ВЛИЯНИЕ ПОЛИМОРФИЗМА ГЕНА ЭТ-1 (LYS198ASN) НА КОНЦЕНТРАЦИЮ ЭНДОТЕЛИНА-1 В ПЛАЗМЕ КРОВИ У МУЖЧИН С ЭССЕНЦИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ РАЗНОЙ ТЯЖЕСТИ

Палагнюк А.А.

Винницкий национальный медицинский университет им. Н.И. Пирогова Кафедра внутренней медицины медицинского факультета №2 Винница, Украина

Ключевые слова: эссенциальная гипертензия, полиморфизм гена эндотелина-1, плазменная концентрация эндотелина-1.

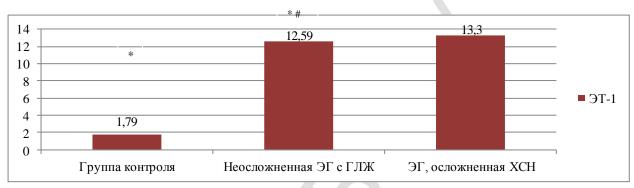
Резюме. У мужчин группы контроля и у больных с ЭГ разной степени тяжести преобладает генотип Lys198Lys и аллель Lys гена ЭТ-1, при этом наивысший уровень пептида определяется у носителей аллеля Asn. Рассчитаны граничные уровни ЭТ-1, которые можно использовать при скрининговом обследовании больших групп людей для ранней диагностики ЭГ осложненной ХСН у носителей разных генотипов гена ЭТ-1.

Актуальность. На глобальном уровне, осложнения эссенциальной гипертензии (ЭГ) вызывают 7,6 млн. случаев смерти в мире ежегодно. На долю гипертонии приходится, по меньшей мере, 47% смертных случаев, вызванных болезнями сердца, и 54% случаев смерти, вызванных инсультом [6]. Мультифакториальность и наследственная обусловленность ЭГ уже известны. Особый интерес вызывать тэжом наследственных последствий в виде патологического нарушения регуляции функции эндотелия сосудов. Одним из таких факторов является Single nucleotide polymorphism гена эндотелина-1 (ЭТ-1) (Lys198Asn), который многими исследователями рассматривается как возможный генетический маркер эндотелиальной дисфункции (ЭД) одного ИЗ основных патогенетических механизмов ЭГ. Однако, влияние полиморфизма гена ЭТ-1 на уровень этого пептида в плазме крови является малоизученным, а в Украине он вообще не изучался.

Цель: Усовершенствовать диагностику риска развития ЭД и ЭГ у мужчин 40-60 лет, жителей Подольского региона Украины, путем определения вариантов унаследованных генотипов гена ЭТ-1 и его плазменных концентраций.

Задачи: Определить носительство различных генотипов гена ЭТ-1 и его плазменных концентраций у мужчин группы контроля и у пациентов з ЭГ разной степени тяжести в возрасте 40-60 лет, жителей Подольского региона Украины.

Материалы и методы исследования. В исследовании приняли участие 192 пациента мужского пола 40 - 60 лет, проживающих на территории Подольского региона Украины. Из них 79 мужчин (49,01±0,73 лет) вошли в группу контроля, у которых на момент осмотра не было обнаружено каких либо заболеваний со стороны сердечнососудистой системы, почек и печени, отсутствие эндокринных, гематологических,


опухолевых и аутоиммунных нарушений. У 62 пациентов (49,19±0,66 лет) диагностировали неосложненную ЭГ с гипертрофией левого желудочка (ГЛЖ). У 50 пациентов диагностирована ЭГ, осложненная хронической сердечной недостаточностью (ХСН) II-III ФК по NYHA (50,14±0,99 лет). Все группы пациентов были репрезентативными по возрасту (р>0,05). Диагноз ЭГ устанавливали на основании жалоб больных, данных анамнеза, физикального обследования, лабораторных и инструментальных методов согласно клинических рекомендаций ПО артериальной гипертензии Европейского общества гипертензии (ESH) и Европейского общества кардиологов (ESC) 2013. Все пациенты наблюдались в период с декабря 2013 по июнь 2014 года. Критериями исключения из исследования стали: симптоматическая артериальная гипертензия, нарушение функций почек и печени, ишемическая болезнь сердца, возникновение которой ЭΓ, эндокринные, гематологические, предшествовало аутоиммунные заболевания, больные с осложнениями ЭГ: инфаркт миокарда, острое нарушение мозгового кровообращения. Генотипирование гена ЭТ-1 проведено с применением полимеразной цепной реакции. Это исследование проводили совместно с НИИ генетических и иммунологических основ развития патологии и фарматогенетики ВГУЗ «Украинская медицинская стоматологическая академия» (г. Полтава, руководитель проф. И.П. Кайдашев). Концентрация ЭТ-1 в плазме крови определялась с помощью иммуноферментного метода. Математическую обработку проводили на персональном компьютере с использованием стандартного статистического пакета STATISTICA 6,0. Была проведена проверка распределения частот полиморфных генов в популяции в соответствии с законом равновесия Харди-Вайнберга с помощью калькулятора «генэксперт» (Государственный Научный Центр Российской Федерации "ГосНИИ генетика", gen-exp.ru). Предельный уровень ЭТ-1 определялся способом, предложенным М.Ю. Антамоновым в соавторстве с В.Н. Жебелем, Е.А. Сакович, Г.В. Вильчинским, О.А. Сингх [1,4].

Результаты и их обсуждение. У мужчин из группы контроля генотип Lys198Lys гена ЭТ-1 встречается с частотой 65,82% (n=52), генотип Lys198Asn - 27,85% (n=22), а генотип Asn198Asn - 6,33% (n=5) ($p_{Lys/Asn}$ $p_{Asn/Asn-Lys/Asn} < 0.001$). $p_{Asn/Asn-Lys/Lys} < 0.00001;$ $L_{VS/L_{VS}} < 0.00001$; распределения аллелей в этой группе составляет - аллель Lys – 79,75%, алель Asn - 20,25% (p_{Lys-Asn}<0,00001). Установлено, что у мужчин с неосложненной ЭГ с ГЛЖ генотип Lys198Lys гена ЭТ-1 определяется у 56,45% (n=35) пациентов, генотип Lys198Asn y 33,87% (n=21) человек, генотип Asn198Asn обследованных 9.68% (n=6)мужчин $(p_{Lys/Asn-Lys/Lys} < 0.01;$ $L_{Vs/Lvs}$ <0,00001; $p_{Asn/Asn-Lvs/Asn}$ <0,001). Изучение распределения частот аллелей гена ЭТ-1 у пациентов с неосложненной ЭГ с ГЛШ показало, что аллель Lys встречается у 73,39% мужчин, а аллель Asn – у 26,61% пациентов (p_{Lvs} -Asn<0,0001). Далее была определена частота носительства гена ЭТ-1 у мужчин с ЭГ, осложненной XCH. Генотип Lys198Lys гена ЭТ-1 определяется у 66% (n=33) обследованных, генотип Lys198Asn у 28% (n=14) человек, генотип Asn198Asn у 6% (n=3) ($p_{Lys/Asn-Lys/Lys}<0,0001$; $p_{Asn/Asn-Lys/Lys}<0,0001$; $p_{Asn/Asn-Lys/Lys}<0,0001$; $p_{Asn/Asn-Lys/Asn}<0,01$). Частота аллели Lys — 80%, аллели Asn — 20% ($p_{Lys-Asn}<0,001$). В связи с низкой частотой носительства генотипа Asn198Asn, мужчины с генотипами Lys198Asn и Asn198Asn в середине каждой группы были объединены как носители аллели Asn. При сравнении частот различных генотипов и аллелей гена ЭТ-1 в группе контроля и среди больных ЭГ разной тяжести, установлено, что достоверной разницы между данными показателями нет (p>0,05).

Итак, у пациентов группы контроля преобладает генотип Lys198Lys и аллель Lys гена ЭТ-1, что соответствует данным японских ученых при обследовании практически здоровых мужчин и женщин белой и японской расы [7], и американскому исследованию практически здоровых людей негроидной и белой расы [10]. У пацинтов с ЭГ разной тяжести также превалирует генотип Lys198Lys и аллель Lys гена ЭТ-1, что соответствует некоторым исследованиям. Так, в работе Л. А. Минушкина и И. Г. Петровой, показано, что у больных мужского и женского пола как с осложненной, так и с неосложненной ЭГ - жителей Якутии, отмечена большая частота носительства генотипа Lys198Lys гена ЭТ-1 по сравнению с москвичами с ЭГ [3,5]. Однако, у мужчин казахов, результаты анализа частоты распределения генотипов полиморфизма гена ЭТ-1 показали, противоположные нашим данным результаты - генотип Lys198Lys y пациентов с ЭГ встречается в 1,3 раза реже, чем у практически здоровых лиц. Гетерозиготный вариант Lys198Asn одинаково часто встречается у больных с ЭГ и в контрольной группе. Генотип Asn198Asn был индетифицирован только у пациентов с ЭГ [8].

Соответственно, отношение шансов риска развития $\Im\Gamma$ осложненной XCH (при проверке с помощью калькулятора «ген-эксперт»), при носительстве определенного генотипа $\Im T$ -1, не отличалось. То есть, вариант гена $\Im T$ -1 не ассоциируется с риском развития $\Im \Gamma$ осложненной XCH (для генотипов общая модель наследования не достоверна χ^2 =0,01; p=1; отношение шансов $\Im C$ =1, для аллелей мультипликативная модель наследования не достоверна χ^2 =0,00, p=0,98; отношение шансов $\Im C$ =1).

Плазменная концентрация ЭТ-1 у мужчин из группы контроля составляет 1,79 \pm 0,08 фмоль/мл. У пациентов с неосложненной ЭГ с ГЛЖ (12,59 \pm 0,22 фмоль/мл) и у мужчин с ЭГ, осложненной ХСН (13,30 \pm 0,11 фмоль/мл) уровень пептида достоверно выше, чем в группе контроля (p<0,00001), при этом наивысшая концентрация ЭТ-1 у пациентов с ЭГ осложненной ХСН (Рис.1).

Рис. 1 - Плазменная концентрация ЭТ-1 у мужчин группы контроля, пациентов с неосложненной ЭГ и ГЛЖ и у пациентов с ЭГ, осложненной ХСН. Примечание: разница показателей достоверна при сравнении с * - группой контроля (p<0,000001), # - пациентами с неосложненной ЭГ и ГЛЖ (p<0,01)

Далее были определены уровни ЭТ-1 у мужчин - носителей разных генотипов гена ЭТ-1 в группе контроля и у пациентов с разной тяжестью ЭГ (Таблица 1). В группе контроля у носителей генотипа Lys198Lys плазменная концентрация ЭТ-1 достоверно ниже, чем уровень пептида у носителей аллели Asn. У пациентов с неосложненной ЭГ с ГЛШ и с ЭГ осложненной ХСН наблюдается аналогичная ситуация - уровень ЭТ-1 у носителей аллели Asn достоверно выше, чем у носителей генотипа Lys198Lys гена ЭТ-1. При этом, у носителей генотипа Lys198Lys наивысший уровень пептида в плазме крови определяется у пациентов с ЭГ осложненной ХСН (р<0,0000001). У носителей аллели Asn концентрация ЭТ-1 у мужчин с ЭГ разной тяжести достоверно выше, чем в группе контроля (р<0,0000001), но разницы в уровнях пептида между неосложненной ЭГ с ГЛШ и ЭГ осложненной ХСН не найдено (р>0,05).

Таблица 1 — Плазменная концентрация ЭТ-1 у мужчин группы контроля, пациентов с неосложненной ЭГ и ГЛЖ и у пациентов с ЭГ, осложненной ХСН при носительстве разных генотипов гена ЭТ-1

Pushibit Tenerimob Tena ST T			
Группа	Носители генотипа	Носители алелли Asn	p
7.7	Lys198Lys		
Группа контроля	1,41±0,05	2,53±0,12	
(n=79)	(n=52) (1)	(n=27) (4)	$p_{4-1} < 0.0000001$
Мужчины с	11,58±0,23	13,90±0,22	
неосложненной ЭГ и	(n=35) (2)	(n=27)(5)	p ₅₋₂ <0,0000001
ГЛЖ (n=62)			
Мужчины с ЭГ,	12,89±0,08	14,07±0,18	
осложненной ХСН	(n=33)(3)	(n=17)(6)	$p_{6-3} < 0.00001$
(n=50)			
p	$p_{2-1} < 0.0000001$	p ₅₋₄ <0,0000001	
	$p_{3-1} < 0.0000001$	$p_{6-4} < 0.0000001$	
	$p_{3-2} < 0.0000001$	$p_{6-4} > 0.05$	

Роль носительства отдельных генотипов гена ЭТ-1, как возможного регулятора концентрации пептида в плазме крови при ЭГ изучено мало. Однако, Е.Н. Березикова продемонстрировала похожие результаты - у

мужчин и женщин жителей России, которые, являются носителями генотипа Asn198Asn, выявлен повышенный уровень ЭТ-1 в плазме крови по сравнению с носителями генотипа Lys198Lys. У носителей генотипа Lys198Asn уровень ЭТ-1 в плазме крови носил промежуточный характер, однако достоверных отличий от носителей генотипов Asn198Asn и Lys198Lys не обнаружено [2]. В то же время, С. Тапака et. al. показали на культурах клеток отсутствие разницы в уровнях ЭТ-1 при полиморфизме Lys198Asn [9].

Полученные результаты позволили рассчитать граничные уровни ЭТ-1 для скрининговой диагностики ЭГ, осложненной ХСН у мужчин жителей Подольского региона Украины, которые можно применять при обследовании больших контингентов людей для выявления лиц, которым в дальнейшем нужно провести полное, в том числе, ультразвуковое исследование сердца и выяснения наличия ЭГ:

- уровень ЭТ-1 ≥7,52 фмоль/мл (чувствительность - 92%, специфичность — 87,8%, безошибочность — 85,6%, ложноотрицательный ответ - 15%, ложноположительный ответ — 10,3%) позволяет диагностировать ЭГ, осложненную ХСН у лиц мужского пола, без учета варианта унаследованного генотипа гена ЭТ-1.

Доказано, что аллель Asn в генотипе гена ЭТ-1 ассоциирована с высокой концентрацией пептида в плазме крови, поэтому было решено провести расчет предельных уровней ЭТ-1 для носителей разных генотипов гена ЭТ-1:

- уровень ЭТ-1 \geq 7,12 фмоль/мл (чувствительность 87,3%, специфичность 89,2%, безошибочность 82,8%, ложноотрицательный ответ 9,5%, ложноположительный ответ 12,3%) позволяет диагностировать ЭГ, осложненную ХСН у мужчин носителей гомозиготного генотипа Lys198Lys гена ЭТ-1;
- уровень ЭТ-1 ≥8,24 фмоль/мл (чувствительность 95,12%, специфичность 78,36% безошибочность 77%, ложноотрицательный ответ 13,2%, ложноположительный ответ 6,84%) позволяет диагностировать ЭГ, осложненную ХСН у пациентов мужского пола носителей аллеля Asn гена ЭТ-1.

Выводы. 1. У мужчин из группы контроля жителей Подольского региона Украины 40-60 лет, и у больных с разной степенью тяжести ЭГ превалирует генотип Lys198Lys и аллель Lys гена ЭТ-1. 2. Носители аллеля Аѕп гена ЭТ-1 имеют достоверно выше уровни ЭТ-1 в плазме крови, чем носители генотипа Lys198Lys как среди представителей контрольной группы, так и у больных с ЭГ разной тяжести. 3. Рассчитаны граничные уровни ЭТ-1, которые можно использовать при скрининговом обследовании больших контингентов людей для ранней диагностики ЭГ, осложненной ХСН у носителей аллеля Аѕп и гомозиготного генотипа Lys198Lys гена ЭТ-

Литература

- 1. Антамонов М. Ю. Расчёт пороговых (критических) уровней действующих учётных факторов для разного типа данных, полученных в гигиенических исследованиях / М.Ю. Антамонов // Гигиена населённых пунктов. 2004. №43. С.573-579.
- 2. Березикова Е. Н. Клинико-генетические и нейрогормональные механизмы развития ишемического ремоделирования, апоптоза миокарда и сердечной недостаточности: инновационная стратегия персонализированной диагностики, профилактики и лечения: Автореф. дис. докт. мед. наук 14.01.05 / Е. Н. Березикова. Томск, 2014. 49 с.
- 3. Минушкина Л. О. Генетические факторы при гипертонической болезни: связь с особенностями течен ия, развитием осложнений, эффективностью терапии: Автореф. дис. докт. мед. наук 14.00.06 / Л. О. Минушкина. Москва, 2008. 48 с.
- 4. Пат. 67486 Україна, МПК G01N 33/48 (2006.01). Спосіб діагностики хронічної серцевої недостатності у жінок післяменопаузального віку, хворих на гіпертонічну хворобу / Жебель В.М, Сакович О.О., Вільчинський Г.В., Сінгх О.О.; Заявник та власник Вінницький національний медичний університет ім. М.І. Пирогова. №u201108789; заявл. 12.07.11; опубл. 27.02.12, Бюл. №4.
- 5. Петрова И. Р. Клинические и генетические особенности гипертонической болезни в якутской популяции: Автореф. дис. канд. мед. наук 14.00.06 / И. Р. Петрова. Москва, 2004. 45 с.
- 6. Хвороби системи кровообігу як медико соціальна і суспільно політична проблема. / під ред. Коваленка В.М., Корнацького В.М., Київ: 2014. 280 с.
- 7. Asai T. Endothelin-1 Gene Variant Associates With Blood Pressure in Obese Japanese Subjects / T. Asai, T. Ohkubo, T. Katsuya [et al.] // Hypertension. 2001. Vol. 38. P. 1321-1324.
- 8. Dzholdasbekova A. U. The Association Between Polymorphism of Lys198Asn of Endothelin-1 Gene and Arterial Hypertension Risk in Kazakh People / A. U. Dzholdasbekova, A. E. Gaipov // Eur J Gen Med. 2010. Vol. 7(2). P. 187-191.
- 9. Tanaka C. Evaluation of the Lys198Asn and 134delA Genetic Polymorphisms of the Endothelin-1 Gene / C. Tanaka, K. Kamide, S. Takiuchi [et al.] // Hypertens Res. 2004 Vol. 27. P. 367–371.
- 10. Treiber F. A. Endothelin-1 Gene LYS198ASN Polymorphism and Blood Pressure Reactivity / F. A. Treiber, P. Barbeau, G. Harshfield [et al.] // Hypertension. 2003. Vol. 42. P. 494-499.