Magnetic nanoparticles as a carrier enhancing chlorhexidine activity against Candida species

Tokajuk Joanna

Medical University of Warsaw, Warsaw

Niemirowicz Katarzyna, Medical University of Bialystok, Bialystok

Tutor(-s) – PhD, Academician **Niemirowicz Katarzyna**, Medical University of Bialystok, Bialystok

Introduction

Most human oral mycosis is caused by Candida species. These pathogens preferentially adopt a biofilm pattern of growth associated with increased resistance to antifungal treatment. Chlorhexidine is characterized by a wide range of antibacterial and fungicidal activity. This compound is frequently used to reduce dental plaque and assist in the treatment of periodontitis and oral infection.

Aim

The aim was to assess the antifungal properties of CHX attached to the surface of nanoparticles against isolates of Candida.

Materials and methods

The experiments were performed using clinical isolates of Candida obtained from patients diagnosed with oral mycosis. To determine MIC and MFC, a microdilution method was performed. To evaluate the ability of this new nanosystem to prevent Candida biofilm formation, cells were grown for 48 h at 37°C with and without the presence of tested agents (0.5 - 50 $\mu g/mL$). The effect on mature biofilm was determined spectrophotometrically using a crystal violet staining method.

Results

CHX attached to magnetic nanoparticles (MNP@CHX) possess a stronger ability to prevent Candida biofilm growth compared to free agent.

Conclusion

The use of MNPs as a drug delivery system for chlorhexidine has great potential to enhance its fungicidal activity. Grants nr: UMO-2012/07/B/NZ6/03504 to RB and UMO-2014/15/D/NZ6/02665 to KN.