Казловский И. С.¹, Радевич Д. С.², Щеколова А. С.², Рымко А. Н.², Квач С. В.², Зинченко А. И.¹²

¹Международный государственный экологический университет имени А.Д.Сахарова, ²Институт микробиологии НАН Беларуси, г. Минск, Республика Беларусь

СОЗДАНИЕ ШТАММА ПРОДУЦЕНТА ДИАДЕНИЛАТЦИКЛАЗЫ BACILLUS THURINGIENSIS

Недавние исследования показали, что циклический 3',5'-диаденилат (c-di-AMP) и другие циклические динуклеотиды, выполняющие функцию вторичных посредников у бактерий, стимулируют иммунную систему позвоночных, что позволяет считать их перспективными терапевтическими средствами и адьювантами для вакцин.

С увеличением исследований, направленных на изучение иммуностимулирующих и иммуномодулирующих свойств с-di-AMP и его аналогов, возрастает потребность в синтезе препаративных количеств данного циклического динуклеотида. В настоящее время его в основном получают химическим способом, недостатками которого являются сложность, дороговизна и не высокий выход целевого продукта. В то же время ферментативный синтез с-di-AMP с использованием бактериальной диаденилатциклазы (ДАЦ) представляет собой одностадийный процесс конденсации двух молекул АТФ.

В научно-технической литературе для синтеза c-di-AMP предложено использовать ДАЦ бактерии *Bacillus thuringiensis*, которая имеет высокую каталитическую активность. Однако в литературе отсутствуют данные о продуцирующей способности рекомбинантных штаммов продуцентов ДАЦ и удельной активности данного фермента.

Исходя из вышеизложенного, целью настоящей работы явилось создание штамма продуцента ДАЦ и описание основных физико-химических свойств полученного рекомбинантного фермента.

Ген disA, кодирующий ДАЦ-синтетазу, был выделен методом ПЦР с использованием в качестве матрицы геномной ДНК *B. thuringiensis* и встроен в вектор рЕТ42a(+). Созданной конструкцией были трансформированы клетки *Escherichia coli* BL21 (DE3).

В результате выполнения работы получен новый генно-инженерный штамм *E. coli* pet42-btDisA – продуцент ДАЦ. Выход целевого белка составил 62 мг/л культуральной жидкости. Удельная активность очищенного ферментного препарата ДАЦ составляет 0,12 ед./мг белка. Установлено, что ДАЦ имеет узкую субстратную специфичность и способна использовать в качестве субстрата лишь АТФ. В проведенной работе так же подтверждена возможность применения ДАЦ для препаративного синтеза c-di-AMP.

Таким образом, результаты исследования могут лечь в основу создания препаративного метода получения фармакологически перспективного c-di-AMP.

Kazlovskij I. S., Radevich D. S., Shchokolova A. S., Rymko A. N., Kvach S. V., Zinchenko A. I.

ENGINEERING ESCHERICHIA COLI STRAIN PRODUCING DIADENYLATE CYCLASE OF BACILLUS THURINGIENSIS

This study resulted in recombinant strain *E. coli* producing diadenylate cyclase of *B. thuringiensis*. The enzyme yield was 62 mg/L cultural liquid. Specific activity of purified diadenylate cyclase equaled 0.12 U/mg protein. Plausibility of applying diadenylate cyclase for preparative synthesis of c-di-AMP was confirmed.