возможных сосудистых осложнений, что доказано выполненым ранее УЗ-допплерографией. Устройство может быть использовано на этапах квалифицированной и специализированной медицинской помощи.

Выволы.

- 1) Процедура неинвазивна, не требует дополнительного освещения, не требует специального обучения, интуитивно понятна, следовательно, метод прост в применении.
- 2) Устройство имеет малый размер, дешевое, быстрое, объективное, не требует ничего кроме мобильного устройства: может применяться на этапе специализированной помощи.
- 3) Выбор метода теплофизиографии не уступает УЗ-допплерографии и не влияет на результат лечения.