СОСТОЯНИЕ СУБПОПУЛЯЦИЙ МОНОЦИТОВ И ДЕНДРИТНЫХ КЛЕТОК У ПАЦИЕНТОВ С COVID-19 И ЗДОРОВЫХ ЛИЦ

¹Государственное учреждение «Республиканский центр гигиены, эпидемиологии и общественного здоровья», г. Минск, Республика Беларусь,

²Учреждение образования «Белорусский государственный медицинский университет», г. Минск, Республика Беларусь

Коронавирусная инфекция, вызванная вирусом SARS-CoV-2, стала одной из самых значительных глобальных проблем здравоохранения XXI века. С начала пандемии в 2019 г. вирус вызвал беспокойство не только из-за высокой контагиозности и тяжелых случаев заболевания, но и из-за глубоких социальных, экономических и медицинских последствий, которые он оставил. Актуальность этой темы остается высокой, поскольку новые варианты вируса и неопределенность в прогрессии заболеваемости продолжают оказывать влияние на жизнь людей и системы здравоохранения в большинстве стран мира. Понимание основных механизмов иммунного ответа на коронавирусную инфекцию критически важно для разработки эффективных методов лечения и профилактики.

Адаптивный противовирусный иммунный ответ является ключевым фактором в ликвидации вирусов, который осуществляется с помощью гуморального и клеточного механизмов и направлен на нейтрализацию, освобождение организма от вируса, его антигенов и уничтожение зараженных вирусом клеток [1]. Однако адекватность приобретенного иммунного ответа зависит от реактивности врожденного иммунитета человека.

Система мононуклеарных фагоцитов (далее – СМФ), состоящая из моноцитов, дендритных клеток (далее – ДК) и макрофагов, играет жизненно важную роль во врожденной иммунной защите от патогенов. Моноциты составляют 5–10 % лейкоцитов периферической крови человека и образуются в костном мозге и селезенке. Во время воспаления моноциты могут дифференцироваться в макрофаги и ДК, которые в свою очередь могут представлять антигены Т-клеткам. ДК являются наиболее мощными антигенпрезентирующими клетками (далее – АПК) и единственными АПК, которые могут активировать наивные Т-клетки. Последние исследования показали, что COVID-19 характеризуется системным увеличением количества многочисленных цитокинов, включая IL-1α, IL-1β, IL-6, IL-7, фактор некроза опухоли, интерфероны типа I и II, а также воспалительные хемокины CCL2, CCL 3 и CCL10. Подобные профили цитокинов, наблюдаемые у пациентов с тяжелой формой COVID-19, имеют сходство с профилями, наблюдаемыми при синдроме активации макрофагов. Данный факт привел к гипотезе о том, что нарушение регуляции активации системы мононуклеарных фагоцитов способствует гипервоспалению, связанному с COVID-19 [2].

Учитывая ключевую роль в защите хозяина и потенциальную опасность, которую представляет нерегулируемое гипервоспаление, опосредованное СМФ, понимание соотношения фенотипов моноцитов и дендритных клеток при COVID-19 является ключом к решению патологических механизмов заболевания.

Цель работы – изучить в динамике изменения относительного и абсолютного содержания субпопуляций моноцитов и дендритных клеток в крови пациентов со среднетяжелой формой течения инфекции COVID-19.

Объектом исследования была кровь от пациентов с диагнозом «инфекция COVID-19» (УЗ «Городская клиническая инфекционная больница» г. Минска), полученная в период апрель–июль 2023 г. Обследовано

¹Трусевич М. О., rita.trusevich@gmail.com,

¹Картаева А. С., kartaeva99@mail.ru,

¹Титов Л. П., д. м. н., профессор, академик НАН Беларуси, leotit310@gmail.com,

²Сильванович Е. А., silvanoviche@gmail.com,

²Карпов И. А., д. м. н., профессор, член-корреспондент НАН Беларуси, vip.kia1957@mail.ru,

²Анисько Л. А., luidok@mail.ru

23 пациента со среднетяжелой формой течения заболевания (9 мужчин и 14 женщин, возраст 69,4 ± 3,3 лет). Диагноз был подтвержден положительным ПЦР-тестом. Забор крови у пациентов производился на 1 и 6 сутки от установления диагноза. Контрольная группа включала 30 здоровых доноров.

Субпопуляции моноцитов и дендритных клеток определяли методом проточной цитометрии, используя следующие моноклональные антитела: lin (CD3, CD14, CD16, CD19, CD20, CD56), CD11c (клон BU15), CD14 (клон MEM-15), CD16 (клон CB16), CD45 (клон HI30), CD123 (клон 6H6) и HLA-DR (клон L243). Для этого цельную кровь окрашивали соответствующими моноклональными антителами. После инкубации в течение 15 мин образцы лизировали лизирующим раствором RBC Lysis Buffer (BioLegend, CША). Оставшиеся лейкоциты промывали после лизиса фосфатно-солевым буфером (ФСБ), pH 7,2 (Capricorn Scientific GmbH, Германия). После восстановления в ФСБ клетки анализировали с помощью проточного цитофлюориметра FACSCalibur (Вестон Dickinson, США). Гейтирование проводили согласно общепринятым методикам. Для корректной настройки параметров компенсации для каждой группы образцов готовили single-stained контроли. Данные анализировали при помощи программы FACSDiva версии 7.

Статистическую обработку полученных данных проводили с использованием программы Statistica версии 10. Значения показателей представлены в виде медианы 25-го и 75-го процентилей – Ме (25–75). Для сравнения двух независимых выборок применяли U-критерий Манна – Уитни. В качестве критерия достоверности различий показателей принимали уровень значимости р < 0,05.

Изменения в профиле субпопуляций дендритных клеток. Роль дендритных клеток при COVID-19 лишь недавно начала привлекать внимание исследователей. Термин «дендритная клетка» используется для описания функционально сходных клеток различного происхождения, способных как активировать Т-клетки, так и индуцировать адаптивный иммунный ответ. CD11c – плазмоцитоидные дендритные клетки (далее – пДК) происходят из лимфоидных предшественников, тогда как CD11c+ миелоидные дендритные клетки (далее – мДК) тесно связаны с моноцитами и происходят из миелоидных клеток-предшественников. Дендритные клетки можно рассматривать как связующее звено между врожденной и адаптивной иммунной системой [3].

Данные, полученные в ходе исследования относительного и абсолютного содержания ДК в периферической крови пациентов с инфекцией COVID-19, представлены в таблице 1. На 1 сутки заболевания отмечено снижение содержания как плазмоцитоидных, так и миелоидных ДК по сравнению с группой контроля. В дальнейшем (на 6 сутки) наблюдали статистически значимое снижение как относительного, так и абсолютного содержания только мДК в сравнении с контрольной группой. Также выявлено достоверно значимое снижение относительного содержания мДК (р < 0,05) у пациентов на 6 сутки терапии в сравнении с показателями начала заболевания.

Таблица 1 – Относительное и абсолютное содержание субпопуляций дендритных клеток в периферической крови доноров и пациентов с COVID-19, Me (25–75)

3доровые доноры n = 30	Пациенты с COVID-19 на 1 сутки n = 23	Пациенты с COVID-19 на 6 сутки n = 20
0,162 (0,137–0,197)	0,107 (0,060-0,197)	0,108 (0,055-0,215)
0,01 (0,008-0,011)	0,007 (0,005-0,013)	0,010 (0,006-0,018)
0,290 (0,241-0,386)	0,277 (0,136-0,383)	0,148 (0,043-0,253)*,**
0,018 (0,013-0,024)	0,016 (0,011-0,028)	0,011 (0,007-0,020)*
	n = 30 0,162 (0,137-0,197) 0,01 (0,008-0,011) 0,290 (0,241-0,386)	Здоровые доноры n = 30 на 1 сутки n = 23 0,162 (0,137-0,197) (0,107 (0,060-0,197) (0,01 (0,008-0,011) (0,007 (0,005-0,013) (0,290 (0,241-0,386) (0,277 (0,136-0,383) (0,277 (0

^{*} достоверные различия (р < 0,05) между донорами и пациентами;

Полученные данные могут свидетельствовать о затрудненном восстановлении количества ДК при инфекции COVID-19. Borcherding L. с коллегами [3] в своих работах показали, что при коронавирусной инфекции происходит нарушение созревания ДК. Хотя незрелые дендритные клетки продолжают рекрутироваться, они в конечном итоге не могут выполнить свою основную роль – добраться до лимфатических узлов и активировать Т-лимфоциты. Это приводит к заметному накоплению дендритных клеток в легких и предотвращает эффективный Т-клеточный ответ. Таким образом, дендритные клетки, неспособные адекватно вызвать адаптивную иммунную реакцию, могут быть еще одним компонентом неправильно управляемого иммунного ответа в тяжелых случаях COVID-19.

Изменения в профиле субпопуляций моноцитов. В ходе исследования определяли общее содержание и основные субпопуляции моноцитов периферической крови пациентов: «классические» моноциты

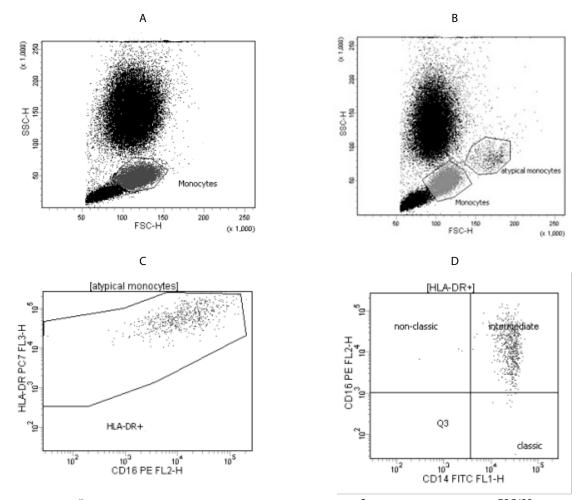
^{**} достоверные различия (p < 0,05) у пациентов на 1 и 6 сутки заболевания.

с фенотипом CD14++CD16-, «промежуточные» моноциты с фенотипом CD14++CD16+ и «неклассические» моноциты с фенотипом CD14+/-CD16+. Средние значения относительного и абсолютного содержания субпопуляций моноцитов у пациентов обследуемых групп в динамике заболевания, полученные в ходе исследования, представлены в таблице 2.

Таблица 2 – Относительное и абсолютное содержание субпопуляций моноцитов периферической крови доноров и пациентов с COVID-19, Me (25–75)

Параметр	3доровые доноры n = 30	Пациенты с COVID-19 на 1 сутки n = 23	Пациенты с COVID-19 на 6 сутки n = 20
Моноциты:			
%	6,85 (6,01–7,99)	11,6 (6,9–14,6)*	7,75 (6,25–9,80)**
× 10 ⁶ /мл	0,40 (0,34-0,48)	0,68 (0,48-0,93)*	0,74 (0,54-0,92)*
HLA-DR+ моноцитов:			
% от числа моноцитов	85,58 (82,86-88,68)	95,7 (92,5–97,7)*	96,9 (93,8–98,1)*
× 10 ⁶ /мл	0,34 (0,29-0,42)	0,66 (0,45-0,88)*	0,66 (0,53-0,86)*
CD14++CD16- классические:			
% от числа моноцитов	82,53 (80,60-84,15)	61,5 (50,1–72,2)*	71,2 (66,18–78,53)*,**
× 10 ⁶ /мл	0,33 (0,27-0,40)	0,40 (0,26-0,56)	0,50 (0,38-0,71)*
CD14++CD16+ промежуточные:			
% от числа моноцитов	10,08 (8,33-11,37)	29,5 (19,6–38,4)*	23,85 (16,93–30,3)*,**
× 10 ⁶ /мл	0,04 (0,03-0,05)	0,20 (0,11-0,31)*	0,16 (0,11-0,25)*
CD14+/-CD16+ неклассические:			
% от числа моноцитов	6,01 (5,18-7,27)	4,8 (1,4-9,4)	2,45 (0,88-5,13)*
× 10 ⁶ /мл	0,02 (0,02-0,03)	0,04 (0,01-0,08)	0,02 (0,01–0,04)

^{*} достоверные различия (p < 0,05) между донорами и пациентами;


Выявлено достоверное увеличение относительного и абсолютного содержания моноцитов у пациентов в начале заболевания COVID-19. На 6 сутки терапии процентное содержание моноцитов пришло в норму, соответствующую референсным значениям у 15 человек из 20 (75 %).

У пациентов с инфекцией COVID-19 отмечено статистически значимое изменение в структуре перераспределения процентного содержания основных субпопуляций моноцитов. А именно, у пациентов на начальной стадии течения заболевания отмечен пониженный уровень процентного содержания классических моноцитов и повышенный уровень промежуточных моноцитов в сравнении со здоровыми донорами. На 6 сутки уровень классических моноцитов достоверно увеличивается, но все еще статистически ниже референсных значений, а уровень промежуточных моноцитов снижается, но достоверно выше в сравнении с контрольной группой. Уровень неклассических моноцитов характеризовался тенденцией к снижению в начале заболевания и на 6 сутки снижение уровня было достоверно значимым (р < 0,05). Данные результаты согласуются с данными других исследований и указывают на то, что фенотип циркулирующих моноцитов у пациентов со среднетяжелой формой течения заболевания в основном состоит из CD14+ и субпопуляции воспалительных моноцитов CD16+, которая может проявлять воспалительную активность и продуцировать IL-6.

Выявленное достоверно высокое содержание молекул HLA-DR на моноцитах может свидетельствовать о том, что моноциты пациентов с COVID-19 способны не только выполнять свою антигенпрезентирующую функцию, но и обладают способностью продуцировать воспалительные медиаторы, что может провоцировать цитокиновый шторм.

В ходе исследования у 35 % (8 из 23) пациентов с инфекцией COVID-19 была выявлена субпопуляция атипичных моноцитов с фенотипом промежуточных моноцитов HLA-DR+CD14+CD16+, которая при анализе прямого светорассеяния (далее – FSC) и бокового светорассеяния (далее – SSC) проточной цитометрии характеризовалась высоким FSC/SSC. Атипичные моноциты составляли приблизительно 1 % от лейкоцитов периферической крови. На 6 сутки заболевания эта популяция клеток в количестве 0,3–0,4 % сохранялась только у 3 пациентов с инфекцией COVID-19. На рисунке 1 показано изображение параметров FSC/SSC проточной цитометрии, а также распределение маркеров дифференциации атипичных моноцитов. В ряде последних работ было отмечено, что морфологически эти атипичные моноциты характеризуются более крупным размером клеток за счет большого количества вакуолей.

^{**} достоверные различия (р < 0,05) у пациентов на 1 и 6 сутки заболевания.

лейкоциты визуализировали на цитограмме прямого и бокового светорассеяния FSC/SS A – здоровый донор, B – пациент с COVID-19; C – регион атипичных моноцитов проецировали на цитограмму CD16/HLA-DR, выделяя HLA-DR+ атипичные моноциты; D – после гейтирования данного региона, анализировали экспрессию молекул CD14 и CD16 на атипичных HLA-DR+ моноцитах

Рисунок 1 – Схема гейтирования атипичных моноцитов

Исследователи Dan Zhang с коллегами [4] показали, что при более детальном анализе эти моноциты с высоким содержанием CD14+CD16+ и FSC демонстрируют признаки смешанной поляризации макрофагов M1/M2 с более высокой экспрессией CD80+ и CD206+ по сравнению с остальными моноцитами и секрецией более высоких уровней IL-6, IL-10 и TNF-α по сравнению с контролем. Данной группой исследователей было сделано заключение, что периферические моноциты у пациентов с COVID-19 воспаляются и начинают дифференцироваться в макрофаги.

В прикладном аспекте выявление наличия атипичных промежуточных моноцитов у пациентов с COVID-19 в дальнейшем может служить диагностическим и/или прогностическим маркером заболевания, так как по данным литературы не описаны случаи обнаружения данных моноцитов при других вирусных заболеваниях.

Полученные данные свидетельствуют о статистически значимых изменениях в процентном перераспределении основных субпопуляций моноцитов, снижении количества дендритных клеток миелоидного происхождения в динамике заболевания. Эти сдвиги в составе популяций системы мононуклеарных фагоцитов, а также обнаружение атипичной популяции промежуточных моноцитов (около 1 % от всех лейкоцитов) приводят к выводу о неспособности этих клеток адекватно вызывать адаптивный иммунный ответ при инфекции COVID-19.

В прикладном аспекте выявление атипичных промежуточных моноцитов с фенотипом HLA-DR+CD14+CD16+ и высоким FSC/SSC при анализе прямого и бокового светорассеяния проточной цитометрии может служить диагностическим и/или прогностическим маркером заболевания COVID-19.

Литература

- 1. Соловьева, А. С. Противовирусный иммунитет / А. С. Соловьева // Бюлл. Физиологии и патологии дыхания. 2015. Вып. 56. С. 113–118.
- 2. Merad, M. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages / M. Merad, J. C. Martin // Nat. Rev. Immunol. 2020. Vol. 20, iss. 6. P. 355–362.
- 3. Impaired dendritic cell homing in COVID-19 / L. Borcherding [et al.] // Front. Med. (Lausanne). 2021. Vol. 8. Art. № 761372.
- 4. Frontline Science: COVID-19 infection induces readily detectable morphologic and inflammation-related phenotypic changes in peripheral blood monocytes / D. Zhang [et al.] // J. Leukoc. Biol. 2021. Vol. 109, iss. 1. P. 13–22.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГИГИЕНЫ, ТОКСИКОЛОГИИ, ЭПИДЕМИОЛОГИИ, ВИРУСОЛОГИИ И МИКРОБИОЛОГИИ ГОСУДАРСТВЕННОГО УЧРЕЖДЕНИЯ «РЕСПУБЛИКАНСКИЙ ЦЕНТР ГИГИЕНЫ, ЭПИДЕМИОЛОГИИ И ОБЩЕСТВЕННОГО ЗДОРОВЬЯ» (НИИ ГТ ЭВМ РЦГЭиОЗ)

ОБЩЕСТВЕННОЕ ОБЪЕДИНЕНИЕ «НАУЧНОЕ ОБЩЕСТВО ГИГИЕНИСТОВ»

СБОРНИК МАТЕРИАЛОВ МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ «ЗДОРОВЬЕ И ОКРУЖАЮЩАЯ СРЕДА»

5-6 декабря 2024 года, г. Минск

Гомель Редакция газеты «Гомельская праўда» 2024