Скадорва В. В.

ЭТИОПАТОГЕНЕТИЧЕСКИЕ АСПЕКТЫ АЛИМЕНТАРНОЙ ПРОФИЛАКТИКИ ДИФФУЗНОЙ АЛОПЕЦИИ У ВЗРОСЛОГО НАСЕЛЕНИЯ

Научно-практический центр гигиены, г. Минск, Республика Беларусь

Актуальность изучения причин возникновения диффузной алопеции (АлД) обусловлена значительной распространенностью этого заболевания и низкой эффективностью существующей терапии [1]. В общей структуре заболеваний волос удельный вес АлД составляет более 80%. Являясь выраженным косметическим недостатком, облысение приводит к психоэмоциональному дискомфорту, снижает качество жизни, вызывает социальные и экономические проблемы у больных. Имеющиеся диагностические и профилактические критерии заболевания волос нередко противоречивы, отсутствуют методы комплексного изучения данной патологии. В настоящее время активно изучаются этиологические факторы АлД, однако недостаточное внимание уделяется взаимосвязи питания

с микро- и макроэлементным статусом взрослого населения и возможности обоснования алиментарной профилактики. В этиологии заболеваний волос придается важное значение дефицитному состоянию микро- и макроэлементов [2] Наиболее частая причина АлД - дефицит железа, цинка, хрома, селена, кальция, белковая недостаточность. К «эссенциальным» (жизненно-необходимым) микроэлементам относят Fe, J, Cu, Zn, Co, Cr, Mo, Se, Mn. Роль эссенциальных элементов в комплексе воздействия между собой мало изучена в настоящее время, что затрудняет раннюю диагностику, тактику лечения и алиментарную профилактику патологических состояний, связанных с нарушением микро- и макроэлементного статуса, в том числе и АлД.

Цель работы: определить количественное содержание химических элементов в биоматериале (волосы) у взрослого населения при диффузной алопеции с использованием рентгенофлуоресцентного анализа (РФА) и сравнить данные показатели с группой здоровых лиц для обоснования алиментарной профилактики.

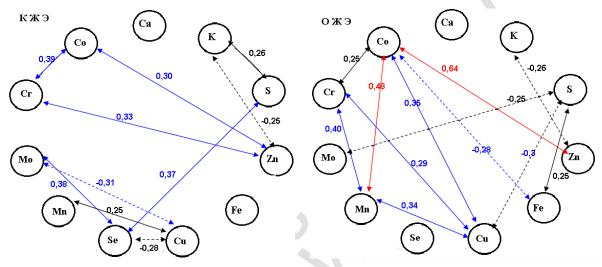
Подбор групп наблюдения. В качестве объектов наблюдения были взяты группы мужчин и женщин в возрасте старше 18 лет с диагнозом диффузная алопеция и группы, равноценные по возрасту, полу здоровых людей в качестве контроля. Каждая группа состояла из 50 человек, всего под наблюдением было 4 группы в количестве 200 человек. Диагностическими критериями при формировании групп наблюдения были: объективный осмотр дерматолога, согласно клиническим протоколам диагностики и лечения больных с болезнями кожи и подкожной клетчатки, исключение сифилиса методом МРП, исключение эндокринной патологии путем исследования крови на гормоны щитовидной железы (свободный Т4, антитела ТПО), половые гормоны (тестостерон, дегидроэпиандростерон-сульфат), гормонов надпочечников (кортизол) и гипофиза (пролактин), исключение грибковой патологии волосистой части головы методом микроскопического исследования, наличие информированного согласия пациентов на забор материала и проведение исследований. В качестве объекта исследования были взяты волосы, которые характеризуют элементный статус, формирующийся в течение длительного времени (месяцы, годы). Анализ волос на содержание микро- и макроэлементов позволяет достоверно выделить группы риска по гипер-и гипоэлементозам для их дальнейшего углубленного изучения и возможности обоснования алиментарной профилактики.

Метод рентгенофлуоресцентного анализа (РФА) позволяет проводить экспресс-анализ химических элементов от серы до урана в составе всевозможных сред: твердых, жидких, порошковых [3]. Рентгенофлуоресцентный анализ имеет преимущества перед другими методами определения (атомная абсорбция, пламенная фотометрия, полярография) в том, что не требует сложной пробоподготовки перед анализом, не расходуется вещество пробы, не изменяется ее химический состав, это позволяет анализировать один и тот же образец необходимое число раз и избежать потери, затратная часть на один образец незначительная.

Методы статистического анализа: полученные результаты считали достоверными при заданном уровне значимости p<0,05, дан сравнительный анализ по изучаемым элементам в разных группах у лиц женского и мужского пола. Статистическую обработку данных проводили с использованием дисперсионного и корреляционного анализов в пакете

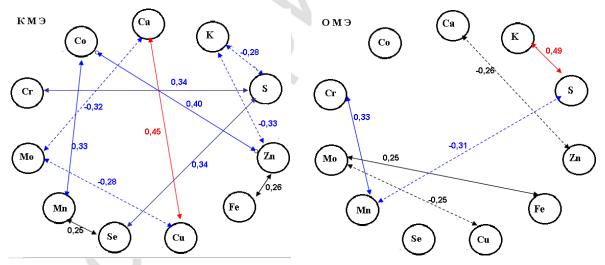
При анализе содержания основных химических элементов у женщин контрольной и опытной групп выявлены статистически достоверные различия для следующих микроэлементов: K, S, Fe, Se, Mn, Cr. Их содержание у женщин основной группы было значительно ниже, чем в контрольной. Наибольшие различия были установлены для серы (p=0,0001), железа (p=0,0052), калия (p=0,0012) и хрома (p=0,0016). Не установлено статистически значимых различий по таким микроэлементам, как кальций, цинк, медь, молибден и кобальт (табл. 1).

Таблица 1 Содержание химических элементов в волосах женщин при диффузной алопеции в сравнении с контролем, (мкг/г)


Химический	Женщины, контроль, n=50			Женщины, опыт, n=50			
элемент	медиана	минимум	максимум	медиана	минимум	максимум	
Ca	1651,15	461,35	1700,00	1690,66	233,35	6019,75	
K	88,45	70,93	170,00	70,93	60,04	170,00	
S	28320,40	21000,03	44612,10	23467,67	21000,05	36711,00	
Zn	186,63	120,08	200,00	141,19	49,46	371,04	
Fe	17,51	10,45	34,87	12,38	9,48	35,73	
Cu	25,66	11,31	30,00	19,34	7,40	157,68	
Se	0,76	0,30	1,20	0,45	0,26	1,71	
Mn	1,02	0,50	2,00	0,77	0,50	2,00	
Mo	1,00	0,00	3,00	1,31	0,00	2,96	
Cr	1,86	0,52	4,95	1,21	0,50	4,18	
Со	0,65	0,00	1,90	0,60	0,09	2,00	

Сравнивая микроэлементный состав волос у мужчин контрольной и основной групп статистически достоверные различия были выявлены для таких микроэлементов, как кальций (p=0,0001), сера (p=0,0014) и цинк (p=0,0003), содержание которых у пациентов основной группы было значительно ниже, чем в контроле (табл. 2).

Таблица 2 Содержание химических элементов в волосах мужчин при диффузной алопеции в сравнении с контролем, (мкг/г)


Химический	Мужчины, контроль, n=50			Мужчины, опыт, n=50		
элемент	медиана	минимум	максимум	медиана	минимум	максимум
Ca	511,30	101,00	4540,02	351,55	212,43	1127,21
K	75,90	41,11	539,31	75,66	69,87	315,55
S	30509,30	21000,50	48998,36	25095,90	21000,03	44309,90
Zn	173,67	120,00	200,00	130,27	74,98	261,82
Fe	16,27	9,79	34,56	15,81	8,85	38,89
Cu	16,97	9,00	30,00	14,73	4,99	38,09
Se	0,80	0,30	1,20	0,63	0,11	1,92
Mn	1,11	0,50	1,99	0,91	0,50	1,99
Mo	1,15	0,00	3,00	1,04	0,10	2,79
Cr	2,18	0,50	5,00	1,77	0,50	4,98
Co	0,76	0,00	2,00	0,52	0,00	1,56

Для оценки степени различия в связях элементов внутри каждой группы, построены корреляционные плеяды, которые представлены на рис. 1-4:

Puc. 1. Корреляционные плеяды в группе контроля женщин

Puc. 2. Корреляционные плеяды в опытной группе женщин

Puc. 3. Корреляционные плеяды в опытной группе мужчин

Puc. 4. Корреляционные плеяды в группе контроля мужчин

Показано, что все группы наблюдения, как мужского, так и женского пола имеют различные корреляционные связи. Остановимся более подробно на каждой из них. В контрольной группе женской, связи химических элементов (ХЭ) имеют коэффициент корреляции от +0,26 до +0,39, кроме калия и цинка (-0,25), молибдена и меди (-0,31) обратная связь. В контрольной группе мужской, картина несколько иная, коэффициент корреляции между калием и цинком (-0,33), калием и серой (-0,28), кальцием и молибденом (-0,32, молибденом и медью (-0,28) и средняя между кальцием и медью (+0,45). В опытной группе женской, наиболее выраженная связь между кобальтом и цинком (+0,64) и умеренная связь между кобальтом и марганцем (+0,48). В опытной группе мужской, умеренная связь между калием и серой (+0,49), обратная связь между кальцием и цинком (-0,26) и молибденом и медью (-0,25) и марганцем и серой (-0,31). Как видно из представленных данных, есть значительная разница взаимосвязи элементов в контрольных и основных группах в зависимости от пола.

В проведенном нами исследовании было установлено наличие недостатка микро- и макроэлементов в составе волос у лиц мужского и женского пола. У женщин наибольший дефицит был отмечен по таким микроэлементам, как сера, железо, калий и хром, в то время как у мужчин отмечался недостаток кальция, цинка и серы. Построены корреляционные плеяды для химических элементов, содержащихся в волосах групп наблюдения и контрольных групп, различных по полу. Показана возможность применения рентгенофлуоресцентного анализа волос для оценки особенностей формирования минерального обмена у взрослого населения при диффузной алопеции.

Как видно из представленных данных, наблюдаются случаи комбинированных нарушений биоэлементного гомеостаза, выявление которых открывает новые возможности диагностики, тактики лечения и обоснования алиментарной профилактики у взрослого населения при диффузной алопеции.

ЛИТЕРАТУРА

- 1. Строение и функции волос / Т. Н. Королькова [и др.] // Экспериментальная и клиническая дерматокосметология. -2008. -№ 1. C. 46-51.
- 2. *Скальный, А. В.* Биоэлементы в медицине / А. В. Скальный, И. А. Рудаков. М.: ОНИКС 21 век; Мир и Образование, 2004. 272 с.
- 3. *МВИ*. МН 3730-2011. Определение массовой доли химических элементов в биоматериале (волосах) методом РФА на приборе CEP-01.
- 4. *Балинова*, *В. С.* Статистика в вопросах и ответах : учеб. пособие / В. С. Балинова. М. : Велби. 2004. 344 с.