МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ФАРМАКОЛОГИИ

ФАРМАКОЛОГИЯ PHARMACOLOGY

Тесты

для специальности «Стоматология»

2-е издание, переработанное

Минск БГМУ 2018

УДК 615(076)(075.8)-054.6 ББК 52.81я73 Ф24

> Рекомендовано Научно-методическим советом университета в качестве тестов 20.12.2017 г., протокол № 4

А в т о р ы: канд. мед. наук, доц. А. В. Волчек; д-р мед. наук, проф. Н. А. Бизунок; д-р мед. наук, проф. Б. В. Дубовик; ст. преп. И. Н. Медведский; ст. преп. Е. Г. Качура; ассист. А. В. Шелухина

Рецензенты: д-р мед. наук, проф. А. В. Хапалюк; канд. мед. наук, доц. А. В. Колб

Фармакология = Pharmacology : тесты для специальности «Стоматология» / Ф24 А. В. Волчек [и др.]. – 2-е изд., перераб. – Минск: БГМУ, 2018. – 84 с.

ISBN 978-985-567-944-9.

Содержат контрольные и тестовые задания к лабораторным занятиям по фармакологии. Первое издание вышло в 2017 году.

Предназначены для студентов 2-3-го курсов медицинского факультета иностранных учащихся, изучающих фармакологию на английском языке по специальности «Стоматология».

> УДК 615(076)(075.8)-054.6 ББК 52.81я73

Учебное издание

Волчек Александр Владимирович Бизунок Наталья Анатольевна Дубовик Борис Валентинович и др.

ФАРМАКОЛОГИЯ **PHARMACOLOGY**

Тесты

для специальности «Стоматология»

На английском языке

2-е издание, переработанное

Ответственная за выпуск Н. А. Бизунок Переводчики А. В. Волчек, И. Н. Медведский, Е. Г. Качура, А. В. Шелухина Компьютерная верстка А. В. Янушкевич

Подписано в печать 19.01.18. Формат 60×84/16. Бумага писчая «Снегурочка». Ризография. Гарнитура «Times».

Усл. печ. л. 4,88. Уч.-изд. л. 3,44. Тираж 26 экз. Заказ 78.

Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный медицинский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/187 от 18.02.2014.

Ул. Ленинградская, 6, 220006, Минск.

ISBN 978-985-567-944-9

© УО «Белорусский государственный медицинский университет», 2018

PHARMACOKINETICS. BASIC CONCEPTS

1. The increase in ionization of weak electrolytes causes GIT absorption to:

- a) Increase;
- b) Decrease;
- c) Stay the same.

2. Intramuscular injections provide high rates of absorption for:

- a) Non-polar lipophilic drugs only;
- b) Polar hydrophilic drugs only;
- c) Both lipophilic and hydrophilic drugs.

3. Elimination half-life period:

- a) Time equal to one-half of a full elimination period;
- b) Time needed to decrease plasma concentration of a drug by 2 on the exponential part of a pharmacokinetic curve.

4. To accelerate the excretion of weak bases by the kidneys it's necessary to:

- a) Alkalinize the urine;
- b) Acidify the urine;
- c) Maintain neutral pH.

5. Extent of oral drug absorption determines:

- a) Clearance; d) Elimination half-life;
- b) Bioavailability; e) Elimination rate constant;
- c) Ionization constant; f) Volume of distribution.

6. Volume of distribution indicates:

- a) The volume of body fluids in which drugs are distributed uniformly;
- b) The volume of fluid in which a drug distributes uniformly in a concentration equal to that of blood plasma;
- c) The volume of fluid in which a drug distributes uniformly in a concentration equal to that of tissue fluids;
- d) The volume of fluid in which a drug distributes uniformly in a therapeutic concentration.

7. Total clearance is characteristic of:

- a) Drug absorption; c) Drug elimination;
- b) Drug distribution; d) Drug deposition.

8. Principal mechanism of drug absorption from the GIT:

- a) Active transport;
- b) Passive diffusion through a lipid barrier;
- c) Diffusion through aqueous pores and intercellular spaces;
- d) Microvesicular transport.

9. Determinants of renal clearance:

- a) Metabolic transformation; d) Tubular secretion;
- b) Glomerular filtration; e) Conjugation.
- c) Tubular reabsorption;

10. Which of these enteral routes of administration provide absorption into the systemic circulation bypassing or partially bypassing the liver?

a) Oral (swallow);

d) Into the duodenum;

b) Sublingual;

e) Rectal.

c) Transbuccal;

11. Indicate the determinants of hepatic clearance:

- a) Rate of biotransformation reactions in the liver;
- b) Liver blood flow;
- c) Unbound fraction of a drug;
- d) Bioavailability;
- e) Volume of distribution.

12. The direction of biotransformation reactions in the liver is:

- a) A decrease of hydrophilicity;
- d) Decrease of activity;
- b) Increase of hydrophilicity;
- e) Increase of polarity;
- c) Increase of activity;
- f) Decrease of polarity.

13. Biotransformation of drugs gives metabolites:

- a) Which are poorly reabsorbed across the renal tubule;
- b) Which are highly reabsorbed across the renal tubule;
- c) Which are poorly absorbed from the intestines;
- d) Which are highly absorbed from the intestines;
- e) Rapidly leave the organism;
- f) Slowly leave the organism.

14. Oral bioavailability is determined by:

- a) Extent of gastrointestinal absorption;
- b) Plasma protein binding;
- c) First pass liver metabolism;
- d) Rate of distribution throughout the body;
- e) Quality of pharmaceutical drug formulation.

15. Liver cirrhosis may alter the pharmacokinetics of drugs:

- a) Decreases presystemic elimination;
- b) Increases the free fraction of drugs in plasma;
- c) Decreases drug clearance;
- d) Increases elimination half-life $(T_{1/2})$;
- e) Increases bioavailability;
- f) Decreases the volume of distribution.

16. Features of rectal route of administration:

- a) Is used only in clinics;
- b) Influence of digestive enzymes is presence;
- c) May be used in unconscious patients;
- d) Drugs destroying in the GIT can be applied;
- e) Some fraction of a drug bypasses the liver;
- f) Needs the trained medical personnel.

a) Maximum accuracy	of dosing;					
b) Provides highest pos	sible bioavailability;					
c) Fast onset of action;	•					
d) Need to sterilize drug	gs and adhere to aser	otic techniques;				
·	Plasma steady state concentration of a drug is achieved in 2 half-lives.					
18. Which dose of Drug M sl		•				
rapidly achieve a plasma con	_	_				
a) 150,0 mg;	•					
b) 300,0 mg;	_					
19. Arrange the drugs in ascen	,		7.2)			
a) Weak acid A (pK = 3)	_		· ,_ ,			
b) Weak acid B ($pK = 5$	5.2): d) Wes	d) Weak base D (pK = $7,2$).				
20. Arrange the drugs wit			ndina			
order by the loading dose			_			
(intravenous administration)		ve plasma ess = 1 m	18/1111			
a) B ($Vd = 2.0 \text{ l/kg}$);		Vd = 0.2 l/kg;				
b) $C (Vd = 0.5 1/kg);$		e) D ($Vd = 1.5 \text{ l/kg}$).				
c) $E (Vd = 0.9 l/kg);$	C) D (C/D(VU-1,SI/Kg).				
C) L (VG = 1, 0 LKg),						
PH	IARMACODYNAN	ПС				
1 Todado de addadas to						
1. Intrinsic activity is:	aifi a na a ant ang.					
	a) Ability to bind to specific receptors;					
	b) Ability to stimulate specific receptors and cause an effect upon binding;c) Ability to block specific receptors and cause an effect upon binding;					
			,			
		nds for specific receptors.				
2. Drugs with low intrinsic ac		•				
a) Agonists-antagonists		c) Antagonists;				
b) Partial agonists;	· · · · · · · · · · · · · · · · · · ·	d) Full agonists.				
3. Drugs with high intrinsic a	•	•				
a) Agonists-antagonists		c) Antagonists;				
b) Partial agonists;	<i>'</i>	d) Full agonists.				
4. Drugs stimulating one re	eceptor subtype an	d blocking another one	e are			
called:						
a) Agonists-antagonists		agonists;				
b) Partial agonists;	Partial agonists; d) Full agonists;					
5. Drugs with no intrinsic act	tivity are called:					
a) Agonists-antagonists		agonists;				
b) Partial agonists;	d) Full	agonists.				
	5					

17. Features of intravenous route:

6. The measure of efficacy:

a) Maximal effective dose;

d) Therapeutic range;

b) Maximal effect (Emax);

- e) Therapeutic index.
- c) The dose that causes maximal effect;

7. Synergism is:

- a) Enhanced effect of a drug combination;
- b) Decreased drug effect following by repeated administration;
- c) Decreased effect of a drug combination;
- d) Decreased effect of a drug following by its prolonged application.

8. Potentiation is:

- a) The sum of drug effects;
- b) The enchancement of action of one drug by another drug that is inactive;
 - c) Enhanced effect of a drug following by repeated administration;
- d) Kind of drug-drug interaction resulting in an effect that is less than the sum of effects when the drugs are given individually.

9. Antagonism is:

- a) Decreased effect following by repeated drug administration;
- b) The combined effect of two or more drugs is less than the sum of the effects when the drugs are given individually;
- c) The enchancement of action of one drug by another drug that is inactive;
 - d) Enhanced effect following by dose reduction.

10. Repeated use of drugs leads to the following negative consequences:

a) Cumulation;

d) Tolerance;

b) Tachyphylaxis;

e) Idiosyncrasy.

c) Drug dependence;

11. Accumulation is:

- a) A decreased sensibility to a drug following by repeated administration;
- b) An increased sensibility to a drug following by repeated administration;
- c) An enhanced response to a drug following by repeated administration that results from its cumulation in the body;
 - d) Unusual drug reactions resulting from congenital enzyme defects;
- e) An enhanced biotransformation of a drug following by repeated administration.

12. It is needed 25 mg of diuretic A or 50 mg diuretic of B to increase daily urine output by $2\,l$. Identify the correct statement:

- a) Diuretic A is 2 times more effective than diuretic B;
- b) Diuretic B is 2 times more effective than diuretic A;
- c) Diuretic A is 2 times more potent (active) than diuretic B;
- d) Diuretic B is 2 times more potent (active) than diuretic A;
- e) Diuretics A and B are equipotent (active) but differ in efficacy.

13. It is established that ED50 value of diuretics A and B is 1,0 mg/kg. Besides diuretic A increases daily urine output by 2 l at the highest tested dose and diuretic B — by 1 l. Identify the correct statement:

- a) Diuretic A is 2 times more effective than diuretic B, potency (activity) is the same;
- b) Diuretic B is 2 times more effective than diuretic A, potency (activity) is the same;
 - c) Diuretics A and B are equieffective but differ in potency (activity);
 - d) Diuretic B is 2 times more potent (active) than diuretic A;
 - e) Diuretics A and B are equieffective but differ in potency (activity).

14. What is tolerance?

- a) Individual drug intolerance;
- b) Decreased organism sensibility to drugs;
- c) Increased organism sensibility to drugs;
- d) Drug dependence.

15. Two drugs have opposite effects on the same receptor, it is called as:

a) Antidotism;

- d) Pharmacological antagonism;
- b) Physicochemical antagonism;
- e) Synergism.
- c) Physiologic antagonism;

16. Maximal effect is the measure of:

- a) Potency (activity); c) Therapeutic index; e) Therapeutic range.
- b) Efficacy;
- d) Safety;

17. Which of these events appear only when drugs are used in combination?

a) Additive effect;

e) Tolerance;

b) Antagonism;

- f) Synergism;
- c) Potentiation of action;
- g) Idiosyncrasy.

d) Sensibilization;

18. Arrange the drugs in descending order by potential hazard:

- a) Drug A (TI = 900);
- d) Drug D (TI = 300);

b) Drug B (TI = 10);

e) Drug E (TI = 100).

c) Drug C (TI = 50);

19. Arrange the drugs in ascending order by safety. LD50 is 500 mg for each, but ED50 values differ:

- a) Drug A (ED50 = 0.01 mg);
- c) Drug C (ED50 = 5 mg);
- b) Drug B (ED50 = 0.1 g);
- d) Drug D (ED50 = 50 mg).

20. Arrange the diuretic drugs in ascending order by efficacy:

- a) Drug A (ED50 = 6.0 mg/kg Emax = 1000 ml/day;
- b) Drug B (ED50 = 80 mcg/kg Emax = 3.0 l/day);
- c) Drug C (ED50 = 0.2 mg/kg Emax = 2.0 l/day);
- d) Drug D (ED50 = 0.01 g/kg Emax = 500 ml/day);
- e) Drug E (ED50 = 10 mcg/kg Emax = 4,0 l/day).

21. Arrange the diuretic drugs in ascending order by potency (activity):

- a) Drug A (ED50 = 0.2 mg/kg Emax = 2.0 l/day);
- b) Drug B (ED50 = 80 mcg/kg Emax = 3.0 l/day);
- c) Drug C (ED50 = 10 mcg/kg Emax = 4.0 l/day);
- d) Drug D (ED50 = 0.01 g/kg Emax = 500 ml/day);
- e) Drug E (ED50 = 6.0 mg/kg Emax = 1000 ml/day).

CHOLINOMIMETIC AND ANTICHOLINESTERASE DRUGS

1. Localization of N-cholinoreceptors:

- a) Autonomic ganglions;
- b) Postganglionic endings of parasympathetic nerves;
- c) Endings of efferent nerve;
- d) Chromaffin tissue of adrenal glands;
- e) Sino-carotid zone.

2. N-cholinergic receptor is:

- a) G-protein-coupled receptor; c) Transmembrane protein;
- b) Ligand-gated channel; d) Nuclear receptor.

3. M-cholinergic receptor is:

- a) G-protein-coupled receptor; c) Transmembrane protein;
- b) Ligand-gated channel; d) Nuclear receptor.

4. After interaction with the receptor, acetylcholine is:

- a) Enzymatically degraded in the synaptic cleft;
- b) Eliminated from the body by the kidneys in unchanged form;
- c) Metabolized primarily in the liver;
- d) Enzymatically degraded in the presynaptic endings.

5. Acetylcholine is destroyed by:

- a) Acetylcholinesterase; d) Acetylcholine dehydrogenase;
- b) Acetylcholinesynthase; e) Is not destroyed by enzymes.
- c) Acetylcholinearomathase;

6. Localization of M-cholinergic receptors:

- a) Cells of effector organs near the end of postganglionic cholinergic fiber;
- b) Neurons of sympathetic ganglions;
- c) Neurons of parasympathetic ganglions;
- d) Neurons of the spinal cord;
- e) Carotid sinus;
- f) Chromaffin cells of adrenal medulla; g) Skeletal muscles.

7. Select M-cholinomimetics:

- a) Pilocarpine; d) Aceclidine; f) Pyridostigmine bromide;
- b) Neostigmine; e) Carbachol; g) Bethanechol.
- c) Acetylcholine chloride;

8. Select N-cholinomimetics:

- a) Nicotine; c) Pilocarpine; e) Bethanechol.
- b) Cytisine; d) Aceclidine;

9. Select M, N-cholinomimetics of direct action:

- a) Acetylcholine chloride; c) Neostigmine; e) Donepezil.
- b) Carbachol; d) Pyridostigmine bromide;

10. Select M, N-cholinomimetics with indirect action:

- a) Acetylcholine chloride; d) Pyridostigmine bromide;
- b) Carbachol; e) Donepezil.
- c) Neostigmine;

11. Select Anticholinesterase drugs:

- a) Neostigmine; e) Carbachol;
- b) Pyridostigmine bromide; f) Armin;
- c) Aceclidine; g) Donepezil.
- d) Edrophonium chloride;

12. Irreversible cholinesterase inhibitors are:

- a) Pyridostigmine bromide; d) Organophosphorous compounds;
- b) Armin; e) Neostigmine.
- c) Donepezil;

13. Effects of acetylcholine are:

- a) A decreased heart rate;
- b) A decreased secretion of the bronchial glands and the digestive glands;
- c) An increased secretion of the bronchial glands and the digestive glands;
- d) A contraction of the bronchial muscles;
- e) An increased intestine motility;
- f) A hypersecretion of the sweat glands;
- g) A hyporsecretion of the sweat glands.

14. The mechanism of reduction of ocular hypertension after pilocarpin application is:

- a) Opening of the venous sinus, increased outflow of intraocular fluid from the anterior chamber of the eye;
- b) Inhibition of the carbonic anhydrase and a decreased production of intraocular fluid.

15. Effects of M-cholinomimetics on the bronchi is:

- a) Dilation of bronchi;
- b) Bronchospasm;
- c) Have no effect on the bronchi.

16. Effects of M-cholinomimetics on heart rate is:

- a) Increased heart rate;
- b) Decreased heart rate;
- c) Have no effect on heart rate.

17. Effects of M-cholinomimetics are:

- a) A pupil dilatation (mydriasis);
- b) A contraction of the pupil (miosis);
- c) A decreased intraocular pressure;
- d) A spasm of accommodation;
- e) A paralysis of accommodation.

18. Effects of pilocarpine are:

- a) A decreases heart rate;
- b) An increase in the secretion of the exocrine glands;
- c) A decreased secretion of the exocrine glands;
- d) Miosis:
- e) A reduction of the tone of urinary bladder;
- f) A decreased intraocular pressure;
- g) An increased intraocular pressure;
- h) A spasm of accommodation;
- i) A paralysis of accommodation;
- j) Mydriasis.

19. Aceclidine:

- a) Increases the intraocular pressure;
- b) Increases the intestinal tone;
- c) Increases the secretion of the digestive glands;
- d) Dilates the bronchi;
- e) Causes the spasm of accommodation.

20. Acetylcholine chloride:

- a) Decreases the intestinal tone;
- b) Increases the secretion of the exocrine glands;
- c) Increases the secretion of the bronchial glands;
- d) Decreases the heart rate;
- e) Causes bronchospasm.

21. Anticholinesterase drugs:

- a) Inhibit the degradation of acetylcholine;
- b) Activate the destruction of acetylcholine;
- c) Stimulate the release of acetylcholine;
- d) Inhibit acetylcholine release.

22. How do anticholinecterase drugs influence on the action of acetylcholine?

- a) Potentiate;
- b) Suppress;
- c) Make it shorter;
- d) Protract.

23. Effect of anticholinesterase drugs on skeletal muscle are:

- a) Facilitation of the neuromuscular transmission;
- b) Interruption of the neuromuscular transmission;

- c) They do not act on neuromuscular transmission;
- d) Raising of the muscle tone;
- e) Reduction of the muscle tone;
- f) They do not act on the muscle tone.

24. Effects of pyridostigmine:

- a) Decreases secretion of digestive glands;
- b) Bronchospasm;
- c) Frequent urination;
- d) Increases heart rate;
- e) Decreases secretion of exocrine glands;
- f) Facilitation of neuromuscular transmission;
- g) Interrupt of neuromuscular transmission;
- h) Raising of muscle tone;
- i) Reduce muscle tone;
- i) It does not effect on muscle tone;
- k) Decreases the heart rate;
- 1) Depression of the A-V nodal activity;
- m) Decreases the cardiac output;
- n) Increases the A-V nodal activity;
- o) Increase the cardiac output.

25. Indications for the anticholinesterase drugs:

- a) Myasthenia; d) Intestinal atony;
- b) Glaucoma; e) Asthma;
- c) Renal colic; f) Atony of urinary bladder.

26. Effects of nicotine:

- a) Initiation of the inspiratory center;
- b) An increase in the intestinal tone;
- c) An increase in the heart rate;
- d) Suppression of the inspiratory center;
- e) A decrease in the intestinal tone.

27. Drugs that can be applied in the case of intestinal and urinary bladder atony:

- a) Armin;b) Pilocarpine;c) Neostigmine;d) Aceclidine;
- c) Pyridostigmine bromide; g) Edrophonium chloride.
- d) Donepezil;

28. Drugs are used for the treatment of glaucoma:

- a) Armin; e) Neostigmine;
- b) Pilocarpine; f) Aceclidine;
- c) Pyridostigmine bromide; g) Edrophonium chloride.
- d) Donepezil;

CHOLINERGIC ANTAGONIST (ANTICHOLINERGIC) DRUGS

1. Pirenzepine is:

- a) Antagonist of M₁ receptors;
- b) Antagonist of M₂ receptors;
- c) Antagonist of M₃ receptors;
- d) Agonist of M₁ receptors;
- e) Non-selective antagonist of M- receptors.

2. Atropine is:

- a) Antagonist of M₁ receptors;
- b) Antagonist of M₂ receptors;
- c) Antagonist of M₃ receptors;
- d) Agonist of M₂ receptors;
- e) Non-selective antagonist of M- receptors.

3. Darifenacine is:

- a) Antagonist of M₁ receptors;
- b) Antagonist of M₂ receptors;
- c) Antagonist of M₃ receptors;
- d) Agonist of M₃ receptors;
- e) Non-selective antagonist of M- receptors.

4. Pipecuronium bromide is:

- a) Antagonist of N_M receptors;
- d) Agonist of M_1 receptors;
- b) Antagonist of M₂ receptors;
- c) Antagonist of M₃ receptors;
- e) Antagonist of N_N receptors.

- 5. Trimethaphan is:
 - a) Antagonist of N_M receptors;
- d) Agonist of M₃ receptors;
- b) Antagonist of M₁ receptors;
- e) Antagonist of N_N receptors.
- c) Antagonist of M₂ receptors;

6. Select M-cholinergic antagonists:

a) Atropine;

h) Pipecuronium bromide;

b) Scopolamine;

i) Suxamethonium chloride;

c) Homatropine;

i) Trihexyphenidyl;

d) Trimethaphan;

k) Pirenzepine;

e) Azamethonium bromide;

1) Aprophen;

f) Darifenacine;

m) Atracurium.

g) Tropicamide;

7. N_N-cholinoblockers

- a) Atropine;
- c) Pirenzepine;
- e) Azamethonium bromide.

- b) Pilocarpine;
- d) Trimethaphan;

8. Nm-cholinoblockers

- a) Pipecuronium bromide;
- c) Atracurium;
- e) Pyridostigmine.

- b) Pancuronium bromide;
- d) Neostigmine;

9. Pharmacological effects of M-cholinergic antagonists:

- a) Pupil dilatation (mydriasis) and loss of light reflex;
- b) Decreasing of intraocular pressure;
- c) Cycloplegia;
- d) Bradycardia;
- e) Tachycardia;
- f) Decreased secretion of exocrine glands;
- g) Decreased secretion of bronchial glands.

10. Effect of atropine on eye:

- a) Contraction of circular muscle of the iris;
- b) Relaxation of the ciliary muscle.

11. Effects of hyoscine hydrobromide on CNS:

- a) CNS depression;
- b) Pleasure emotions;
- c) Paradoxal reaction with hallucinations in toxic doses;
- d) No effect.

12. M-cholinergic antagonist used as bronchodilator:

- a) Homatropine; d) Ipratropium bromide;
- b) Pirenzepine;c) Trimethaphan;e) Tropicamide;f) Darifenacine.

13. Selective M_3 -cholinergic antagonists used to decrease tone of urinary bladder:

- a) Propantheline bromide; d) Trepirium iodide;
- b) Trihexyphenidyl; e) Suxamethonium chloride;
- c) Darifenacine; f) Tolterodin.

14. Indications for administration of M-anticholinergic drug:

- a) Intestinal atony;
- b) Asthma;
- c) Reflex bradycardia;
- d) Renal and intestinal colics;
- e) Hypersecretion of salivary and bronchial glands;
- f) Gastric ulcer and duodenal ulcer;
- g) Hypoacid gastritis;
- h) Paralysis of accommodation.

15. Atropine:

- a) Reduces the heart rate;
- b) Increases the secretion of the salivary glands;
- c) Decreases the secretion of the salivary glands;
- d) Reduces the pupil (miosis);
- e) Paralyses the urinary bladder and causes urinary retention;
- f) Non-selectively blocks M-cholinergic receptors.

16. Ipratropium bromide:

- a) Decreases the motility of the alimentary tract;
- b) Decreases the secretion of the bronchial glands;
- c) Increases the secretion of the bronchial glands;
- d) Dilates the bronchi;
- e) Causes bronchospasm.

17. Scopolamine:

- a) Increases the intraocular pressure;
- b) Intensifies the motility of the gastro-intestinal tract;
- c) Increases the secretion of the digestive glands;
- d) Relaxes the bronchial smooth muscle;
- e) Causes spasm of accommodation.

18. Therapeutic uses of darifenacin:

- a) Urinary disorders;
- b) Reduction of urinary incontinence;
- c) Glaucoma;
- d) Decreased secretion of the digestive glands;
- e) Bronchial asthma.

19. Therapeutic uses of pirenzepine:

- a) Reduction of secretion of the digestive glands;
- b) Peptic ulcer;
- c) Relieving the urinary incontinence;
- d) Bronchial asthma;

e) As mydriatic.

20. Tropicamide:

- a) Reduces the intraocular pressure;
- b) Increases the intraocular pressure;
- c) Causes the spasm of accommodation;
- d) Causes the paralysis of accommodation;
- e) Reduces the pupil (miosis);
- f) Causes pupil dilatation (mydriasis).

21. Therapeutic uses of tropicamide:

- a) As mydriatic;
- b) As cycloplegic (to prevent hypertrophy of ciliary muscle);
- c) In patients with increased intraocular pressure;
- d) Treatment of bronchospasm;
- e) Treatment of the urinary incontinence.

22. Atropine is used:

- a) For the treatment of poisoning with anticholinesterase drugs;
- b) For the treatment of sialorrhoea (hypersalivation);
- c) Treatment of poisoning with overdosage of muscle relaxant drugs;
- d) For the treatment of intestinal atony;
- e) In patients with decreased body temperature.

23. Trihexyphenidyl is used:

- a) For the treatment of parkinsonism;
- b) For the treatment of bronchial asthma;
- c) For cycloplegia during testing of refraction;
- d) For the treatment of poisoning with muscle relaxant drugs.

24. Drugs applied in case of an overdosage of atropine are:

- a) Pyridostigmine bromide;
- d) Ipratropium bromide;

b) Neostigmine;

- e) Pipecuronium bromide.
- c) Acetylcholine chloride;

25. Choose the drugs that are used as cycloplegics (for testing of refraction or to prevent hypertrophy of ciliary muscle)

- a) Ipratropium bromide;
- c) Homatropine;
- e) Atropine.

b) Pilocarpine;

d) Tropicamide;

26. Pharmacological effects of ganglionic blockers:

- a) Hypotension (reduction of blood pressure);
- b) Intensifying of the motility of the gastro-intestinal tract;
- c) Decreased motility of the gastro-intestinal tract;
- d) Mydriasis and paralysis of accommodation;
- e) Bronchodilatation;
- f) Bronchospasm;
- g) Decreased secretion of the digestive glands.

27. Clinical applications for ganglionic blockers:

- a) Arterial hypertension, hypertensive crisis;
- b) Spasm of arteriols;
- c) Gastric and duodenal ulcers;
- d) For adjustable hypotonia;
- e) Pulmonary edema;
- f) Cerebral edema.

28. Side effect of ganglionic blockers are:

- a) Postural hypotension;
- e) Xerostomia;

b) Intestinal atony;

f) Frequent urination;

c) Miosis;

- g) Atony of the urinary bladder.
- d) Paralysis of accommodation;

29. Aid measures in case of respiratory arrest caused by pipecuronium bromide:

- a) Introduction of analeptics;
- b) Introduction of anticholinesterase drugs;
- c) Artificial lung ventilation.

30. Pipecuronium bromide:

- a) Facilitates the neuromuscular transmission;
- b) Interrupts the neuromuscular transmission;
- c) Raises the muscle tone;

- d) Reduces the muscle tone;
- e) Has no effect on muscle tone.

31. The sequence of muscle relaxation after muscle relaxants application:

- a) Hands, feet, limbs muscles;
- d) Oculomotor muscles;

b) Diaphragm;

- e) Neck and face muscles.
- c) Intercostal muscles;

ADRENERGIC DRUGS

1. Specify selective α_1 -adrenomimetic:

a) Epinephrine;

d) Phenylephrine;

b) Dobutamine;

e) Isoprenaline;

c) Ephedrine;

f) Salbutamol.

2. Specify selective α_2 -adrenomimetic:

- a) Amphetamine;
- c) Clonidine;
- e) Norepinephrine.

b) Terbutaline;

d) Salmeterol;

3. Specify α_1 , α_2 -adrenomimetic:

- a) Norepinephrine;
- c) Dopamine;
- e) Phenylephrine.

- b) Naphazoline;
- d) Isoprenaline;

4. Specify sympatomimetic:

- a) Phenylephrine;
- c) Ephedrine;
- e) Fenoterol.

- b) Dobutamine;
- d) Salbutamol;

5. Isoprenaline causes:

- a) Stimulation of α and β -receptors;
- b) Blocking of α and β -receptors;
- c) Selective stimulation of β_1 -receptors;
- d) Selective stimulation of β_2 -receptors;
- e) Stimulation of β_1 , β_2 and β_3 -receptors;
- f) Blocking of β_1 , β_2 and β_3 -receptors.

6. Salbutamol causes:

- a) Stimulation of α and β -receptors;
- b) Blocking of α and β -receptors;
- c) Selective stimulation of β_1 -receptors;
- d) Selective stimulation of β_2 -receptors;
- e) Stimulation of β_1 , β_2 and β_3 -receptors;
- f) Blocking of β_1 , β_2 and β_3 -receptors.

7. Localization of sympathetic part of peripheral nervous system:

- a) Cranial outflow;
- b) Thoracolumbar outflow;
- c) Sacral outflow.

8. Localization of α_1 -adrenoreceptors:

- a) Bronchial smooth muscles;
- b) Uterus;
- c) Radial muscle of iris;
- d) Circular muscle of iris;

9. Localization of α_2 -adrenoreceptors

- a) Cardiac conduction system;
- b) Presynaptic nerves;
- c) Thrombocytes;

d) Adipose tissue;

g) Urinary sphincter;h) Spleen capsule.

e) Bronchial smooth muscle;

e) Gastro-intestinal sphincters;f) Pilo-motor smooth muscle;

f) Radial muscle of iris.

10. Localization of β_1 -adrenoreceptors:

- a) Blood vessels;
- b) Heart;
- c) Cardiac conduction system;
- d) Bronchial smooth muscle;
- e) Uterus;
- f) Juxtaglomerular apparatus.

11. Localization of β_2 -adrenoreceptors:

- a) Blood vessels;
- b) Cardiac conduction system;
- c) Bronchial smooth muscle;
- d) Uterus;
- e) Juxtaglomerular apparatus;
- f) Blood vessels of skeletal muscle.

12. Localization of D₁-receptors:

- a) Blood vessels;
- b) Bronchial smooth muscle;
- c) Mesenteric vessels;
- d) Adipose tissue;
- e) Blood vessels of the kindey;
- f) Intestinal tract.

13. Effects associated with the activation of α_1 -adrenoceptor:

- a) Constriction of blood vessels;
- b) Dilation of blood vessels;
- c) Myosis;
- d) Decreased blood pressure;
- e) Reflex bradycardia;
- f) An increase in tone of GI sphincter;
- g) Mydriasis;
- h) An increase in arterial pressure.

14. Effects of activation of α_2 -receptors:

- a) An increase in NE release;
- d) Activation of platelet adhesion;
- b) A decrease in NE release;
- e) Decreased platelet adhesion;
- c) An increase in the heart rate;
- f) Lipolysis inhibition.

15. Stimulation of β_1 -adrenergic receptors causes the following changes in the indices of the heart:

- a) An increase in the heart rate and myocardial contractility;
- b) A decrease in the excitability;
- c) An increase in automaticity and conduction velocity;
- d) Decrease in automaticity and conduction velocity;
- e) An increase in the cardiac output;
- f) A decrease in the cardiac output;
- g) A decrease in the heart rate and myocardial contractility;
- h) An increase in excitability.

16. Effect of activation of β_1 -receptors a) Increased renin secretion; g) Increased basal metabolism; b) Decreased renin secretion: h) Decreased basal metabolism: c) Increased arterial pressure; i) Increased glycogenolysis; d) Decreased arterial pressure; j) Decreased glycogenolysis; k) Lipolysis activation; e) Bronchospasm; 1) Lipolysis inhibition. f) Bronchodilation; 17. Effect of activation of β_2 -receptors a) Increased heart rate: b) Vasodilation; c) Bronchodilation; d) Increased tone and contractile activity of the myometrium; e) Decreased tone and contractile activity of the myometrium; f) Increased glycogenolysis. 18. Effect of activation of β_3 -receptors a) Increased glycogenolysis; d) Increased blood free fatty acids; b) Decreased glycogenolysis; e) Hyperglycemia; f) Hypoglycemia. c) Lipolysis activation; 19. Effect of activation of D₁-receptors: a) Reduction of the tone of blood vessels in skeletal muscles, kidney, GIT, heart, CNS; b) An increase in the tone of blood vessels in skeletal muscles, kidney, GIT, heart, CNS; c) Increased heart rate; d) Decreased heart rate. 20. Drugs are applied for the treatment of asthma: a) Propranolol; e) Xylometazoline; b) Ephedrine; f) Salbutamol; c) Norepinephrine; g) Fenoterol. d) Isoprenaline; 21. Drugs are locally applied in rhinitis:

- a) Propranolol; e) Phenylephrine;
- b) Oxymetazoline; f) Salbutamol;
- c) Ephedrine; g) Xylometazoline.
- d) Isoprenaline;

22. Drugs are used for the treatment of arterial hypotension:

- a) Phenylephrine; c) Ephedrine;
- b) Epinephrine; d) Salbutamol;

23. β_1 -Agonists are used to treating the following diseases:

- a) Hypotension; d) Atrioventricular heart block;
- b) Bronchial asthma; e) Congestive cardiac failure.
- c) Arrhythmia;

e) Dobutamine.

24. Correct statements about epinephrine:

- a) It is the transmitter in the sympathetic system;
- b) Synthesis of catecholamines begins with the amino acid tyrosine;
- c) Mediate negative-feedback control on NE secretion;
- d) The all epinephrine gets inactivation in liver by catechol-O-methyltrans-ferase (COMT).

25. Epinephrine has the following effects

- a) Cardiac stimulation;
- b) Constriction of blood vessels of the muscle;
- c) Constriction of blood vessels of the skin;
- d) Bronchodilatation;
- e) Hyperglycemia.

26. Epinephrine is used for:

- a) Essential hypertension;
- b) Anaphylactic shock;
- c) Bronchial asthma;
- d) Arteritis obliterans;
- e) Cardiac resuscitation;
- f) Hypoglycemia;
- g) Extension of the duration of local anaesthesia.

27. Dopamine has the following features:

- a) Stimulation of only dopamine-receptor;
- b) Dilates renal blood vessels;
- c) May cause severe heart failure with renal impairment;
- d) Cross the BBB;
- e) Route of administration is orally only.

28. Dopamine is used for treating the following diseases:

- a) Congestive cardiac failure; d) Cardiogenic shock;
- b) Essential hypertension; e) Bronchial asthma;
- c) Hypotension; f) Oligouric shock.

29. Correct statements about ephedrine:

- a) Releases NE from sympathetic nerve endings;
- b) Administer orally;
- c) The duration of its action is less than epinephrine's one;
- d) The onset of action is slower than epinephrine has;
- e) It has a more pronounced effect on the central nervous system than epinephrine.

30. Drugs that can cause bronchodilation:

- a) Epinephrine; c) Phenylephrine; e) Salbutamol.
- b) Ephedrine; d) Isoprenaline;

ADRENERGIC ANTAGONISTS

1. β ₁ -adr oxide) re	_	onist, which	additionally	stimulates	NO (nitrogen	
,	Sotalol;	h) Nadolol:	c) Nebivo	olol: d)	Pindolol.	
′	•	,	· ·	,		
	adrenergic anta Metoprolol;	_			Phentolamine.	
,	•		ŕ	,		
-	energic antago Tamsulosin;		nisic sympatiic c) Propranolol;	miniene act	ivity (ISA):	
,	Pindolol;		d) Acebutolol.			
,	to treat glaucor		i) Accouloioi.			
	Propranolol;		a) Timolol:			
	Yohimbine;		c) Timolol;d) Guanethidine.			
,	•		<i>'</i>		od.	
	e treatment of Phentolamine;		auc nyperpias c) Tamsulosin;	ia (DFH) use	eu:	
,	Prazosin;		d) Carvedilol.			
,	drenergic (bot			a) antaganis	ta•	
	Nadolol;		f) Phentolamine		15.	
<i>'</i>	Prazosin;		g) Metoprolol;	,		
	Labetalol;		h) Tamsulosin;			
	Yohimbine;		i) Dihydroergotamine;			
•	Clonidine;		j) Guanethidine.			
ŕ	energic antago	_				
	Tamsulosin;		c) Yohimbine;			
	Carvedilol;		d) Timolol.			
8. Beta-a	drenergic (bot	h selective an	d non-selectiv	e) antagonis	sts:	
	Reserpine;		Terazosin;	., g		
	Prazosin;		g) Nadolol;			
c)	Propranolol;		h) Doxazosin;			
d)	Nebivolol;	i	i) Atenolol;			
e)	Guanethidine;	j	j) Metoprolol.			
9. Mixed	l-action (alfa ar	nd beta) adre	nergic antagoı	nists		
a)	Guanethidine;	(d) Timolol;			
b)	Phentolamine;	6	e) Carvedilol;			
c)	Labetalol;	1	f) Dihydroergotamine.			
10. Symp	patholytics:					
a)	Guanethidine;	c) Praz	cosin;	e) Sotalo	1.	
b)	Yohimbine;	d) Rese	d) Reserpine;			
11. α_1 -ad	renergic antag	onists:				
a)	Nadolol;		ntolamine;	e) Doxaz	osin;	
b)	Prazosin;	d) Tan	isulosin;	f) Labeta	lol.	

12. α_1 , α_2	-adrenergic antagon	ists			
a)	Propranolol;	c) Phentolamine;	ne; e) Dihydroergotamine.		
b)	Terazosin;	d) Acebutolol;			
13. β_1 , β_2	-adrenergic antagor	nists without intrinsic sy	mpathomimetic activity		
(ISA)		•			
a)	Propranolol;	e) Doxazosin;	i) Timolol;		
b)	Phentolamine;	f) Sotalol; j) Phenylephrine			
c)	Carvedilol;	g) Prazosin;			
d)	Nadolol;	h) Guanethidine;			
14. Selec	tive β ₁ -adrenergic a	antagonists without int	rinsic sympathomimetic		
activity	(ISA):				
a)	Sotalol;	e) Phentolamine;	i) Nebivolol;		
b)	Metoprolol;	f) Bisoprolol;	j) Dihydroergotamine.		
c)	Atenolol;	g) Timolol;			
d)	Reserpine;	h) Propranolol;			
15. α-adı	renergic antagonists	decrease:			
a)	Bronchi tone;				
b)	Vascular tone;				
c)	Heart rate;				
d)	Blood pressure;				
e)	Smooth muscle ton	e in the neck of urina	ry bladder and prostatic		
urethra.					
16. β-adı	renergic antagonists	decrease:			
a)	Heart rate;	d) Myocardial contractility;			
b)	Bronchi tone;	e) Automaticity;			
c)	Vascular tone;	f) Secretion of rer	nin.		
17. β-adı	renergic antagonists	may increase:			
a)	Heart rate;				
b)	Vascular tone;				
c)	Secretion of intraocu	lar fluid;			
d)	Bronchi tone;				
e)	Activity of the myon	netrium;			

18. Effects of propranolol:

a) Decrease automaticity;

f) Myocardial oxygen demand.

- b) Atrioventricular conduction delay;
- c) Release of glucose;
- d) Decrease blood pressure;
- e) Increase renin secretion;
- f) May increase tone and contractile activity of the myometrium.

19. Timolol decreases: a) Blood pressure; d) Automatism of heart; e) Intraocular fluid; b) Myocardial oxygen demand; c) Activity and tone of the myometrium; f) Bronchi tone. 20. Labetalol increases: a) Heart rate and contractility; d) Vascular tone; b) Bronchi tone (in patient with asthma); e) Blood pressure. c) Cardiac output; 21. Effects of reserpine: a) Decreases blood pressure; b) Bradycardia; c) Reduces the secretion of gastric acid; d) Increases the release of gastric acid; e) Increases motion of the gastro-intestinal tract; f) CNS induction; g) Sedation. 22. Indications for use of α -adrenergic antagonists: a) Hypotension; d) Pheochromocytoma; b) Arterial hypertension; e) Prostatic hyperplasia. c) Spasms of peripheral blood vessels; 23. Indications for use of β -adrenergic antagonists: a) Hypotension; b) Arterial hypertension; c) Atherosclerotic cardiovascular disease; d) Delayed atrioventricular conduction; e) Bronchial asthma; f) Tachyarrhythmia. 24. Indications for use of labetalol: a) Hypertensive crisis; d) Open-angle glaucoma; b) Arterial hypertension; e) Pheochromocytoma. c) Tachyarrhythmia;

25. Drugs for the treatment of arterial hypertension:

- a) Doxazosin; e) Phenylephrine; i) Propranolol,
- b) Aceclidine; f) Prazosin; j) Reserpine.
- c) Metoprolol;d) Physostigmine;e) Ephedrine;h) Labetalol;

26. Side effects of α -adrenergic antagonists:

- a) Bronchospasm; d) Postural hypotension;
- b) Tachycardia; e) Mydriasis.
- c) Depress A-V nodal activity;

27. Side effects of β_1 , β_2 -adrenergic antagonists:

- a) Bradycardia;
- b) Depress A–V nodal activity;
- c) Vasoconstriction;
- d) May cause bronchospasm;
- e) Decrease tone and contractile activity of the myometrium;
- f) Intestinal atony.

28. Side effects of β_1 -adrenergic antagonists:

- a) Bradycardia;
- b) Depress A–V nodal activity;
- c) Increase cardiac failure;
- d) Vasoconstriction;
- e) Bronchospasm;
- f) Increase tone and contractile activity of the myometrium.

29. Drugs that cause postural hypotension:

- a) Prazosin;
- c) Propranolol;
- e) Labetalol.

- b) Phentolamine;
- d) Atenolol;

30. Side effects of α , β -adrenergic antagonists:

- a) Postural hypotension;
- d) Increase cardiac failure;

b) Bradycardia;

- e) May cause bronchospasm;
- c) Depress A–V nodal activity;
- f) Vasoconstriction.

GENERAL ANESTHETICS. ETHYL ALCOHOL. ANTICONVULSANTS. ANALGETICS

1. Definition of general anesthesia includes all the following except of:

a) Analgesia;

d) Skeletal muscle relaxation;

b) Amnesia;

- e) Unconsciousness.
- c) Psychostimulation;

2. Minimal Alveolar Concentration (MAC) of inhaled anesthetics is:

- a) Concentration of inhaled anesthetics in inspired gas to prevent a response to a surgical incision over 50 % (effect of analgesia occurs);
- b) Concentration of inhaled anesthetics in inspired gas to prevent a response to a surgical incision in the proximity of 100 % (effect of analgesia occurs);
- c) Concentration of inhaled anesthetics in the blood causing apnea in the proximity of 50 %;
- d) Concentration of inhaled anesthetics in inspired gas causing surgical anesthesia in the proximity of 50 %.

3. Ideal anesthetic drug should:

a) Induce slow general anesthesia and be rapidly reversible upon discontinuation;

- b) Induce rapid general anesthesia and be slowly reversible upon discontinuation;
- c) Induce rapid general anesthesia and be rapidly reversible upon discontinuation;
- d) Induce slow general anesthesia and be slowly reversible upon discontinuation;
 - e) Speed of induction of general anesthesia make no difference.
- 4. Type of general anesthesia, based on combination of general anesthetics with drugs potentiated them (opioid analgesics, anxiolytics, skeletal muscle relaxants and others) is:
 - a) Mixed anesthesia;

- d) Induction of anesthesia;
- b) Potentiated anesthesia;
- e) Neuroleptanalgesia.

- c) Basis anesthesia;
- 5. Method of general anesthesia beginning that provides rapid, safety and effective loss of consciousness, analgesia and skeletal muscle relaxation:
 - a) Mixed anesthesia;

- d) Induction of anesthesia;
- b) Potentiated anesthesia;
- e) Neuroleptanalgesia.

- c) Basis annesthesia;
- 6. Type of general anesthesia occurring by usage of two or more general anesthetics at the same time is:
 - a) Mixed anesthesia;

- d) Induction of anesthesia;
- b) Potentiated anesthesia;
- e) Neuroleptanalgesia.

- c) Basis anesthesia;
- 7. Features of halothane:
 - a) Has high narcotic activity;
 - b) General anesthesia occurs rapidly in 3–5 minutes;
 - c) Mild stage of excitement;
 - d) Recovery is rapid;
- e) Explosive.
- 8. Side-effects of halothane:
 - a) Tachycardia;

d) An increase in blood pressure;

b) Bradycardia;

e) Hypotension.

- c) Arrhythmias;
- 9. Nitrous oxide:
 - a) Has high narcotic activity;
- d) Is poor skeletal muscle relaxant;
- b) Has low narcotic activity;
- e) Is non-irritant;
- c) Has high analgesic activity;
- f) Has little effect on inner organs.

- 10. Features of propofol:
 - a) General anesthesia occurs rapidly in 30–40 seconds;
 - b) Duration of action is 3–10 minutes;
 - c) Duration of action is 1,5–3 hours;
 - d) Recovery is rapid;
 - e) Has severe depression of consciousness after recovery.

11. Features of thiopentone sodium:

- a) Has a rapid onset;
- b) Mild stage of excitement;
- c) Severe stage of excitement;
- d) Duration of general anesthesia is 20–30 minutes;
- e) Stimulation of vasomotor and respiratory centers.

12. Side effects of ketamine:

- a) A decrease in blood pressure;
- d) Hallucinations after recovery;
- b) An increase in blood pressure;
- e) Bradycardia.

c) Tachycardia;

13. Features of ketamine:

- a) Noncompetitive antagonist of NMDA-receptors;
- b) Causes deep surgical anesthesia;
- c) Causes immobility, loss of consciousness and analgesia;
- d) Has a little effect on skeletal muscle tone;
- e) Causes marked relaxation of skeletal muscles.

14. When halothane causes hypotension, to restore pressure cannot be used:

- a) Epinephrine;
- c) Norepinephrine;
- e) Atropine.

- b) Phenylephrine;
- d) Ephedrine;

15. Morphine acts on antinociceptive system in the following way:

- a) Stimulates the synthesis of opioid peptides;
- b) Intensify the release of opioid peptides;
- c) Stimulates the opioid receptors;
- d) Block the inactivation of opioid receptors;
- e) Block the presynaptic opioid receptors.

16. The opioid antagonist is:

- a) Naloxone;
- c) Clonidine;
- e) Ibuprofen.

- b) Droperidol;
- d) Nefopam;

17. Mechanism of vomiting upon the application of morphine:

- a) Irritation of receptors of stomach mucosal membrane;
- b) Intracranial hypertension;
- c) Excitement of chemoreceptors emetic trigger zone;
- d) Acting on vestibular system;
- e) Stimulation of pharynx mechanoreceptors.

18. What drug can be combined with phentanyl for the purpose of neuro-leptanalgesia:

- a) Acetylsalicylic acid;
- c) Paracetamol;
- e) Pyracetam.

b) Droperidol;

d) Diazepam;

19. Features of narcotic analgetics:

- a) Increase respiratory volume;
- d) Cause drug dependence;
- b) Relieve pain of any genesis;
- e) Have anti-inflammatory activity.
- c) Facilitate sleep onset;

20. Mechanisms of obstipation caused by morphine: a) Block of motilin receptors; b) Inhibition of secretion of digestive glands; c) Spasm of intestine sphincters; d) Inhibition of intestinal peristalsis; e) A decrease in intestinal smooth muscle tone.

21. Features of nonnarcotic analgetics:

- a) Relieve pain of any genesis;
- b) Decrease respiratory volume;
- c) Cause drug dependence;
- d) Relieve pain of inflammatory genesis;
- e) Have anti-inflammatory activity;
- f) Have antipyretic activity.

22. Peripheral COX inhibitors are:

- a) Ibuprofen; c) Keterolac; e) Paracetamol.
- b) Acetylsalicylic acid; d) Metamizol;

23. Features of acetylsalicylic acid:

- a) Is pain reliever; d) Antiplatelet action;
- b) Anti-inflammatory activity; e) Cough reduction.
- c) Antipyretic activity;

24. Features of paracetamol:

- a) Pain reliever; d) Antiplatelet action;
- b) Anti-inflammatory activity; e) Inhibition of intestinal peristalsis.
- c) Antipyretic activity;

25. Features of ibuprofen:

- a) Pain reliever; d) Emetogenic activity;
- b) Anti-inflammatory activity; e) Anticonvulsant action.
- c) Inhibition of intestinal peristalsis;

26. Features of keterolac:

- a) Antipyretic activity; d) Diuretic activity;
- b) Anti-inflammatory activity; e) Analgesic activity.
- c) Stimulation of intestinal peristalsis;

27. Features of metamizole:

- a) Pain reliever; d) Sedative-hypnogenic activity;
- b) Antipyretic activity; e) Antiemetic activity.
- c) Causes miosis;

28. Drugs that are counter indicated in case of intracranial hypertension:

- a) Ketamine; c) Phentanyl; e) Thiopental sodium.
- b) Morphine; d) Propofol;

ANXIOLITIC AND SEDATIVE-HYPNOGENIC DRUGS. ANTIPSYCHOTISC

1. Anxiolitic effect is:

- a) Ability to induce sleep;
- d) Reduction of depression;

b) Raising of mood;

- e) Reduction of anxiety.
- c) Stimulation of CNS;

2. Sedative-hypnogenic effect is:

- a) Appearance of colorful dreaming;
- b) Deficiency of dreaming;
- c) Reduction of depression;
- d) Sedation and facilitation of sleep onset;
- e) Raising of mood.

3. Anxiolitic effect can be useful in the following situations:

- a) Decreased requirement of sleep;
- d) Sleepiness;

b) Panic;

e) Brain ischemia.

c) Psychic excitement;

4. Sedative-hypnogenic effect can be useful in the following situations:

- a) Decreased requirement of sleep;
- d) Brain ischemia;

b) Sleeplessness;

e) Psychic excitement.

c) Sleepiness;

5. Melatonin can be applied in the case of:

- a) Decreased requirement of sleep;
- b) Clock zone changing for correction of biorhythmies;
- c) Sleepiness;
- d) Brain ischemia;
- e) Psychic excitement.

6. Effects of barbiturates:

a) Diarrhea;

i) Myorelaxation;

b) Leukopenia;

- j) Hearing disturbance;
- c) Suppression of respiration;
- k) Antiplatelet effect;

d) Anesthesia;

- 1) Antipyretic effect;
- e) Anticonvulsant activity;
- m) Facilitation of the sleep onset;
- f) Bronchospasm;
- n) Reduction of the pain;
- g) Gastrointestinal ulcers:
- o) An increase in the respiratory volume;
- h) Suppression of vasomotor center; p) Antipsychotic activity.

7. Effects of benzodiazepines:

- a) An increase in bronchi tone;
- b) Hematopoiesis disturbance;
- c) Anticonvulsant activity;
- d) An increase in gastrointestinal motility;
- e) Hearing disturbance;

- f) Sedative effect;
- g) Hypnogenic effect;
- h) An increase in the respiratory volume;
- i) A decrease in the tone of skeletal muscles;
- j) A decrease in the anxiety;
- k) Anti-inflammatory effect.

8. Features of buspirone:

- a) Has hypnogenic effect;
- b) Reduction of anxiety;
- c) Does not cause significant sedative effect;
- d) Anticonvulsant activity;
- e) Is muscle relaxant;
- f) Driving is not recommended upon the application of this drug;
- g) Causes myorelaxation;
- h) Effect occurs immediately after drug administration;
- i) Hepatic metabolism is typical.

9. Mechanisms of muscle tone reduction upon the application of benzodiazepines:

- a) Calcium depletion in the sarcolemma;
- b) Inhibition of GABA-dependent regulation of muscle tone in the spinal cord;
- c) Phosphodiesterase inhibition in the muscle fibers;
- d) Block of neuromuscle transmission (high doses);
- e) Accumulation of lactic acid in the muscle fiber.

10. Anticonvulsant activity of benzodiazepines is determined by:

- a) Hypnogenic effect;
- b) Inhibition of primary seizure pattern;
- c) Increasing of limbic system activity;
- d) A decrease in cortex structures excitability;
- e) Suppression of centers of medulla oblongata.

11. Hypnogenic activity of benzodiazepines is determined by:

- a) Activation of epiphysis function;
- b) Decrease of spontaneous activity of CNS;
- c) Decrease of metabolic activity of CNS;
- d) A decrease in cortex structures excitability;
- e) Facilitation of NMDA-dependent signal flow in the neuronal network.

12. Mechanisms of action of benzodiazepines:

- a) An increase in duration of GABA-dependent chloric channel opening;
- b) An increase in rate of GABA-dependent chloric channel opening;
- c) Inhibition of GABA-dependent ion channel;
- d) An increase in effectiveness of GABA-dependent synaptic inhibition;
- e) Direct activation of GABA-receptor.

13. Mechanisms of action of barbiturates:

- a) An increase in duration of GABA-dependent chloric channel opening;
- b) An increase in rate of GABA-dependent chloric channel opening;
- c) Inhibition of GABA-dependent ion channel;
- d) An increase in effectiveness of GABA-dependent synaptic inhibition;
- e) Direct activation of GABA-receptor.

14. Define the sedative drugs without anxiolytic effect:

- a) Alprazolam;
- c) Nitrazepam;

e) Promethazine.

- b) Diazepam;
- d) Diphenhydramine;

15. Features of zolpidem:

- a) Driving is not recommended upon the application of this drug;
- b) Causes mild myorelaxation;
- c) Effect occurs immediately after drug administration;
- d) Acts on GABA-dependent signal transmission;
- e) Suppresses respiratory center;
- f) Driving can be recommended upon the application of this drug;
- g) Significant residual effect is typical;
- h) Effect occurs slowly (in one week);
- i) Is antagonist of serotonin receptors;
- j) Low toxic.

16. Antipsychotic drugs are applied in the following cases:

a) Ischemic stroke;

c) Opioid withdrawal syndrome;

b) Depression;

d) Schizophrenia.

17. Antipsychotic drugs are effectively the most in case of:

a) Panic disorder;

- d) Sleepiness;
- b) Manic depressive psychosis;
- e) Brain ischemia.
- c) Positive symptoms;

18. Antipsychotic drugs cause:

- a) Colorful dreaming;
- b) Hallucination;
- c) Memory improvement;
- d) Supression of positive symptoms in case of psychosis;
- e) Sleep.

19. The main properties of neuroleptics (antipsychotic drugs):

- a) Intensify the GABA-dependent suppression of CNS;
- b) Block the dopamine receptors;
- c) Activate the serotonin receptors;
- d) Block the M-cholinergic receptors;
- e) Inhibit the NMDA-receptors;
- f) Block the α -adrenergic receptors;
- g) Activate the M-cholinergic receptors.

20. Features of antipsychotic drugs:

- a) Increase the agitation in patients with schizophrenia;
- b) Decrease the skeletal muscle tone;
- c) Increase the anxiety in health people;
- d) Reduce the anxiety;
- e) Reduce the vomiting;
- f) Induce psychic excitement;
- g) Cause extrapyramidal disorder;
- h) Increase the prolactin secretion;
- i) Are effective in patients with Parkinson's disease;
- j) Can cause euphoria.

21. Side effects of neuroleptics (antipsychotic drugs):

- a) Hypertension;
- b) Sleepiness;
- c) Restlessness (akathisia);
- d) Decreased libido in men;
- e) Tardive dyskinesia (extrapyramidal symptoms);
- f) Gynecomastia;
- g) Increased libido in women.

22. Effects of neuroleptics associated with acting on M-cholinergic receptors:

- a) Extrapyramidal symptoms;
- d) Constipation;

b) Impotention;

e) Paralysis of accommodation.

c) Sleeplessness;

23. Effects of neuroleptics associated with acting on α -adrenoreceptors:

a) Giddiness:

d) Obstipation;

b) Gynecomastia;

- e) Increased libido in women.
- c) Orthostatic hypotension;

24. Effects of neuroleptics associated with acting on dopamine receptors in extrapyramidal system:

- a) Decreased libido in men;
- d) Restlessness (akathisia);

b) Obstipation;

- e) Sleepiness.
- c) Tardive dyskinesia;

25. Effects of neuroleptics associated with acting on dopamine receptors in hypothalamus:

- a) Orthostatic hypotension;
- d) Gynecomastia in men;
- b) Restlessness (akathisia);
- e) Tardive dyskinesia.
- c) Increased libido in women;

26. Effects of neuroleptics associated with acting on prolactin secretion:

- a) Gynecomastia in men;
- d) Increased libido in women;
- b) Ejaculation disorder;
- e) Parkinson's syndrome.
- c) Induction of lactation;

ANTIDEPRESSANTS. PSYCHOSTIMULANTS. NOOTROPIC DRUGS AND TONICS

1. Set up a correspondence between the pharmacological group:

- a) Antidepressant, serotonin reuptake inhibitors;
- b) Antidepressant, norepinephrine reuptake inhibitor;
- c) Antidepressant, MAO inhibitor;
- d) Neuroleptic;
- e) Normothymic.

and drug:

1) Amitriptyline;

4) Carbamazepine;

2) Fluoxetine;

5) Moclobemid.

3) Clozapine;

2. Normothymic (antimanic) drugs can be administered in case of:

a) Panic disorder;

- d) Sleppiness;
- b) Manic-depressive psychosis;
- e) Brain ischemia.
- c) Schizo-affective psychosis;

3. Supposed mechanisms of antimanic activity of lithium salts:

- a) Inhibition of Na⁺, K⁺-ATPase activity of sodium pump in the neuronal membrane;
 - b) Shift of secondary messengers activity;
 - c) Block of D₂-receptors;
 - d) Shift of cation distribution in intra-and intercellular compartments;
- e) Modification of neuromediators releasing: norepinephrine, dopamine, etc.

4. Side effects of lithium salts:

- a) Raising of arterial blood pressure;
- b) Hypertrophy of thyroid gland;
- c) Nephrogenic diabetes insipidus;
- d) Secondary immunodeficiency;
- e) Parkinson's disease.

5. Antidepressants can be administered in case of:

a) Panic disorder;

d) Brain ischemia;

b) Endogenous depression;

e) Psychic excitement.

c) Sleppiness;

6. Mechanism of action of tricyclic antidepressants:

- a) Direct activation of adrenergic receptors;
- b) Nonselective inhibition of monoamines reuptake (epinephrine, norepinephrine);
 - c) Block the inactivation of norepinephrine by MAO;
 - d) Selective inhibition of norepinephrine reuptake;
 - e) Block the inactivation of norepinephrine by COMT.

7. Set up a correspondence between antidepressants:

- a) Sertraline; c) Moclobemide; e) Mirtazapine.
- b) Amitriptyline; d) Tianeptine;

and their mechanisms of action:

- 1) MAO inhibitor;
- 2) Serotonin reuptake inhibitor;
- 3) Strenghtens neuronal serotonin reuptake;
- 4) Inhibitor of presynaptic α_2 -adrenergic receptor;
- 5) Norepinephrine reuptake inhibitor.

8. Features of tricyclic antidepressants:

- a) An increase in arterial blood pressure;
- b) Obstipation and urinary retention;
- c) Relive the pain, potentiate the analgesics;
- d) Increase the exercise tolerance;
- e) Weight gain.

9. Biochemical effects of MAO inhibitors (group of antidepressants):

- a) Inhibition MAO activity in presynaptic terminals;
- b) Inhibition MAO activity in postsynaptic terminals;
- c) Inhibition MAO activity in synaptic cleft;
- d) An increase in mediator concentration in vesicles;
- e) An increase in mediator concentration in synaptic cleft.

10. Effects of MAO inhibitors:

- a) Cachexia;
- b) Decreased blood pressure;
- c) Sexual dysfunction, loss of libido;
- d) Lack of the significant sedation;
- e) Alcohol decreases the sedative effect of this drugs.

11. Correct affirmation about tricyclic antidepressants:

- a) Are administered once a day as usual;
- b) Clinical effect occurs in 2–3 weeks of daily application;
- c) Are administered three and more times a day because of short half-life time:
 - d) Clinical effect occurs in first few days;
 - e) Drug effect ends in a few days after delay.

12. Correct assertions about serotonin reuptake inhibitors:

- a) Are administered once a day as usual;
- b) Functional accumulation is typical;
- c) Are administered parenterally mainly;
- d) Clinical effect occurs in first few days;
- e) Side effects occur in first few days.

13. Features of MAO inhibitors:

a) Functional accumulation is typical;

- b) Clinical effect occurs in 2–3 weeks of daily application;
- c) Combination with serotonin reuptake inhibitors is recommended;
- d) May cause sleeplessness;
- e) Side effects occur in first few days.

14. What symptom may appear while eating tyramine containing food (red vine, cheese, etc), and taking MAO inhibitors?

- a) Severe hypotension;
- d) Hypertensive crisis;

b) Obstipation;

e) Insulin resistance.

c) Bronchospasm;

15. Combination of what drugs may cause the «serotonin syndrome»:

- a) MAO inhibitors and serotonin reuptake inhibitors;
- b) Tricyclic antidepressants and serotonin reuptake inhibitors;
- c) Two drugs of serotonin reuptake inhibitors;
- d) Phenelzine and fluoxetine;
- e) Fluoxetine and doxepin.

16. Select the antidepressants:

- a) Buspirone;
- e) Moclobemide;
- b) Fluoxetine;
- f) Sertraline;
- c) Flumazenil;
- g) Amobarbital.
- d) Tianeptine;

17. Nootropic drugs:

- a) Reduce the anxiety;
- b) Facilitate the sleep onset;
- c) Stimulate the immune system;
- d) Improve cognitive skills;
- e) Increase the brain resistance to hypoxia.

18. Effects of piracetam:

- a) Increased physical performance with a single dose;
- b) An increase in mental capacity with the use of single dose;
- c) Do not act on mental capacity with the use of single dose;
- d) Memory improvement in patients with brain disorder;
- e) Learning improvement in patients with organic brain disorder.

19. Indications of nootropic drugs:

- a) For rapid stimulation of mental capacity;
- b) For rapid increasing of physical endurance;
- c) Correction of posttraumatic mental disorders in children and adults;
- d) Correction of mental disorders caused by cerebrovascular disturbance;
- e) Prophylaxis of Parkinson's disease.

20. Define adaptogens:

- a) Tianeptine;
- c) Ginseng tincture;
- e) Eleutherococ liquid extract.

- b) Pantocrin;
- d) Piracetam;

21. Choose analeptics:

- a) Caffeine sodium benzoate; c) Bemegride;
- b) Mezocarb; d) Aethimisol;

22. Correct assertions about aethimisol:

- a) Causes the bronchospasm;
- b) Increases the concentration of glucocorticosteroids in blood plasma;

e) Doxapram.

- c) Stimulates the respiratory center;
- d) Suppresses the respiratory center;
- e) Can be used as analeptic.

23. Correct assertions about bemegride:

- a) Causes the psychomotor agitation in high doses;
- b) Can be used in case of poisoning with barbiturates and general anesthetics;
 - c) Stimulates the respiratory center;
 - d) Is used as stimulator of gastrointestinal motility;
 - e) Is administered parenterally;
 - f) Is administered orally.

DRUGS AFFECTING THE GASTROINTESTINAL TRACT

1. Despite their short half-lives (2 hrs), proton pump inhibitors (PPIs) cause a prolonged suppression of acid secretion (up to 48 h) because:

- a) They are prodrugs and undergo activation gradually;
- b) They exit from the plasma and enter acid secretory canaliculi and stay there, blocking the secretion of acid for a long time;
- c) They irreversibly inhibit the proton pump molecule and hence, acid secretion requires synthesis of new proton pumps;
- d) They are available as enteric coated capsules, from which drug is gradually released.

2. Drug are used in H. pylori is:

- a) Metronidazole; c) Mosapride;
- b) Omeprazole; d) Amoxicillin.
- 3. Which of the following drugs are used for H. pylori treatment?
 - a) Oxytetracycline;b) Bismuth compounds;c) Amoxicillin;d) Omeprazole.
- 4. Which of the following agents is beneficial in NSAID induced gastric ulcer?
 - a) PGE₁ agonist; c) PGD₂ agonist;
 - b) PGE₂ agonist; d) PGF_{2a} agonist.

5. Proton pump inhibitors are most effective when they are given:

- a) After meals; c) Along with H₂ blockers;
- b) Shortly before meals; d) During prolonged fasting periods.

6. Choose the incorrect statement about H₂ receptor blockers:

- a) They are the most efficacious drugs in inhibiting gastric acid secretion;
- b) They have antimicrobial activity;
- c) They prevent stress ulcers in the stomach;
- d) They afford the most prompt relief of ulcer pain.

7. Choose the incorrect statements about H_2 receptor blockers:

- a) They are the most efficacious drugs in inhibiting gastric acid secretion;
- b) They have antimicrobial effect;
- c) They prevent stress ulcers in the stomach;
- d) They do not afford relief of ulcer pain.

8. The most efficacious drug for inhibiting round the clock gastric acid output is:

a) Omeprazole;

c) Amoxicillin;

b) Famotidine;

d) Misoprostol.

9. In peptic ulcer, antacids are now primarily used for:

- a) Preventing ulcer relapse;
- c) Prompt pain relief;
- b) Ulcer healing;
- d) Control of bleeding from the ulcer.

10. The following anti-ulcer drugs act by reducing the secretion of or neutralizing gastric acid:

a) Aluminium hydroxide; b) Sucralfate; c) Ranitidine; d) Omeprazole.

11. Choose the correct statements about colloidal bismuth subcitrate:

- a) It causes prolonged neutralization of gastric acid;
- b) It has anti H. pylori activity;
- c) The side effect is blackening of the tongue and stools.

12. Metoclopramide:

- a) Inhibit cholinergic smooth muscle stimulation in the gastrointestinal tract;
 - b) Passes through blood brain barrier;
 - c) Blocks D₂ receptor;
 - d) Is antiemetic drug.

13. Which of the following drugs are antiemetic?

a) Ondansetron;

c) Metoclopramide;

b) Domperidone;

d) Apomorphine.

14. Antiemetic action is produced through:

- a) Decreased CTZ stimulation;
- d) β_2 agonistic action;
- b) H₁ antagonistic action;
- e) 5-HT₃ antagonistic action.
- c) D₂ antagonistic action;

15. Ondansetron acts by:

a) Acting on CTZ;

d) Increasing GIT motility;

b) 5-HT₃ antagonism;

- e) Blocking cholinergic receptors.
- c) D_1 and D_2 receptor antagonism;

16. In case of hill journey, antimotion sickness drugs are best administered at:

- a) Twelve hours before commencing journey;
- b) One hour before commencing journey;
- c) Immediately after commencing journey;
- d) At the first feeling of motion sickness.

17. Which of the following prokinetic drugs produces extrapyramidal side effects?

- a) Metoclopramide;
- c) Domperidone;
- b) Promethasine;
- d) All of the above.

18. The most effective antiemetic chemotherapy induced vomiting is:

- a) Domperidone;
- c) Metoclopramide;
- b) Ondansetron;
- d) Promethasine.

19. Ondansetron acts by inhibiting which of the following receptors?

a) 5-HT₁;

c) 5-HT₃;

b) 5-HT₂;

d) 5-HT₄.

20. Which of the following laxatives lowers blood ammonia level in hepatic encephalopathy?

a) Bisacodyl;

- c) Lactulose;
- b) Liquid paraffin;
- d) Magnesium sulfate.

21. Choose the correct statement about the use of opioid anti-motility drugs in the management of diarrhea:

- a) They are used to control diarrhea irrespective of its etiology;
- b) They should be used only as a short term measure after ensuring that enteroinvasive organisms are not involved;
 - c) They are used as adjuvant to antimicrobial therapy of diarrhea;
 - d) They are the drug of choice in irritable bowel syndrome diarrhea.

22. Bisacodyl is:

- a) Bulk forming; c) Drug causing chemical irritation of the intestine;
- b) Stool softner; _ d) Drug, causing mechanical irritation of the intestine.

DRUGS AFFECTING BLOOD SYSTEM

1. Select characteristic features of treatment of iron deficiency anemia with oral iron supplements:

- a) If 200-300 mg elemental iron is consumed, about 50 mg is absorbed;
- b) The proportion of iron absorbed reduces as hemoglobin improves;
- c) The reticulocyte count should begin to increase in two weeks and peak in 4 weeks—this suggests good response to treatment;
- d) The treatment should be discontinued immediately once hemoglobin normalizes to prevent side effects of iron.

2. Select correct statements about erythr	onoietin•					
a) It is used for the treatment of ane	-					
b) It results in decrease in reticulocy						
c) It decrease the requirement of blo						
d) It can cause hypertension.						
3. In the treatment of undiagnosed me	galoblastic anemia, vitamin B ₁₂ and					
folic acid should be given together becau	·					
	a) Vitamin B ₁₂ acts as a cofactor for dihydrofolate reductase;					
	rovement of anemic symptoms but					
neurological dysfunction continues;						
c) Vitamin B ₁₂ deficiency may resul	t in methylfolate trap;					
d) Folic acid is required for convers	ion of methylmalonyl-CoA to succinyl					
Co-A.						
4. Filgrastim is used for the treatment of						
a) Neutropenia; b) Anemia; c) Po	lycythemia; d) Neutrophilia.					
5. Iron is most commonly absorbed from	1:					
a) Duodenum and upper jejunum;	c) Stomach;					
b) Lower jejunum;	d) Ileum.					
6. Which of the following is most likely	y to be used in a young child with					
chronic renal insufficiency?						
a) Cyanocobalamin;	c) Erythropoietin;					
b) Desferrioxamine;	d) Filgrastim (G-CSF).					
7. The difference between iron sorbitol	-citric acid and iron dextran is that					
the former:						
a) Cannot be injected i.v.;						
b) Is not bound to transferrin in plasma;						
c) Is not excreted in urine;						
d) Produces fewer side effects.						
8. Which of the following metabolic re	actions require vitamin B_{12} but not					
folate?	cutati cuta.					
a) Conversion of malonic acid to such Conversion of home systems to me						
b) Conversion of homocysteine to methionine;						
c) Conversion of serine to glycine;d) Thymidylate synthesis.						
9. Filgrastim is a: a) T cell stimulating factor:	c) G-CSF;					
a) T-cell stimulating factor;	OM COE					

d) GM-CSF.

c) Intestine;

d) Bone.

a) Pregnancy; d) Oral iron intolerance. b) Postpartum period;

b) Kidney;

b) GnRH analogue;

a) Liver;

10. Erythropoietin is mainly produced in:

11. Indication for intramuscular iron therapy is:

12. Deficiency of this hemophilic factor of	during early pregnancy will result in				
neural tube defect:					
a) Folic acid; c) Cyanocobalamine;					
b) Iron;	d) Antioxidants.				
13. Which of the following drugs act by k	olocking Gp IIb/IIIa receptors?				
a) Abciximab;	c) Tirofiban;				
b) Eptifibatide;	d) Clopidogrel.				
14. In low doses aspirin acts on:					
a) Cyclooxygenase;	c) PGI ₂ synthase;				
b) Thromboxane A2 synthase;	d) Lipoxygenase.				
15. Select correct statements about clopic	dogrel				
a) Directly interact with platelet men					
b) Onset of action is slow;					
c) Duration of action is long;					
	pirin in patients with cerebrovascular				
disease.					
16.A drug that binds to and inhibit	s Gp IIb/IIIa glycoprotein and is				
responsible for platelet antiaggregatory					
c) Clopidogrel;	c) Fondaparinux;				
d) Enoxaparin;	d) Tirofiban.				
17. Select correct statements regarding to					
a) It blocks GpIIb/IIIa receptors on p	-				
b) It prevents ADP mediated platelet					
c) It inhibits thromboxane A2 synthe					
d) It does not prolong bleeding time.					
18. Aspirin prolongs bleeding by inhibiting the synthesis of which of the					
following?	ting the synthesis of which of the				
a) Adenosine receptors;	c) Prostacyclin;				
b) Cyclic AMP;	d) Thromboxane A2.				
19. Glycoprotein IIb/IIIa receptor antago					
a) Clopidogrel;	c) Tranexamic acid;				
b) Abciximab; d) Ticlopidine.					
20. Select antiplatelet drugs:	\D' '1 1				
a) Aspirin;	c) Dipyridamole;				
b) Clopidogrel;	d) Warfarin.				
21. Clopidogrel is an antiplatelet agent the					
a) Reducing myocardial oxygen requ					
b) Reducing myocardial oxygen red	quirements and by inducing coronary				

- artery vasodilatation;
 c) Inhibiting ADP-induced platelet aggregation;
 d) None of the above.

22. Abciximab is:			
a) Antibody against Ilb/	a) Antibody against Ilb/Illa receptors;		
b) Antibody against Ib/I	X receptors;	d) Adenosine inhibitor.	
23. Tirofiban is a:			
 a) Monoclonal antibody 	•••	c) Anti-inflammatory drug;	
b) Antiplatelet drug;		d) Antianginal drug.	
24. Aspirin is not given in	a patient who is	already on heparin because	
aspirin causes:			
a) Platelet dysfunction;			
b) Aspirin inhibits the a	•		
c) Enhanced hypersensi	•		
d) Therapy of heparin ca	annot be monitored.		
25. Vitamin K is involved in	-		
a) Glutamate;	c) Gly		
b) Aspartate;	d) GA	ABA.	
26. Vitamin K dependent clo	_		
a) Factor IX and X;	d) Factor I;	g) Proteins C and S.	
	e) Factor II (proth	rombin);	
c) Factor XII;	f) Factor IIV;		
27. Select correct statements			
a) It inhibits the activati		endent clotting factors;	
b) Its half-life is 36 hour	îS;		
c) It can cross placenta;	11 41		
d) Its dose is increased i			
28. Drug used in heparin ove		1 '1'	
a) Protamine sulfate;		elopidine;	
b) Phylloquinone;		opidogrel.	
-	-	v molecular weight heparins:	
a) Are absorbed more up	•	•	
b) Require more frequence.	-	uced thrombocytopenia;	
d) Predispose to a highe	-	• •	
	-		
30. LMW heparin is preferre		whereas unfractionated heparin	
acts via activation of antithron	-	whereas unitactionated neparin	
b) LMW heparins have	·	a bleeding:	
c) LMW heparin can be		_	
d) LMW heparin has co	_	- ·	
31. Select correct statements		,	
a) It prolongs a PTT;	_	an lead to alopecia;	
b) Hyperkalemia is not s		can cause thrombocytopenia.	

	parin administration can be corrected by
the administration of:	\ D
a) Vitamin K;	c) Protamine;
b) Whole blood;	d) Ascorbic acid.
-	induced bleeding can be done by the
administration of:	
	c) Fresh frozen plasma;
b) Platelet concentrates;	d) Packed red blood cells.
34. True statements about vitamin	K are:
a) Increases the synthesis of II.	, VII, IX and X factors;
b) Require exposure to sunligh	t;
c) Causes hemolytic anemia in d) $t^{1/2}$ is < 6 hour.	patients with G-6-PD deficiency;
35. Select correct statements about	oral anticoagulants:
	step in the synthesis of clotting factors;
	lministered, their anticoagulant effect has a
latency of onset of 1-3 days;	animistered, their unitedugatum effect mus u
•	peated measurement of prothrombin time;
d) They are contraindicated du	-
36. Which of the following drugs do	
a) Heparin;	c) Dicumarol;
b) Warfarin;	d) Nicoumalone.
37. Oral anticoagulants are monito	
a) Bleeding time (BT);	-
-	d) Partial thromboplastin time (PTT).
, , , , , , , , , , , , , , , , , , , ,	, , ,
infarction, the adverse effect most	for the treatment of acute myocardial likely to occur is:
a) Acute renal failure;	
b) Development of antiplatelet	antibodies:
c) Encephalitis secondary to liv	
d) Hemorrhagic stroke.	, 61
39. Thrombolytic therapy with stre	ontokinasa is contraindicated in
a) Supraventricular tachycardia	
b) Recent trauma;	u,
c) Recent cerebral bleeding;	
d) Recent surgery.	
	and to module blooding due to:
40. Epsilon amino-caproic acid is u	
a) Heparin;	c) Thrombocytopenia;
b) Warfarin;	d) Hyperplasminemia.

ANTIHYPERTENSIVE DRUGS

1. Arterial blood pressure is directly proportionate to:

- a) Cardiac output and peripheral vascular resistance;
- b) Heart rate and peripheral vascular resistance;
- c) Stroke volume and heart rate;
- d) Cardiac output and heart rate;
- e) All answer choices are not correct.

2. What antihypertensive drug can block the production of renin?

- a) Prazosin; d) Sodium nitroprusside;
- b) Metoprolol; e) Diazoxide;
- c) Captopril; f) Clonidine.

3. What diuretic should be prescribed in case of hypertensive crises complicated by pulmonary edema?

- a) Furosemide; d) Mannitol;
- b) Indapamide; e) Bendroflumethiazide;
- c) Triamterene; f) Chlortalidone.

4. Targets of antihypertensive drugs are:

- a) β -adrenergic receptors; d) α_1 -adrenergic receptors;
- b) α_2 -adrenergic receptors; e) angiotensin-II receptors;
- c) I_1 -imidazoline receptors; f) N_m -cholinergic receptors.

5. Mechanisms of hypotensive action of diuretics:

- a) Reduction of the circulating blood volume;
- b) Increase in the synthesis of vasolitic prostaglandins in the kidney;
- c) Reduction of the vessel response to vasoconstrictors;
- d) For some diuretics direct vasolytic action;
- e) A decrease in the heart rate.

6. Typical side-effects of thiazides and thiazide-like diuretics:

- a) Electrolyte disturbances; d) Hyperglycemia;
- b) Dry cough, rashes; e) Hyperlipidemia;
- c) Swellings; f) Hyperuricemia.

7. Counter indications of ACE-inhibitors:

- a) Pregnancy; d) Heart failure;
- b) Bilateral renal artery stenosis; e) Hyperpotassemia.
- c) Hypopotassemia

8. Clonidine:

- a) Has analgesic activity;
- b) Is precursor of norepinephrine;
- c) Rapid infusion can lead to a shortly increased blood pressure;
- d) Has effects of anxiolytic, sedative drug and amnesia;
- e) Can treat withdrawal symptoms in opioid and alcohol addicts.

9. Non-selective β -adrenergic blockers shouldn't be applicated in patients with bronchial asthma and chronic obstruction pulmonary disease because of:

- a) Block of β_2 -adrenergic receptors can lead to bronchospasm;
- b) Stimulation of gland secretion;
- c) Intensification of pulmonary blood supply;
- d) Negative influence on gas exchange;
- e) Inhibition of the cells respiration.

10. Methyldopa:

- a) Is first-line antihypertensive drug during pregnancy;
- b) Can cause orthostatic hypotension;
- c) Is used for relief of hypertensive crises;
- d) Has the same final effect as clonidine;
- e) Does not pass through blood-brain barrier.

11. The main aims of treatment of arterial hypertension:

- a) Reduce blood pressure to lower the point of 140/90 mmHg;
- b) Prevention of eventual end-organ damage (heart, kidney, brain);
- c) Prevention of cardiovascular complications, increasing the life expectancy;
 - d) Relief the hypertensive crises, everything else does not matter;
 - e) Keep blood pressure at the level of feeling well, without complaints.

12. During the treatment of arterial hypertension with α -adrenergic antagonists can be:

- a) Reflex tachycardia;
- b) Bradycardia;
- c) Increased plasma concentrations of very-low-density lipoproteins;
- d) Decreased sympathetic influence;
- e) Improvement of blood supply in peripheral arteries.

13. Ganglionic blockers can be used in case of:

- a) Long-term treatment of arterial hypertension;
- b) Relief of hypertensive crises;
- c) Controlled hypotension;
- d) Increase in blood pressure in patients with collapse;
- e) Ganglionic blockers do not change the blood pressure.

14. What is the mechanism of action of calcium channel blockers (one answer)?

- a) Interact with membrane phospholipid and inhibit ion transport;
- b) Block the Na⁺/K⁺ ATPase in smooth muscles and heart;
- c) Interact with definite domen of calcium L-type channel;
- d) Decrease the Ca²⁺ influx as a result of interactions with sodium-channels;
 - e) Disturb the actin-myosin interaction.

15. Side-effects of vasodilating calcium channel blockers:

a) Ankle swellings;

c) Bradycardia;

b) Head ache;

d) Reflex tachycardia.

ANTIANGINAL AND HYPOLIPIDEMIC DRUGS

1. Atenolol:

- a) Cardioselective β-adrenergic antagonists;
- b) Has intrinsic symphatomimetic activity;
- c) Pass through blood-brain barrier;
- d) Dilate coronary vessels;
- e) Can be used for relief of angina attacks.

2. Verapamil:

- a) Can be applicated to treat vasospastic (or variant) angina pectoris;
- b) Speed up the conduction through the AV node;
- c) Increase the heart rate;
- d) Dilate all vessels except coronary;
- e) Is used for relief of angina attacks.

3. Mechanism of antianginal effect of isosorbide mononitrate:

- a) Blocks the calcium channels;
- b) Activates the potassium channels;
- c) Release of nitric oxide (NO);
- d) Blocks β -adrenergic receptors;
- e) Blocks α-adrenergic receptors.

4. Define the antianginal drugs:

- a) Metoprolol;
- c) Isosorbide mononitrate;
- e) Indapamide;

- b) Clonidine;
- d) Enalapril;

f) Amlodipin.

5. β-adrenergic antagonists:

- a) Dilate coronary vessels;
- b) Dilate large veins, decrease the amount of blood returned to the heart;
- c) Increase the myocardial oxygen supply;
- d) Decrease the myocardial oxygen demand;
- e) Decrease heart rate and contractility.

6. Propranolol:

- a) Selective β_1 -adrenoreceptor blockers;
- b) Antagonist with intrinsic sympathomimetic activity;
- c) Can cause bronchospasm;
- d) Passes into CNS, causes depression;
- e) Dilates coronary vessels.

7. Metoprolol:

a) Cardioselective β -adrenergic antagonist;

- b) Passes through blood-brain barrier; c) Dilates coronary vessels; d) Does not change heart rate; e) Causes «coronary steal phenomenon». 8. Side-effects of propranolol: a) Disturbance of atrioventricular conduction; b) Bronchospasm; c) Depression, sedation, sleeplessness; d) An increase in blood pressure; e) An increase in intraocular pressure. 9. The preload and the afterload are decreased by: a) Metoprolol; c) Nitroglycerin; e) Trinitrolong. d) Isosorbide mononitrate; b) Verapamil; 10. Reflex tachycardia is caused by: a) Isosorbide dinitrate; c) Nifedipine; e) Amlodipin. d) Verapamil; b) Metoprolol; 11. Atrioventricular conduction can be disturbed by: a) Nitroglycerin; c) Verapamil; e) Molsidomine. b) Atenolol; d) Trimetazidine; 12. Amlodipin: a) Is vasodilating calcium channel blocker; b) Has antiarrhythmic activity; plasma concentrations of very-low-density c) Causes increased lipoproteins; d) Has antihypertensive activity; e) Can cause reflex tachycardia. a) Is a nicotinamide nitrate ester; b) Decreases the preload and afterload;
- 13. Nicorandil:

 - c) Potassium channels activator;
 - d) Is the first-line drug for relief of angina attack;
 - e) Blocks β-adrenergic receptors.

14. Common properties of propranolol and verapamil:

- a) Decrease force of myocardial contraction;
- b) Decrease myocardial oxygen demand;
- c) Cause coronary steal phenomenon;
- d) Inhibit atrioventricular conduction;
- e) Can cause bronchospasm.

15. First-line drugs for pain relief in case of myocardial infarction:

- a) Morphine: c) Fentanyl; e) Validol.
- b) Metamizole; d) Keterolac;

DRUGS USED FOR THE TREATMENT OF HEART FAILURE

1. ACE inhibitors are the first-line drugs in the treatment of chronic heart failure because of:

- a) Retard remodeling and cardiac hypertrophy;
- b) Deftly manage with control of drug plasma concentration;
- c) Improvement of pump heart function, that's why improvement of clinical symptoms;
 - d) High tolerability and low cost;
 - e) They can be applied one time a day.

2. The main benefit of β -adrenergic antagonists in the treatment of chronic heart failure:

- a) Reduction of heart remodeling and improvement of prognosis;
- b) Improvement of clinical symptoms and quality of life;
- c) An increase of pump heart function;
- d) High tolerability and low cost;
- e) Monotherapy.

3. Correct assumptions about diuretic usage in the treatment of chronic heart failure:

- a) Indication is clinical symptoms of congestion (start with class II failure);
- b) Loop diuretics are prefer;
- c) Reduce the heart remodeling;
- d) Improve the prognosis because retard the progress of chronic heart failure;
 - e) Pulse-therapy is effective only.

4. The main groups of drugs in the treatment of chronic heart failure:

- a) Renin-angiotensin system inhibitors;
- d) β-adrenergic antagonists;

b) Diuretic drugs;

e) Vasodilators;

c) Cardiac glycosides;

f) Calcium channel blockers.

5. Miscellaneous groups of drugs in the treatment of chronic heart failure:

- a) Cytoprotective agents;
- d) β-adrenergic antagonists;

b) Diuretic drugs:

- e) Vasodilators;
- c) Antiplatelet drugs;
- f) Calcium channel blockers.

6. For the following ACE inhibitors improvement of prognosis in the treatment of chronic heart failure are provided:

- a) Trandalopril;
- c) Enalapril;
- e) Lisinopril;

- b) Captopril;
- d) Ramipril;
- f) Fosinopril.

7. Potassium chloride is indicated in the treatment of digoxin toxicity because of:

a) High level of potassium inhibits glycoside's binding to Na⁺-K⁺-ATPase;

- b) High level of potassium induces glycoside's binding to Na⁺-K⁺-ATPase;
 - c) High level of potassium increases Ca²⁺ level in myocyte cells;
 - d) High level of potassium induces conduction from atriums to ventricles;
- e) Potassium chloride is counter-indicated in the treatment of digoxin toxicity.

8. Effects of the treatment of chronic heart failure with cardiac glycosides:

a) Improve of prognosis;

- d) Improve quality of life;
- b) Slow down the progression of disease; e) Extend life span.
- c) Clinical benefits;

9. Angiotensin-converting-enzyme inhibitors with long-term action (can be applicated one time a day):

- a) Captopril;
- c) Lisinopril;
- e) Trandolapril.

- b) Amlodipine;
- d) Ramipril;

10. Cardioselective β -adrenergic antagonists:

- a) Bisoprolol;
- c) Carvedilol;
- e) Atenolol.

- b) Metoprolol;
- d) Propranolol;

11. Drugs increasing myocardial contractility and are phosphodiesterase inhibitors:

- a) Dopamine;
- c) Milrinone;
- e) Vesnarinone.

- b) Dobutamine;
- d) Enoximone;

12. Effective measures in the treatment of digoxin toxicity are:

- a) Infusion of unithiol;
- b) Infusion of potassium chloride;
- c) Treatment of AV-block with atropine;
- d) Treatment with ventricle arrhythmias with lidocaine;
- e) Renal dialysis;
- f) Infusion of drugs containing Ca²⁺.

13. Excess of dose over mean therapeutic dose of dopamine can cause:

- a) An increase in peripheral vascular resistance;
- b) A decrease in blood pressure;
- c) Arrhythmias;
- d) Tachycardia;
- e) Orthostatic collapse;
- f) Angina attack in patients with chronic heart failure.

14. Counter indications of cardiac glycosides:

- a) Tachyarrhythmical form of continuous arrhythmia;
- b) Heart failure;
- c) Supraventricular tachycardia;
- d) AV block;
- e) Ventricular extrasystole;
- f) Bradycardia.

15. Unithiol can be used in the treatment of digoxin toxicity because:

- a) Stimulates of function of troponin complex proteins in cardiomyocytes;
- b) Force the metabolism of glycosides in the liver;
- c) Derease the Ca²⁺ influx in cardiomyocytes;
- d) Recover the SH-groups of Na⁺-K⁺-ATPase in cardiomyocytes.

ANTIARRYTHMIC DRUGS

1. — This picture shows the change of action potential during the treatment of antiarrhythmic drugs of the class:

- a) IB;
- b) IA;
- c) IC;
- d) II;
- e) IV.

2. _____ This picture shows the change of action potential during the treatment of antiarrhythmic drugs of the class:

- a) IB;
- b) IA;
- c) IC;
- d) III;
- e) IV;

3. — This picture shows the change of action potential during the treatment of antiarrhythmic drugs of the class:

- a) IB;
- b) IA;
- c) IC;
- d) II;
- e) III.

This picture shows the change of action potential during the treatment of antiarrhythmic drugs of the class:

- a) IB;
- b) IA:
- c) IC:
- d) III;

This picture shows the change of action 5. potential during the treatment of antiarrhythmic drugs of the class:

- b) IA;
- c) IC; d) II;

6. Define correct assertions about antiarrhythmic drugs with class IV:

- a) By blocking voltage-gated sodium channels they slow the phase 0 of action potential;
 - b) They block calcium channels;
 - c) They slow conduction through SA and AV nodes;
- d) They facilitate the potassium channels gating, it leads to shortening of effective refractory period;
- e) They block β_1 -adrenergic receptors, it decreases automatism of SA and AV nodes.

7. Define correct assertions about antiarrhythmic drugs with class IA:

- a) By blocking voltage-gated sodium channels they slow the phase 0 of action potential;
- b) By blocking potassium channels they prolong repolarization and effective refractory period;
- c) They slow conduction through SA and AV nodes by blocking calcium channels;
- d) They facilitate the potassium channels gating, it leads to shortening of effective refractory period;
- e) They block β_1 -adrenergic receptors, it decreases automatism of SA and AV nodes.

8. Define correct assertions about antiarrhythmic drugs with class IB:

- a) By blocking voltage-gated sodium channels they slow the phase 0 of action potential;
- b) By blocking potassium channels they prolong repolarization and effective refractory period;
- c) They slow conduction through SA and AV nodes by blocking calcium channels;
- d) They facilitate the potassium channels gating, it leads to shortening of effective refractory period;
- e) They block β_1 -adrenergic receptors, it decreases automatism of SA and AV nodes.

9. Define correct assertions about antiarrhythmic drugs with class IC:

- a) By blocking voltage-gated sodium channels they slow the phase 0 of action potential;
- b) By blocking potassium channels they prolong repolarization and effective refractory period;
- c) They slow conduction through SA and AV nodes by blocking calcium channels:
 - d) They do not change the duration of effective refractory period;
- e) They block β_1 -adrenergic receptors, it decreases automatism of SA and AV nodes.

10. Define correct assertions about antiarrhythmic drugs with class II:

- a) By blocking voltage-gated sodium channels they slow the phase 0 of action potential;
- b) By blocking potassium channels they prolong repolarization and effective refractory period;
- c) They slow conduction through SA and AV nodes by blocking calcium channels;
 - d) They block β_1 -adrenergic receptors;
 - e) They decrease automatism of SA and AV nodes.

11. What antiarrhythmic drugs bind with voltage-gated sodium channels firmly?

- a) Antiarrhythmic drugs with class IA;
- b) Antiarrhythmic drugs with class IB;
- c) Antiarrhythmic drugs with class IC;
- d) All antiarrhythmic drugs with class I;
- e) Antiarrhythmic drugs with class I do not bind with sodium channels at all.

12. Antiarrhythmic drugs that dissociate from the channel with rapid kinetics are:

- a) Drugs with class IA;
- b) Drugs with class IB;
- c) Drugs with class IC;
- d) All antiarrhythmic drugs with class I;
- e) Antiarrhythmic drugs with class I do not bind with sodium channels at all.

13. Amiodarone:

- a) Blocks voltage-gated sodium channels (slows the phase 0 of action potential);
- b) By blocking potassium channels it prolongs repolarization and effective refractory period;
 - c) Blocks calcium channels;
- d) It facilitates the potassium channels gating, it leads to shortening of effective refractory period;
- e) It blocks β_1 -adrenergic receptors, it decreases automatism of SA and AV nodes.

14. Side effects of amiodarone:

- a) AV block;
- b) Dysfunction of thyroid gland;
- c) Corneal microdeposits;
- d) A gray-blue skin discoloration;
- e) Photosensibilization, photodermatitis;
- f) Arterial hypertension.

15. Side effects of drugs with class II:

- a) Bronchospasm;
- b) Bradycardia;
- c) An increase in blood pressure;
- d) AV block;
- e) Heart failure;
- f) An increase in intraocular pressure.

HORMONAL AND ANTI-HORMONAL DRUGS

1. Tetracosactide is effective stimulator of secretion of:

- a) Glucocorticoids;
- c) Thyroxine;
- e) Insulin.

- b) Androgenic steroids;
- d) Norepinephrine;

2. The excessive secretion of parathyroid hormone may cause:

- a) Exophtalm («bulging eyes»), tachycardia, raised body temperature;
- b) Apyretic tetanus, cataract, psychosis;
- c) Hypoglycemia, raised body temperature;
- d) Water retention, raised blood pressure, increase in glucose concentration;
 - e) Suppression of immune system.

3. Drug is applied in case of decreased level of thyroid hormones:

a) Propylthiouracil;

d) Teriparatide;

b) Thiamazole;

- e) Radioactive iodine.
- c) Levothyroxine sodium;

4. Antithyroid drugs are administered for the treatment of:

- a) Hypothyroid infantilism; d) l
 - d) Hypothyroid status;
- b) Congenital myxedema;
- e) Thyrotoxicosis.
- c) Loss of sexual power;

5. Hypoglycemic drugs that is the sulfonylurea derivate:

- a) Glybenclamide;
- c) Metformin;
- e) Gliclazide.

- b) Acarbose;
- d) Glucagon;

6. Select the correct assertion about calcitonin:

- a) It increases the calcium absorption from intestine;
- b) It increases a bone decalcination;
- c) It increases the calcium concentration in the blood plasma;
- d) Is administered in patients with acute hypocalcemia;
- e) Is applied in case of osteoporosis.

7. The following drugs are the hypothalamic hormones and their synthetic analogues:

- a) Thyrotropin;
- d) Octreotide;

b) Sermorelin;

e) Somatropin (growth hormone);

c) Oxytocin;

f) Gonadorelin.

8. Posterior pituitary lobe hormone drugs and their synthetic analogues are:

- a) Melatonin;
- c) Goserelin;
- e) Desmopressin.

- b) Oxytocin;
- d) Urofollitropin;

9. Correct assertion about desmopressin are:

- a) It is a vasopressin derivate;
- b) It has diuretic activity;
- c) Can be applied for labor induction;
- d) Is used in case of diabetes insipidus;
- e) Can be administered in patients with diabetes type II.

10. Properties of thiamazole:

- a) Inhibits the synthesis of thyroid hormones;
- b) Can be applied in case of hyperthyroid status;
- c) Can be administered in patients with hypothyroidism (goiter);
- d) Has goitrogenic activity;
- e) Inhibits the synthesis of thyrotropin alfa.

11. Mechanisms of hypoglycemic activity of insulin are:

- a) An increase in glucose uptake by insulin dependent tissue;
- b) An increase in peripheral glucose disposal;
- c) Activation of glycogenolysis;
- d) Induction of lipolysis;
- e) Inhibition of gluconeogenesis.

12. Side effects of insulin preparations are:

a) Loss of appetite;

d) Dyspeptic disturbances;

b) Hypoglycemia;

e) Arterial hypertension.

c) Allergic reactions;

13. Drug is used in patients with diabetes insipidus:

- a) Terlipressin;
- c) Desmopressin;
- e) Furosemide.

- b) Oxytocin;
- d) Urofollitropin;

14. Physiological insulin antagonists:

- a) Glucagon;
- c) Acarbose;
- e) Rosiglitasone.

- b) Epinephrin;
- d) Glucocorticoids;

15. Mechanism of action of biguanides:

- a) Inhibition of gluconeogenesis in the liver;
- b) Induction of insulin secretion by the β -cells of pancreas;
- c) An increase in glucose utilization by muscles and fat tissue;
- d) A decrease in glucose absorption in the intestine;
- e) Induction of glycogenolysis.

16. Put in the right order the action of steroid hormones:

- a) Activation of translation;
- d) Transport in the cell;
- b) Binding with specific receptors;
- e) Correlation with the genome;
- c) Transport in the nucleus;
- f) Induction of the transcription.

17. Gestagen drugs:

- a) Induce the ovulation;
- b) Inhibit the contractive activity of myometrium;
- c) Are used for the maintenance of pregnancy;
- d) Stimulate the development of secondary sex characteristics;
- e) Are applied in the contraceptive pills.

18. Estrogen drugs:

- a) Stimulate the development of secondary sex characteristics;
- b) Cause the hyperplasia of endometrium;
- c) Are applied in case of deficiency of ovarian function;
- d) Are in composition of combined contraceptive pills;
- e) Cause osteoporosis.

19. Put in the right order of action of steroid hormones:

- a) Correlation with the genome;
- b) Regulation of the transcription;
- c) Activation of translation;
- d) Transport in the cell;
- e) Binding with specific receptors in the cytoplasm of the cell;
- f) Transport the ligand-bound receptor complex in the nucleus.

20. Adverse effects of glucocorticoids are:

a) Behavioral changes, anxiety;

- b) Sleeplessness, acute psychosis;
- c) Weakness, apathy;
- d) A decrease in the convulsive threshold;
- e) Vestibulo-cochlear disoders.

21. Define the correct assertions about prednisolone:

- a) Supresses the synthesis of endogenous glucocorticoids;
- b) Has severe hypotension activity;
- c) More than half of dosage is applied in the morning if prednisolone is used as anti-inflammatory and anti-allergic drug;
- d) Applied dosage is uniformly distributed if prednisolone is used as antiinflammatory and anti-allergic drug;
 - e) Has immunostimulatory activity.

22. Mineralocorticoids have the following properties:

- a) Increase the reabsorption of sodium ions and water in the renal tubules;
- b) Increase the elimination of potassium ions;
- c) Increase the diuresis;
- d) Can cause the arterial hypertension;
- e) Can be applied in patients with Addison disease.

23. Set up a corresponds between groups:

a) Anabolic steroids;

d) Glucocorticoids;

b) Androgenes;

e) Mineralocorticoids.

c) Estrogenes;

and hormone drugs (each element in the right column can be used only once):

- 1. Testosterone;
- 4. Desoxycortone;
- 2. Diethylstibestrol;
- 5. Mometasone.

3. Nandrolone:

24. Glucocorticoids can be used as ... drugs:

a) Anti-allergic;

d) Catabolic;

b) Hyperglycemic;

- e) Immunosuppressive.
- c) Anti-inflammatory;

25. Side effects of glucocorticoids:

- a) Growth impairment in children;
- b) Menstrual disorders (secondary amenorrhea);
- c) Acceleration of sexual maturation;
- d) Disturbance of glucose tolerance;
- e) Hyperthyroidism.

26. Choose the correct assertions about tetracosactide:

- a) Is synthetic analogue of corticotrophin;
- b) Immunogenic activity is weak;
- c) Is administered in case of Cushing' syndrome;
- d) Is applied in patients with secondary adrenal insufficiency.

27. Select the side effects of glucocorticoids:

- a) Negative nitrogen balance; d) Raised appetite;
- b) Hypoglycemia; e) Obesity.
- c) Hyperlipidemia;

28. Properties of anabolic steroids:

- a) Inhibit the protein synthesis;
- b) Can be applied in case of cachexia (pantotrophia);
- c) Decrease the muscle mass;
- d) Are administered in case of osteoporosis;
- e) Can cause masculinization in women.

29. The following drug has intensed mineralocorticoid activity (sodium and water retention and intensification of potassium elimination):

- a) Dexamethasone; c) Momethasone; e) Methylprednisolone.
- b) Hydrocortisone; d) Prednisolone;

ANTI-INFLAMMATORY DRUGS

1. The main mechanism of anti-inflammatory action of NSAIDs:

- a) Stabilization of mast cell membranes, inhibition of the release of mediators of allergy and inflammation;
- b) Suppression of prostaglandin synthesis by inhibition of cyclooxygenase;
 - c) Suppression of prostaglandin synthesis by inhibition of phospholipase A2;
- d) Suppression lipoxygenase activity with reduced production of leukotrienes:
 - e) Destruction of mediators of inflammation.

2. The main side effects of nonselective cyclooxygenase inhibitors are:

- a) Ulceration of the gastrointestinal tract;
- b) Immunosuppression;
- c) Inhibition of kidney function (nephrotoxic effect);
- d) Cardiotoxic action;
- e) Impairment of protein, fat and carbohydrate metabolism.

3. The main pharmacodynamic effects of non-steroidal anti-inflammatory drugs are:

- a) Antipyretic; d) Analgesic;
- b) Anabolic; e) Immunosuppressive;
- c) Anti-inflammatory; f) Immunostimulatory.

4. Select NSAIDs with low selectivity for COX-2:

- a) Indomethacin; b) Celecoxib;
- c) Acetylsalicylic acid (analgesic and antipyretic doses);
- d) Naproxen;

- e) Valdecoxib;
- f) Diclofenac.

5. Features of celecoxib:

- a) It is equally inhibits COX-1 and COX-2;
- b) Has weak ulcerogenic effect;
- c) There is a risk of thromboembolic cardiovascular complications;
- d) Is less potent than acetylsalicylic acid for anti-inflammatory efficacy;
- e) Abnormal liver function requires correction dosing regimen.

6. Features are typical for non-steroidal anti-inflammatory drugs:

- a) Poor tolerability;
- b) Suppression of inflammation of any nature;
- c) Combination of anti-inflammatory, analgesic and antipyretic action;
- d) Reduction of the production of endogenous glucocorticosteroids;
- e) Inhibition of cyclooxygenase activity.

7. Features of salicylates:

- a) Have a gastrotoxic effect;
- b) Causes hyperglycemia;
- c) In low doses, platelet aggregation is inhibited;
- d) May cause bronchospasm;
- e) Suppress the migration of phagocytes to the focus of inflammation, inhibit phagocytosis.

8. Steroidal anti-inflammatory drugs:

- a) Suppress the production of endogenous glucocorticosteroids;
- b) Have an immunosuppressive effect;
- c) Only have anti-inflammatory, analgesic and antipyretic effects;
- d) Causes ulceration of the gastrointestinal tract;
- e) Block the synthesis of inflammatory mediators.

9. Specify the effects of steroidal anti-inflammatory drugs:

- a) Anti-inflammatory;
- d) Anti-allergic;
- b) Immunostimulatory;
- e) M-cholinoblocking.
- c) Immunosuppressive;

${\bf 10.\,Mechanism\,\,of\,\,anti-inflammatory\,\,effect\,\,of\,\,glucocorticosteroids:}$

- a) Decrease in the synthesis of prostaglandins and leukotrienes due to inhibition of the activity of phospholipase A2;
- b) Selective suppression of prostaglandin synthesis, due to inhibition of cyclooxygenase activity;
 - c) Inhibition of COX-2 production;
- d) Suppression of cellular mechanisms of inflammation (impairment of migration of macrophages and neutrophils in the focus of inflammation);
- e) Immunosuppressive action disturbance of proliferation and differentiation of immunocompetent cells, antibodies, cytokines, inflammatory mediators.

11. Beclomethasone:

- a) Glucocorticosteroid for topical application;
- b) Glucocorticosteroid for systemic use;
- c) Inhibition of the synthesis of endogenous glucocorticosteroids is significant;
 - d) Used in aerosol dosage forms;
 - e) It is used for the treatment of bronchial asthma and vasomotor rhinitis.

12. Features of prescribing glucocorticosteroids as anti-inflammatory and antiallergic agents:

- a) Most of the daily dose is prescribed in the morning hours;
- b) Most of the daily dose is prescribed in the evening hours;
- c) The daily dose is evenly distributed;
- d) Cancel gradually, slowly lowering the dose;
- e) Canceled at the same time.

13. Irreversible consequences of GCS application:

- a) Reduced resistance to infections;
- d) Teratogenic effect;
- b) Deceleration of tissue regeneration;
- e) Steroid diabetes.

c) Subcapsular cataract;

14. Mechanism of anti-gout action of allopurinol:

- a) Inhibition of reabsorption of uric acid in renal tubules;
- b) Disruption of biosynthesis of uric acid from hypoxanthine;
- c) Suppression of phagocytosis and ejection of inflammatory mediators;
- d) Acceleration of biotransformation of uric acid;
- e) Covalent binding and excretion of uric acid.

15. Mechanism of anti-gout action of sulfinpyrazone:

- a) Inhibition of xanthine oxidase;
- b) Enhancement of uric acid secretion in renal tubules;
- c) Decrease in reabsorption of uric acid in renal tubules;
- d) Acceleration of biotransformation of uric acid;
- e) Covalent binding and excretion of uric acid.

ANTI-ALLERGIC DRUGS. DRUGS AFFECTING THE RESPIRATORY SYSTEM

1. Effects of antihistamines of the 1st generation:

- a) Antiemetic effect;
- b) Sedative effect on the central nervous system;
- c) Potentiation the action of drugs for general anesthesia, opioid analgesics and anesthetics;
 - d) Stimulation of peristalsis;
 - e) Constriction of small arterioles.

2. Distinctive	features	of	antihistamines	of	the	2nd	generation	from	the	1st
generation:										

- a) High selectivity to H₁-histamine receptors;
- b) Long duration of action;
- c) Less pronounced sedative effect;
- d) Less chance of the development of tolerance;
- e) Minor efficiency;
- f) Reduce glucose tolerance.

3. Side effects of antihistamines of the 1st generation associated with their M-cholinoblocking action:

a) Dry mouth;

- d) Bradycardia;
- b) Urine retention;
- e) Paralysis of accommodation;
- c) Constipation;
- f) Activation of catabolism.

4. Most probable side-effects after parenteral administration of antihistamines:

- a) Hypotension;
- d) Bradycardia;
- b) Tachycardia;
- e) Tachycardia with hypertension;
- c) Hypertension;
- f) Tachycardia with hypotension.

5. The most suitable medicines for the treatment of mild allergic reactions of immediate type (pruritus, urticaria):

- a) Epinephrine;
- d) Clemastine;
- b) Cromoglycic acid;
- e) Prednisolone;
- c) Diphenhydramine;
- f) Loratadine.

6. Set correspondence between groups

- a) Histamine receptor antagonist;
- b) Inhibitor of the action of mediators of allergy;
- c) Interleukins:
- d) Stabilizers of mast cell membranes;
- e) Leukotriene receptor antagonists;

and drugs

1) Diphenhydramine;

Nedocromil;

2) Zafirlukast;

Fenspiride.

3) Betaleikin:

7. Specify antihistamines without M-cholinoblocking action:

- a) Difenhydramine;
- d) Fexofenadine:

b) Loratadine;

- e) Desloratadine.
- c) Promethazine;

8. Specify antihistamines, which can be taken once a day:

a) Clemastine;

d) Diphenhydramine;

b) Loratidine:

e) Cetirizine.

c) Hifenadine;

9. Restore the mechanism of development of a delayed-type allergic reaction:

- a) Production of interleukin-1 by macrophages;
- b) Antigen killing, topical repair (or progression of immune inflammation);
 - c) Induction of transformation of T-lymphocytes into effector cells;
 - d) Antigen receipt, its recognition and capture by macrophages;
 - e) The interaction of effector cells with other immune cells;
- f) Assignment of mediators of allergy and inflammation, attraction of immunocompetent cells to the outbreak;
 - g) Activation of T-helpers;
 - h) Production of interleukin-2 by T-helpers.

10. Restore the mechanism of development of an allergic reaction of an immediate type:

- a) Primary recognition of antigen by immunocompetent cells;
- b) Interaction of antigen with mast cells having specific sites of its binding;
 - c) Clinical manifestations of an allergic reaction of immediate type;
- d) Degranulation of the mast cell with the release of mediators of allergy and inflammation;
- e) Production of antibodies (IgE) and its presentation on the surface of mast cells;
 - f) Second contact with antigen.

11. Drugs for treatment of delayed-type allergic reactions:

- a) Preparations of gold;
- b) Glucocorticoids;
- c) Leukotriene receptor antagonists;
- d) Inhibitors of proliferation;
- e) Stabilizers of mast cell membranes;
- f) Penicillamine; g) Antihistamines.

12. Restore the molecular mechanism of action of methotrexate

- a) Antagonism with folic acid;
- b) Inhibition of differentiation and proliferation of immunocompetent cells;
- c) Improvement of clinical symptoms;
- d) Immunosuppression, inhibition of remodeling of connective tissue;
- e) Inhibition of the synthesis of nucleic acids and proteins.

13. Restore the sequence of actions to assist in anaphylactic shock:

- a) Administration of glucocorticosteroids, preferably intravenously;
- b) Discontinuation of the ingestion of an allergen (epinephrine topically);
- c) Symptomatic therapy (bronchodilators, pacemakers, antihistamines, respiratory analeptics, etc.);
- d) Maintenance of systemic arterial pressure and work of the heart (epinephrine systemically).

14. The 1	mechanism of anti-a	allergic effect of glucocor	ticoids:				
	Reduction of immur						
b)	Bockade of histamia	ne receptors;					
c)	Stabilization of mas	st cell membranes;					
d)	A decrease in the sy	nthesis of immunoglobuli	ns;				
e)	Suppression of mig	ration of immunocompeter	nt cells.				
15. Zafir	lukast:						
a)	Reduces vascular permeability;						
b)	Suppresses bronchia	al secretion and reduces th	e viscosity of sputum;				
c)	It is used for the rela	ief of bronchospasm;					
d)	Reduces the swellin	g of the bronchial mucosa	;				
	Is a leukotriene rece	-					
f)	f) It is an antihistamine drug of the 1st generation.						
16. This	drug dilates the bro	onchi by reducing parasy	mpathetic effects:				
		c) Atropine;	e) Salmerotol.				
b)	Epinephrine;	d) Isoprenaline;					
17. This	drug has a bron	chodilator effect due t	o stimulation of beta2-				
adrenor	eceptors:						
a)	Aminophylline;	c) Iprorotropium;	e) Montelukast.				
b)	Beclomethasone;	d) Isoprenaline;					
18. This	drug has a brone	chodilator effect by sup	pressing the release of				
	rs of allergy:						
	Cromoglycic acid;	c) Atropine;	e) Salmerotol.				
b)	Epinephrine;	d) Isoprenaline;					
19. The a	antitussive drugs in	clude:					
	Cromoglycic acid;	_	e) Beclomethasone.				
b)	b) Epinephrine; d) Dextromethorphan;						
20. For t	he relief of broncho	spasm is used:					
a)	Epinephrine; c) Salmerotol; e) Acetylcysteine.						
b)	Cromoglycic acid;	d) Tiotropium;					
21. For t	he prevention of br	onchospasm used:					
a)) Epinephrine; d) Salbutamol (in aerosol);						
b)	Isoprenaline; e) Atropine.						
c)	Salmeterol;						
22. A sid	e effect of adrenerg	gic bronchodilators is:					
	d) Tachycardia; d) Bronchospasm;						
	b) Bradycardia; e) Peripheral vasospasm.						
	Increased blood pre						
22 Cally	itamal is contraind	icated in.					

23. Salbutamol is contraindicated in:

a) Atrioventricular blockade; d) Bronchospasm;

b) Extrasystoles; e) Anaphylactic shock.

c) Preterm labor activity;

24. Bronchodilators from the M-cholinoblockers group are contraindicated in:

- a) Bradycardia; d) Diarrhea;
- b) Atrioventricular blockade; e) Hyperacid gastritis.
- c) Glaucoma;

25. Side effects of topical application of glucocorticosteroids in the treatment of pulmonary diseases:

- a) Reduced tolerance to the respiratory tract infections;
- b) Increased resistance to respiratory infections;
- c) Hypoglycaemia;
- d) Complete adrenal insufficiency;
- e) Atrophy of bronchial mucosa.

26. Acetylcysteine:

- a) Reflexively stimulates the secretion of the bronchial glands;
- b) Has a direct stimulating effect on bronchial glands;
- c) Reduces the viscosity of sputum due to destruction of disulfide bonds of proteoglycans;
 - d) Inhibits cough reflex;
 - e) Relaxes the smooth muscles of the bronchi.

27. Therapeutic action of ganglionic blockers at pulmonary edema caused by:

- a) Tissue dehydration;
- b) Diuretic effect;
- c) Anti-inflammatory effect;
- d) Reduce the pressure in the pulmonary circulation;
- e) Reduce the load on the heart.

28. Drugs with bronchodilator action:

- a) M-cholinoblockers; d) Beta-blockers;
- b) M-cholinomimetics; e) Beta-agonists.
- c) Ganglio-blockers;

29. Unlike atropine, ipratropium bromide:

- a) Selectively blocking m-cholinergic receptors of the bronchi;
- b) It is used only by inhalation;
- c) Has a slight resorptive effect;
- d) Does not affect the secretion of bronchial glands;
- e) Contraindicated in glaucoma.

30. Codeine:

- a) Inhibits the cough reflex;
- b) Reduces the tone of the muscles of the bronchi;
- c) Has analgesic properties;
- d) Has a sedative effect;
- e) May induce drug dependence;
- f) Stimulates intestinal motility.

31. The following statements are true:

- a) Propranolol can cause bronchospasm;
- b) Salbutamol causes tachycardia;
- c) Blockers of H₁-histamine receptors used in the treatment of allergic rhinitis;
 - d) Codeine does not have analgesic activity;
- e) Prolonged use of α -adrenergic agonists leads to the development of rhinitis.

32. Principles of pharmacotherapy of pulmonary edema:

- a) Pressure reduction in the pulmonary circulation;
- b) Stimulation of the center of breathing;
- c) Suppressing the foaming of the transudate;
- d) Elimination of hypoxia;
- e) Dehydration of respiratory tract tissues;
- f) Inhibition of the cough center.

33. Medications used to treat bronchial asthma:

- a) Blockers of leukotriene receptors;
- b) Blockers release of mediators of allergy from mast cells;
- c) Beta-adrenoreceptor agonists;
- d) Alpha-adrenoreceptor agonists;
- e) Local decongestants;
- f) Glucocorticosteroids.

34. For the treatment of bronchial asthma use:

a) Bemegrid;

d) Tiotropium;

b) Salmeterol;

- e) Zafirlukast;
- c) Beclomethasone:
- f) Xylometazoline.

35. The allergic component in bronchial asthma is suppressed by:

a) Tiotropium;

d) Theophylline;

b) Salbutamol;

e) Budesonide:

c) Nedocromil;

f) Ketotifen.

SYNTHETIC ANTIMICROBIAL DRUGS

1. Mechanism of action of sulfonamides:

- a) Drug molecules are reduced by anaerobic microbes to metabolites interfering with nucleic acid replication;
- b) Inhibition of nucleic acid replication, complexation with microbial metalloenzymes;
 - c) Folic acid synthesis inhibition in bacterial cells;
- d) Nitro-group of the drugs is reduced by anaerobic microbes and protozoic cells to metabolites causing DNA damage;
 - e) Bacterial topoisomerase II (DNA-gyrase) and IV inhibition.

2. Sulfonamides are

- a) Bacteriostatic; c) Fungicidal;
- b) Bactericidal; d) Virucidal.

3. Trimethoprim is:

a) Bacteriostatic;b) Bactericidal;c) Fungicidal;d) Virucidal.

4. Co-trimoxazole is:

- a) Bacteriostatic; c) Fungicidal;
- b) Bactericidal; d) Virucidal.

5. Sulfonamides may cause:

- a) Bone marrow depression (anemia, leucopenia);
- b) Hearing loss and visual disturbances;
- c) Allergic reactions;
- d) Cristaluria and nephrolithiasis;
- e) Dyspepsia, hepatotoxicity.

6. Co-trimoxazole may cause:

- a) Bone marrow depression (neutropenia, anemia, thrombocytopenia);
- b) Nausea, vomiting, glossitis, stomatitis;
- c) Thrombosis;
- d) Allergic reactions (rash, Stevens-Johnson syndrome);
- e) Tachyarrhythmia.

7. Phtalylsulfathiazole is used only for the treatment of intestinal infections (bacterial dysentery, enterocolitis) because:

- a) It is superior to other sulfonamides in its activity against intestinal pathogens;
 - b) Almost is not absorbed in GIT;
 - c) Decreases intestinal peristalsis;
 - d) Restores intestinal microflora;
 - e) Well absorbed in GIT, excreted with bile.

8. Co-trimoxazole:

- a) Is bacteriostatic;
- b) Is bactericidal;
- c) Is inferior to other sulfonamides in its spectrum of activity;
- d) Has a wider range of activity than sulfonamides;
- e) Comparing to sulfonamides bacterial resistance develops more slowly.

9. Antimicrobial spectrum of co-trimoxazole:

- a) Has a broader spectrum of activity than sulfonamides;
- b) Nocardia spp., Moraxella spp., Pneumocysts;
- c) Toxoplasma spp., Haemophilus influenzae;
- d) Pseudomonas aeruginosa;
- e) Mycobacterium tuberculosis;
- f) Mycoplasma spp., Rickettsia spp.

10. Antimicrobial spectrum of sulfonamides:

- a) Extremely broad;
- b) Relatively narrow;
- c) Toxoplasma spp, Haemophilus influenzae;
- d) Shigella spp., Staphylococcus spp. (most strains);
- e) Treponema pallidum;
- f) Most fluoroquinolone-resistant microbes.

11. Mechanism of action of 8-oxyquinoline derivatives:

- a) Drug molecules are reduced by anaerobic microbes to metabolites interfering with nucleic acid replication;
- b) Inhibition of nucleic acid replication, complexation with microbial metalloenzymes;
 - c) Folic acid synthesis inhibition in bacterial cells;
- d) Nitro-group of the drugs is reduced by anaerobic microbes and protozoic cells to metabolites causing DNA damage;
 - e) Bacterial topoisomerase II (DNA-gyrase) and IV inhibition.

12.8-Oxyquinoline derivatives are:

a) Nitroxoline;

- d) Chlorquinaldol;
- b) Nalidixic acid;
- e) Furazolidone.
- c) Metronidazole;

13. Quinolones are:

- a) Nalidixic acid;
- c) Oxolinic acid;
- e) Trimethoprim.

- b) Lomefloxacin;
- d) Fusidic acid;

14. Fluoroquinolones are:

- a) Norfloxacin;
- c) Metronidazole;
- e) Lomefloxacin.

- b) Ciprofloxacin;
- d) Ofloxacin;

15. Mechanism of action of fluoroquinolones:

- a) Drug molecules are reduced by anaerobic microbes to metabolites interfering with nucleic acid replication;
- b) Inhibition of nucleic acid replication, complexation with microbial metalloenzymes;
 - c) Folic acid synthesis inhibition in bacterial cells;
- d) Nitro-group of the drugs is reduced by anaerobic microbes and protozoic cells to metabolites causing DNA damage;
 - e) Bacterial topoisomerases II (DNA-gyrase) and IV inhibition.

16. Fluoroquinolones are:

a) Bacteriostatic;

c) Fungicidal;

b) Bactericidal;

d) Virucidal.

17. Fluoroquinolones may cause:

- a) Anorexia, nausea, vomiting, alteration in taste;
- b) Nephritis, nephrolithiasis;
- c) Allergic reactions (rash, angioedema), photosensitization;

- d) Headache, vertigo, sleep disorder;
- e) Tendinitis, juvenile arthropathy.

18. Nitroxoline:

- a) Has a broad spectrum of activity;
- b) Affects only gram-negative bacteria;
- c) Almost is not absorbed from GIT, that is why it is used for intestinal infections:
- d) Well absorbed from GIT, eliminated by renal excretion as unchanged drug, used for treating urinary infections;
 - e) Is bacteriostatic.

19. Antimicrobial spectrum of fluoroquinolones:

- a) Broad;
- b) Narrow, only gram-negative bacteria are sensitive;
- c) Narrow, only gram-positive bacteria are sensitive;
- d) Treponema pallidum;
- e) Chlamydia, mycoplasma;
- f) Mycobacterium tuberculosis.

20. Ciprofloxacin:

- a) Has a broad spectrum of activity;
- b) Affects only gram-positive bacteria;
- c) Is used for intestinal infections (typhoid fever, paratyphoid fever, dysentery);
 - d) Well absorbed from GIT, passes through BBB;
 - e) Contraindicated in pregnant and nursing women.

21.5-Nitroimidazole derivatives are:

- a) Norfloxacin;
- c) Metronidazole;
- e) Nitrofurantoin.

- b) Nalidixic acid;
- d) Tinidazole;

22. Mechanism of action of 5-nitroimidazole derivatives:

- a) Drug molecules are reduced by anaerobic microbes to metabolites interfering with nucleic acid replication;
- b) Inhibition of nucleic acid replication, complexation with microbial metalloenzymes;
- c) Nitro-group of the drugs is reduced by anaerobic microbes and protozoic cells to metabolites causing DNA damage;
 - d) Bacterial topoisomerase II (DNA-gyrase) and IV inhibition.

23. 5-Nitroimidazole derivatives are:

- a) Bacteriostatic;
- c) Fungicidal;
- b) Bactericidal;
- d) Virucidal.

24.5-Nitroimidazole derivatives may cause:

- a) Nausea, vomiting, stomatitis, metallic taste;
- b) Hepatitis, liver cirrhosis;
- c) Allergic reactions (rash, angioedema);

- d) Urine discoloration (reddish-brown);
- e) Disulfiram-like reactions when taken together with alcohol.

25. Antimicrobial spectrum of 5-nitroimidazole derivatives:

- a) Affect only aerobic bacteria;
- d) Amoebae;
- b) Anaerobic bacteria;
- e) Trichomonas spp.;

c) Ultra-broad;

f) Lamblia spp.

26. Nitrofurans are:

- a) Nitrofurantoin;
- c) Fusidic acid;
- e) Furazolidone.

b) Tinidazole;

d) Ofloxacin;

27. Nitrofurans may cause:

- a) Headache, nausea, vertigo;
- b) Malignant hyperthermia;
- c) Peripheral neuropathy;
- d) Bone marrow depression (anemia, leucopenia);
- e) Liver injury (hepatitis, cholestasis).

28. Antimicrobial spectrum of nitrofurans:

- a) Anaerobic bacteria;
- b) Broad:
- c) Escherichia coli, Shigella spp., Salmonella spp., Vibrio cholera;
- d) Pseudomonas aeruginosa, Proteus spp., Klebsiella spp.;
- e) Trichomonas spp.;
- f) Lamblia spp.

ANTIBIOTICS, PART I

1. Antimicrobial combination therapy is used:

- a) For the prevention of resistant bacterial strains development;
- b) To enhance antimicrobial effect;
- c) To broaden antibacterial spectrum of activity;
- d) To enhance antimicrobial effect of a bacteriostatic antibiotic it is necessary to add bactericidal one;
 - e) To decrease the toxicity of certain antibiotics.

2. The most common causative agents of superinfections:

a) Clostridium difficile;

d) Chlamydia;

b) Candida fungi;

- e) Pseudomonas aeruginosa.
- c) Mycobacterium tuberculosis;

3. The causes of antibiotic therapy inefficiency:

- a) Resistance of a pathogen to antibiotics;
- b) Concurrent administration of vitamins;
- c) Viral infections;
- d) Dosage regime violation;
- e) Incorrect antibiotic combinations.

4. Basic principles of chemotherapy:

- a) Early start of chemotherapy;
- b) Pathogen identification;
- c) In life-threatening conditions broad-spectrum antibiotics may be used before pathogen identification has been completed;
 - d) Full-course of chemotherapy unless pathogen eradication is achieved;
 - e) Carry out chemotherapy until symptoms have resolved;
 - f) The use of the most effective and safest antimicrobial drugs;
- g) Combination chemotherapy to increase the efficacy of the treatment or minimize the development of antibiotic resistant microbes.

5. Beta-Lactam antibiotics interfere with:

- a) Cell wall synthesis;
- b) Plasma membrane permeability;
- c) Protein synthesis on ribosomes;
- d) RNA synthesis;
- e) All listed variants.

6. Benzylpenicillin preparations typically cause:

- a) Agranulocytosis;
- b) Anemia;
- c) Allergic reactions;
- d) Hearing loss and vestibular disturbances;
- e) Nephrotoxicity;
- f) Dysbacteriosis.

7. Penicillins show little activity or ineffective against:

- a) Treponema pallidum;
- b) Actively growing bacterial cells;
- c) Meningococci;
- d) Resting bacterial cells.

8. First-line antibiotic for the treatment of infections caused by Pseudomonas aeruginosa:

a) Benzylpenicillin;

d) Erythromycin;

b) Piperacillin;

e) Tetracycline.

c) Chloramphenicol;

9. First-line antibiotic for the treatment of meningococcal meningitis:

a) Amphotericin B;

d) Streptomycin;

b) Benzylpenicillin sodium salt;

e) Nystatin.

c) Chloramphenicol;

10. Most appropriate antibiotic for treating infections in pregnancy:

a) Streptomycin;

c) Benzylpenicillin;

e) Chloramphenicol.

b) Tetracycline;

d) Gentamicin;

11. Identify the correct statements about cephalosporins:

a) Cephalosporins are bactericidal towards multiplying bacteria;

- b) Both cephalosporins and penicillins have the same spectrum of activity;
- c) There is cross-sensitivity between penicillins and cephalosporins;
- d) Cephalosporins are resistant to staphylococcal beta-lactamases (1st and 2nd generation), gram-negative bacteria (3rd and 4th generation).

12. Most active drugs against Pseudomonas spp.:

- a) First-generation cephalosporins;
- b) Second-generation cephalosporins;
- c) Third-generation cephalosporins;
- d) Fourth-generation cephalosporins.

13. The greatest ability to penetrate into the cerebrospinal fluid is for:

- a) First-generation cephalosporins;
- b) Second-generation cephalosporins;
- c) Third-generation cephalosporins;
- d) Fourth-generation cephalosporins.

14. Characteristic features of aztreonam:

- a) Has a narrow spectrum of activity;
- b) Is inactivated by beta-lactamases;
- c) Resistant to beta-lactamases;
- d) Inhibits RNA synthesis on ribosomes;
- e) Inhibits microbial cell wall synthesis;
- f) Is administered orally;
- g) Is administered parenterally.

15. Characteristic features of imipenem:

- a) Has a narrow spectrum of activity;
- b) Has a broad spectrum of activity;
- c) Is bacteriostatic;
- d) Is bactericidal;
- e) Inhibits RNA synthesis on ribosomes;
- f) Inhibits microbial cell wall synthesis;
- g) Is inactivated by beta-lactamases;
- h) Resistant to beta-lactamases;
- i) Is administered orally;
- j) Is administered parenterally.

ANTIBIOTICS, PART II

1. Characteristic features of tetracyclines:

- a) Have a broad spectrum of activity;
- b) Affect predominantly gram-negative bacteria;
- c) Are bactericidal;
- d) Are bacteriostatic;

- e) Slow resistance development;
- f) Fast resistance development;
- g) Inhibit protein synthesis on ribosomes;
- h) Inhibit cell wall synthesis.

2. Tetracyclines are the drugs of choice for:

- a) Coccal infections; f) Typhoid fever;
- b) Bacillary dysentery; g) Syphilis;
- c) Brucellosis; h) Cholera;
- d) Tularemia; i) Plague;
- e) Rickettsial infections; j) Typhoid fever.

3. Tetracyclines may cause:

- a) Anemia; e) Liver injury;
- b) Dyspepsia;c) Hearing loss;f) Allergic reactions;g) Visual disturbances.
- d) Dysbacteriosis;

4. Characteristic features of chloramphenicol:

- a) Has a broad spectrum of activity;
- b) Affects predominantly gram-positive bacteria;
- c) Is bactericidal;
- d) Is bacteriostatic;
- e) Slow resistance development;
- f) Fast resistance development.

5. Chloramphenicol is the drug of choice for:

- a) Typhoid fever and other salmonellosises;
- b) Coccal infections;
- c) Spotted fever and other rickettsial infections;
- d) Cholera;
- e) Bacillary dysentery;
- f) Amebial dysentery.

6. Chloramphenicol may cause:

- a) Agranulocytosis; c) Collapse; e) Dysbacteriosis;
- b) Anemia; d) Hearing loss; f) Allergic reactions.

7. Characteristic features of streptomycin:

- a) Has a broad spectrum of activity;
- b) Affects predominantly gram-positive bacteria;
- c) Is bactericidal;
- d) Is bacteriostatic;
- e) Interferes with mRNA attachment and causes misreading of the genetic code;
 - f) Interferes with plasma membrane permeability;
 - g) Well absorbed from GIT;
 - h) Poorly absorbed from GIT.

8. Streptomycin is the drug of choice for:

a) Tuberculosis;

e) Bacillary dysentery;

b) Typhoid fever;

f) Syphilis;

c) Plague;

g) Gonorrhea.

d) Tularemia;

9. Streptomycin may cause:

a) Allergic reactions;

e) Vestibular disturbances;

b) Anemia;

f) Dysbacteriosis;

c) Liver injury;

g) Kidney injury.

d) Hearing loss;

10. Neomycin is used for:

- a) Wound infections, phlegmon, abscesses caused by Staphylococci, Streptococci and Pseudomonas aeruginosa;
 - b) Rickettsial infections;
 - c) Tuberculosis;
 - d) Candidiasis;
 - e) Bowel preparation before surgery.

11. Third generation aminoglycosides are:

a) Streptomycin;

e) Gentamicin;

b) Tobramycin;

f) Netilmycin;

c) Neomycin;

g) Amikacin.

d) Kanamycin;

12. Characteristic features of polymyxins:

- a) Have a broad spectrum of activity;
- b) Affect predominantly gram-negative bacteria;
- c) Are bactericidal;
- d) Are bacteriostatic;
- e) Interfere with plasma membrane structure and functioning;
- f) High efficacy against intracellular pathogens;
- g) Active against Pseudomonas aeruginosa.

13. Polymyxin B is used for:

- a) Syphilis;
- b) Pseudomonas aeruginosa caused infections;
- c) Tuberculosis;
- d) Bowel preparation before surgery;
- e) Rickettsial infections;
- f) Candidiasis.

14. Characteristic features of lincosamides:

- a) Have a broad spectrum of activity;
- b) Affect predominantly gram-positive bacteria;
- c) Inhibit cell wall synthesis;
- d) Inhibit protein synthesis on ribosomes;
- e) Acquired resistance develops rapidly;
- f) Drugs of choice for the treatment of osteomielitis.

15. Characteristic features of lincosamides:

- a) Have a broad spectrum of activity;
- b) Affect predominantly gram-positive bacteria;
- c) Are bacteriostatic;
- d) Are bactericidal;
- e) Acquired resistance develops slowly;
- f) Drugs of choice for treating osteomielitis.

16. Lincosamides may cause:

- a) Dyspepsia;
- b) Allergic reactions;
- c) Pseudomembranous colitis;
- d) Liver injury;
- e) Respiratory arrest (on fast i/v administration);
- f) Collapse;
- g) Thrombocytopenia.

17. Characteristic features of vancomycin:

- a) Has a broad spectrum of activity;
- b) Affect predominantly gram-positive bacteria;
- c) Is bactericidal;
- d) Is bacteriostatic;
- e) Inhibits bacterial cell wall synthesis;
- f) Inhibits RNA synthesis on ribosomes;
- g) Well absorbed from GIT;
- h) Poor GIT absorption.

18. Vancomycin may cause:

- a) Kidney injury;
- d) Seizures;
- b) BP decrease;
- e) Thrombophlebitis;
- c) BP increase;
- f) Deafness.

19. Antimicrobial combination therapy is used:

- a) For the prevention of resistant bacterial strains development;
- b) To enhance antimicrobial effect;
- c) To broaden antibacterial spectrum of activity;
- d) To enhance antimicrobial effect of a bacteriostatic antibiotic it is necessary to add bactericidal one;
 - e) To decrease the toxicity of certain antibiotics.

20. Synergistic antibiotic combinations are:

- a) Penicillins + aminoglycosides;
- b) Cephalosporins + aminoglycosides;
- c) Aminoglycosides + carbenicillin;
- d) Macrolides + tetracyclines;
- e) Gentamicin + amikacin;
- f) Ampicillin + oxacillin.

21. The most common causative agents of superinfections:

a) Clostridium difficile;

d) Chlamydia;

b) Candida fungi;

- e) Pseudomonas aeruginosa.
- c) Mycobacterium tuberculosis;

22. The causes of antibiotic therapy inefficiency:

- a) Resistance of a pathogen to antibiotics;
- b) Concurrent administration of vitamins;
- c) Viral infections;
- d) Dosage regime violation;
- e) Incorrect antibiotic combinations.

23. Aminoglycosides used for the treatment of infections caused by gentamicin-resistant bacteria:

- a) Streptomycin;
- c) Neomycin;
- e) Kanamycin.

- b) Amikacin;
- d) Tobramycin;

24. High synovial fluid concentrations are produced by:

- a) Clindamycin;
- c) Nystatin;
- e) Cefuroxime;

- b) Erythromycin;
- d) Lincomycin;
- f) Phenoxymethylpenicillin.

ANTIFUNGAL DRUGS. ANTIPROTOZOAL DRUGS

1. Nystatin-sensitive microorganisms:

- a) Causative agents of systemic mycoses (Histoplasma spp. etc.);
- b) Causative agents of dermatomycoses;
- c) Yeast-like fungi (Candida spp.);
- d) Gram-positive bacteria;
- e) Gram-negative bacteria.

2. Identify the correct statements about nystatin:

- a) Is well absorbed from GIT;
- b) Is not absorbed from GIT;
- c) Highly toxic;
- d) Has a low toxicity;
- e) Is used for the treatment of systemic mycoses;
- f) Is used for the treatment of superficial mycoses.

3. Amphotericin B resistant microorganisms :

- a) Causative agents of systemic mycoses (Histoplasma spp. etc.);
- b) Causative agents of dermatomycoses;
- c) Yeast-like fungi (Candida spp.);
- d) Mold fungi (Aspergillus spp.);
- e) Trypanosomes.

4. Identify the correct statements about amphotericin B:

- a) Antimycotic spectrum of activity is similar to that of nystatin;
- b) Antimycotic spectrum of activity is wider than nystatin's;
- c) Good GIT absorption;
- d) Has a high toxicity;
- e) Is used for the treatment of dermatomycoses;
- f) Is used for the treatment of systemic mycoses.

5. Ketoconazole-resistant microorganisms:

- a) Causative agents of systemic mycoses (Histoplasma spp. etc.);
- b) Causative agents of dermatomycoses (Microsporum spp.);
- c) Viruses;
- d) Yeast-like fungi (Candida spp.);
- e) Mold fungi (Aspergilla spp.).

6. Identify the correct statements about clotrimazole:

- a) Antimycotic spectrum of activity is similar to that of nystatin;
- b) For topical use;
- c) For topical and systemic use;
- d) Is used for the treatment of dermatomycoses;
- e) Is used for the treatment of systemic mycoses;
- f) Good GIT absorption.

7. Identify the correct statements about fluconazole:

- a) Well absorbed from GIT;
- b) Not absorbed from GIT:
- c) Is used for the treatment of systemic mycoses;
- d) Has a low toxicity;
- e) Inhibits the fungal steroid synthesis pathway;
- f) The drug of choice in immunocompromised patients.

8. Griseofulvin-sensitive microorganisms:

- a) Causative agents of systemic mycoses (Histoplasma spp. etc.);
- b) Causative agents of dermatomycoses (Microsporum spp.);
- c) Yeast-like fungi (Candida spp.);
- d) Mold fungi (Aspergilla spp.);
- e) Protozoa (amebas, leischmanias).

9. Identify the correct statements about griseofulvin:

- a) Good GIT absorption;
- b) Fungistatic;
- c) Provides fast antifungal effect;
- d) High concentrations are achieved in the cells producing keratin;
- e) Is used for the treatment of systemic candidiasis;
- f) Is used for the treatment of dermatomycoses.

10.A dr	rug used for the pr	evention of candidiasis	resulting from broad-		
spectrun	n antibiotics:				
a)	1	c) Nystatin;	e) Clotrimazole.		
b)	Griseofulvin;	d) Metronidazole;			
11. First	-line antibiotic for tl	ne treatment of mycopl	asmosis and chlamydial		
infection	s is:				
a)	Erythromycin;	c) Gentamicin;	e) Vancomycin.		
b)	Cefuroxime;	d) Carbenicillin;			
12. Effec	tive against preeryth	rocytic forms of Plasmo	dium malariae:		
a)	Chloroquine;	c) Pyrimethamine:	e) Mefloquine.		
b)	Quinine;	d) Primaquine;			
13. Effec	tive against paraeryt	chrocytic forms of Plasm	odium malariae:		
	Quinine;	•	e) Mefloquine.		
b)	Primaquine;	d) Chloroquine;			
14. Effective against sexual forms of Plasmodium malariae:					
	Mefloquine;	c) Quinine;	e) Primaquine.		
b)	Methotrexate;	d) Chloroquine;			
15. Drug	s used for the pre	vention of malaria tra	ansmission (community		
	on measures):		`		
a)	Affect preerythrocyti	c forms of Plasmodium m	nalariae;		
b)	Affect erythrocytic forms of Plasmodium malariae;				
c)	Affect gametes;	()			
d)	Affect paraerythrocyt	tic forms of Plasmodium	malariae.		
16. Drug	s used for treating of	malaria (to eliminate c	linical symptoms):		
a)	Affect preerythrocyti	c forms of Plasmodium m	nalariae;		
b)	Affect erythrocytic fo	orms of Plasmodium mala	riae;		
c)	Affect gametes;				
d)	Affect paraerythrocyt	tic forms of Plasmodium	malariae.		
17. Pyrir	nethamine (including	g combinations with sulf	Conamides) is used for:		
a)	Malaria treatment;				
b)	Individual chemoprop	phylaxis of malaria;			
c)	Prevention of malaria	relapses;			
d)	Prevention of malaria	transmission;			
e)	Amoebiasis;	f) Toxoplas:	mosis.		
18. Drug	s active against lumi	nal amebas:			
a)	Diloxanide;	c) Chloroquine;	e) Tetracyclines;		
b)	Quiniofone;	d) Emetine;	f) Metronidazole.		
19. Drugs effective against amebas residing in the colonic mucosa:					
	Quiniofone;	c) Emetine;	e) Metronidazole.		
b)	Chloroquine;	d) Doxycycline;			

20. Drugs for the treatment of trichomoniasis:

- a) Policresulen; c) Metronidazole; e) Tinidazole;
- b) Chloroquine; d) Trichomonacid; f) Furazolidone.

21. Drugs for the treatment of giardiasis:

- a) Mepacrine; c) Furazolidone; e) Chloroquine;
- b) Chlorquinaldol; d) Metronidazole; f) Tinidazole.

22. Identify the correct statements about mefloquine:

- a) Causes arrhythmias;
- b) Used for the treatment of malaria symptoms;
- c) Used for the individual chemoprophylaxis of malaria;
- d) Has a low toxicity;
- e) Used for the prevention of malaria transmission.

23. Identify the correct statements about chloroquine:

- a) The drug of choice for the treatment of all types of malaria;
- b) Used for the treatment of malaria symptoms;
- c) Less toxic than other antimalarial agents;
- d) Has a high toxicity;
- e) Used for the prevention of malaria transmission.

24. Identify the correct statements about primaquine:

- a) The drug of choice for the eradication of intrahepatic plasmodia;
- b) Used only for the treatment of malaria symptoms;
- c) Active against hypnozoites;
- d) Highly toxic;
- e) Used for the prevention of malaria transmission.

25. Identify the correct statements about metronidazole:

- a) Used for the treatment of malaria;
- b) Used for the treatment of amebiasis;
- c) Used for the treatment of syphilis;
- d) Produces disulfiram-like reaction with alcohol;
- e) Used for the treatment of giardiasis.

26. Identify the correct statements about tinidazole:

- a) Used for the prevention of malaria transmission;
- b) Used for the treatment of trichomoniasis;
- c) Used for the treatment of all types of malaria;
- d) Produces disulfiram-like reaction with alcohol;
- e) Used for the treatment of toxoplasmosis.

ANTIMYCOBACTERIAL DRUGS. ANTIVIRAL DRUGS

1. First-line anti-tuberculosis drugs:

- a) Isoniazid; c) Rifampicin; e) PASA.
- b) Streptomycin; d) Ethambutol;

2. Second-line anti-tuberculosis drugs:

a) PASA; c) Rifampicin; e) Cycloserine.

e) Isoniazid.

b) Ethionamide; d) Isoniazid;

3. The most effective anti-tuberculosis drugs (WHO classification):

- a) Pyrazinamide; c) Rifampicin;
- b) Kanamycin; d) Streptomycin;

4. Multi-drug resistant tuberculosis is resistant:

- a) To isoniazid only;
- b) To rifampicin only;
- c) To ethionamide and rifampicin;
- d) To isoniazid and rifampicin;
- e) To streptomycin and isoniazid.

5. Antibiotics with anti-tuberculosis activity:

- a) Tetracyclines; c) Streptomycin; e) Cycloserine.
- b) Vancomycin; d) Rifampicin;

6. Identify the correct statements about isoniazid:

- a) One of the most effective anti-tuberculosis drugs;
- b) Has a broad antimicrobial spectrum;
- c) Affects M. tuberculosis and M. leprae;
- d) Blocks the synthesis of mycolic acids (components of the mycobacterial cell wall);
 - e) Causes peripheral neuropathy.

7. Identify the correct statements about rifampicin:

- a) One of the most effective anti-tuberculosis drugs;
- b) Has a broad antimicrobial spectrum;
- c) Inhibits DNA-dependent RNA-polymerase;
- d) Resistance develops slowly;
- e) Passes through blood-brain barrier.

8. Identify the correct statements about ethambutol:

- a) Affects predominantly M. tuberculosis;
- b) Has a broad antimicrobial spectrum;
- c) Inhibits the synthesis of mycobacterial cell wall;
- d) Causes retrobulbar neuritis;
- e) First-line anti-tuberculosis drug.

9. Identify the correct statements about streptomycin:

- a) Has a broad antimicrobial spectrum;
- b) Affects only M. tuberculosis;

- c) Inhibits protein synthesis on ribosomes;
- d) Resistance develops rapidly;
- e) For parenteral use.

10. Features of M. tuberculosis as a target for chemotherapy:

- a) Mycolic acids are the constituents of the mycobacterial cell wall;
- b) Sensitive to environmental factors and disinfectants;
- c) Resistance to chemotherapeutic agents develops slowly;
- d) Intracellular localization;
- e) Able to persist in the host organism due to L-forms.

11. Have anti-influenza activity:

- a) Rimantadine;
- c) Saquinavir;

e) Acyclovir.

- b) Oseltamivir;
- d) Interferons;

12. Broad-spectrum antiviral agents:

a) Interferons;

- d) Protease inhibitors;
- b) Nucleoside analogs;
- e) Neuraminidase inhibitors.
- c) Interferon inducers;

13. Anti-HIV drugs:

- a) Zidovudine;
- c) Acyclovir;
- e) Saquinavir.

- b) Stavudine;
- d) Rimantadine;

14. Antiherpetic agents:

- a) Acyclovir;
- c) Idoxuridine;
- e) Rimantadine.

- b) Zidovudine;
- d) Butaminophen;

15. Used for the treatment of cytomegalovirus infection:

- a) Ganciclovir;
- c) Didanosine;
- e) Rimantadine.

- b) Foscarnet;
- d) Acyclovir;

16. Identify the correct statements about acyclovir:

- a) Purine nucleoside analogue;
- b) Inhibits viral DNA-polymerase;
- c) Passes through blood-brain barrier;
- d) Does not pass through blood-brain barrier;
- e) Effective predominantly against Herpes simplex and Herpes zoster.

17. Identify the correct statements about foscarnet:

- a) Non-nucleoside analogue of pyrophosphate;
- b) Inhibits viral DNA-polymerase;
- c) Inhibits the penetration of viruses into cells;
- d) Effective against Herpes zoster virus and cytomegalovirus;
- e) Used for treating HIV.

18. Identify the correct statements about rimantadine:

- a) Aminoadamantane derivative;
- b) Inhibits the release of viral genome;
- c) Inhibits viral RNA synthesis;

- d) Effective against Influenza virus A;
- e) Administered orally.

19. Identify the correct statements about ribavirin:

- a) Inhibits viral RNA and protein synthesis;
- b) Inhibits viral neuraminidase;
- c) Interferes with the assembly process;
- d) Effective against Influenza virus, Respiratory syncytial virus;
- e) Used orally, by inhalations, intravenously.

20. Identify the correct statements about zidovudine:

- a) Absorbed from GIT;
- b) Inhibits HIV reverse transcriptase, prevents the transcription of viral RNA into DNA;
- c) Inhibits HIV proteases, prevents the synthesis of viral structural proteins and enzymes;
 - d) Causes bone marrow depression;
 - e) Effective against all RNA-containing viruses.

ANTISEPTICS AND DISENFECTANTS

1. Correct definition of sterilization:

- a) It is the destruction of all microorganisms including spores;
- b) It is the destruction of all microorganisms except of spores;
- c) It is the elimination of microorganisms on living tissues.

2. Correct definition of antiseptic drugs:

- a) It is the destruction of all microorganisms including spores;
- b) It is the destruction of all microorganisms except of spores;
- c) It is the agent used to eliminate microorganisms on living tissues;
- d) It is the agent used to eliminate microorganisms on inanimate objects.

3. Correct definition of disinfectant:

- a) It is the destruction of all microorganisms including spores;
- b) It is the destruction of all microorganisms except of spores;
- c) It is the agent used to eliminate microorganisms on living tissues;
- d) It is the agent used to eliminate microorganisms on inanimate objects.

4. Mechanism of action of phenol:

- a) Action by lowering the surface tension of solutions;
- b) It has antibacterial activity;
- c) Action by releasing nascent oxygen;
- d) Denaturation of bacterial proteins;
- e) Disruption of cell wall.

5. Choose antiseptics of aromatic series:

a) Protargol;

c) Formaldehyde;

e) Biclotymol.

b) Phenol;

d) Resorcin;

6. Correct statements about phenol:

- a) It has corrosive effects on tissues;
- b) It is non toxic drug after absorption through GIT;
- c) Disrupt cell walls and membranes;
- d) Has bacteriostatic effect;
- e) Has bactericidal effect, including spores;
- f) Has bactericidal effect except of spores.

7. Select a biguanid agent:

a) Miramistin;

c) Hydrogen peroxide;

b) Zinc sulfate;

d) Chlorhexidine.

8. Correct assertions about chlorhexidine:

- a) Water soluble agent;
- b) Has very low water solubility;
- c) Mechanism of action is releasing nascent oxygen;
- d) Action by lowering the surface tension of solutions;
- e) It strongly adsorbs to bacterial membranes, causing leakage of small molecules and precipitation of cytoplasmic proteins.

9. Correct assertion about chlorhexidine:

- a) It is active at pH 5.5–7.0;
- b) It is active at pH 9.0-12.0;
- c) It is most effective against gram-positive cocci and less active against gram-positive and gram-negative rods;
 - d) Does not affected on spores.

10. Select antiseptics of aliphatic series:

a) Ethyl alcohol;

c) Chloramine B;

b) Nitrofural;

d) Formaldehyde.

11. Spectrum of alcohols:

a) Vegetative bacteria;

d) Hydrophilic viruses;

b) Spores;

e) Fungi.

c) Mycobacterium tuberculosis;

12. Correct assertions about alcohols:

- a) Use of alcohol-based hand rubs has been shown to reduce transmission of health care-associated bacterial pathogens and is recommended by the Centers for Disease Control and Prevention (CDC) as the preferred method of hand decontamination;
 - b) Has sporicidal activity;
 - c) Alcohol-based hand rubs are effective against spores of Cl. Difficile;
- d) Alcohols are flammable and must be stored in cool, well-ventilated areas.

13. The following statements about formaldehyde are true:

- a) Is used for disinfection or sterilization of instruments;
- b) It is corrosive for metal, plastic, or rubber;
- c) It is not corrosive for metal, plastic, or rubber;
- d) It acts by alkylation of chemical groups in proteins and nucleic acids;
- e) Mechanism of action is releasing nascent oxygen.

14. Choose oxidizers from the list:

a) Nitrofural;

c) Potassium permanganate;

b) Brilliant green;

d) Hydrogen peroxide.

15. True statements about hydrogen peroxide:

- a) It has high killing activity and a broad spectrum against bacteria, spores, viruses, and fungi when used in appropriate concentration;
- b) It has high killing activity and a broad spectrum against bacteria, spores, viruses, and fungi when used in any concentration;
 - c) It is not toxic and do not injure the environment;
- d) Organisms with the enzymes catalase and peroxidase rapidly degrade hydrogen peroxide;
 - e) It has no sporicidal activity.

16. Iodine drugs are:

a) Acids and bases;

- c) Halogen compounds;
- b) Antiseptics of aliphatic series;
- d) Detergents.

17. Correct statements about iodophors:

- a) Iodophors are complexes of iodine with a surface-active agent;
- b) Iodophors are complexes of iodine with a ethyl alcohol;
- c) Srectum of activity includes vegetative bacteria, mycobacteria, fungi, and lipid-containing viruses;
 - d) It acts only on bacteria and spores;
- e) Iodophors are less irritating and less likely to produce skin hypersensitivity than tincture of iodine.

18. Potassium permanganate is:

a) Biguanide;

- c) Metal compound;
- b) Halogen compound;
- d) All answers are not correct.

19. Select correct assertions about potassium permanganate:

- a) 1:4000–1:10,000 solution of potassium permanganate is used for gargling;
- b) Act by releasing nascent oxygen, which oxidizes the bacterial protoplasm;
 - c) Colourless liquid;
- d) Used for cleaning wounds and abscess cavities, removal of slough and ear wax;
 - e) 1% solution is used for fungal infections—athletes foot.

20. Choose the halogen compounds:

- a) Cetylpyridinium chloride;
- c) Boric acid;

b) Chloramine B;

d) Iodine agents.

21. Purposes of chloramines usage:

- a) Sterilization of instruments;
- b) For dressing of wounds;
- c) Used topically in tonsillitis and pharyngitis;
- d) Can be used as mouthwash.

22. Correct statements about boric acids:

- a) Has bactericidal activity;
- b) Fungistatic and bacteriostatic;
- c) Can be used for stomatitis and glossitis;
- d) Non toxic after systemic absorption;
- e) Systemic absorption can cause abdominal pain, diarrhoea, vomiting, visual disturbances and kidney damage.

23. Choose metal compounds:

a) Chloramine B;

- d) Protargol;
- b) Potassium permanganate;
- e) Zinc sulfate.

c) Nitrofural;

24. True statements about zinc sulphate:

- a) Used topically for conjunctivitis, ulcers and acne;
- b) Used systemically to treat bacterial infection;
- c) It decreases sweating, hence used as a component in deodorants;
- d) Used topically for conjunctivitis, ulcers and acne.

25. Correct statements about cetylpyridinium chloride:

- a) It is anionic surfactant;
- b) It is cationic surfactant;
- c) Acts by disruption of cell walls and membranes;
- d) Acts by lowering the surface tension of solutions.

DRUGS USED IN DENTISTRY

1. Select drugs, that may regulate metabolism of the hard tooth tissues:

- a) Calcium channel blockers;
- b) Vitamin D;
- c) Anabolic steroids;
- d) Steroidal anti-inflammatory drugs;
- e) Bisphosphonates;
- f) Nicotine;
- g) Fluoride preparations.

2. Select correct statements about fluorides:

- a) Inhibits demineralization of the enamel;
- b) Promotes re-mineralization of the enamel;
- c) Improves the structure of the enamel makes it more acid resistant;
- d) Reduces the incidence of dental caries;
- e) May cause dental fluorosis;
- f) Administered by injection.

3. Mechanisms of action of fluorides:

- a) Directly reduce the sensitivity of nerve endings;
- b) Makes enamel harder;
- c) Prevents decalcification of enamel:
- d) Replace hydroxyl ions of calcium hydroxyapatite to form calcium fluorapatite;
 - e) Bleaches enamel;
 - f) Removes plaque.

4. Measures in case of poisoning by fluorides:

- a) Give calcium gluconate orally it will bind fluorides and reduce their absorption;
- b) Give loop diuretics (furosemide) to accelerate the elimination of fluorides with urine;
 - c) Give lead nitrate orally to reduce the absorption of fluorides.

5. Select typical drug forms of fluorides:

- a) Fluoridated toothpaste;
- f) Fluoride suppositories;
- b) Fluoride mouthrinse;
- g) Fluoride aerosol;
- c) Fluoride supplements;
- h) Fluoride gel;

d) Fluoride varnish;

i) Fluoride foam.

e) Fluoride enemas;

6. Select hormons, that regulate metabolism of the hard tooth tissues:

a) Vasopressin;

d) Cortisol:

b) Estrogens;

e) Parathyroid hormone;

c) Androgens;

f) Epinephrine.

7. Select a hormone, that accelerates the excretion of calcium:

a) Calcitonin;

d) Estrogens;

b) Vitamine D;

- e) Androgens.
- c) Patarhyroid hormone;

8. Select enzyme preparations:

a) Trypsin;

c) Chymotrypsin;

b) Insulin;

d) Hyaluronidase.

9. For what purpose enzyme preparations use in dentistry?

- a) Treatment of cicatricial changes in the skin and mucous;
- b) For melting and purification of wound necrotic masses without affecting the healthy tissue;

- c) For caries prevention;
- d) For mummification of the root canal.

10. Select bisphosphonate:

a) Alendronate;

c) Ergocalciferol;

b) Prednisone;

d) Phythin.

11. Select correct statements about bisphosphonates:

- a) Provide antiresorptive effect;
- b) Promote apoptosis of osteoclasts;
- c) Indicated for the treatment of rickets in children;
- d) Disrupt the formation of tooth enamel and permanently stop the growth of bones cannot be used in children:
 - e) Uses for the treatment of Paget's disease.

12. Select typical components of toothpastes:

a) Flavoufing agents;

e) Fluorides;

b) Foaming agents;

f) Bleaching agents;

c) Preservatives;

- g) Vaseline oil.
- d) Abrasive components;

13. Select adverse effects of toothpastes:

- a) Circumoral dermatitis;
- e) Cheilitis;

b) Rickets;

f) Erythema and fissures;

c) Contact stomatitis;

g) Arterial hypertension

d) Diabetes;

h) Fluorosis.

14. Why it is dangerous to swallow toothpaste?

- a) Abrasives from toothpaste can damage the mucosa of the esophagus, stomach and intestine;
 - b) Fluoride containing toothpaste toxic if swallowed;
 - c) Toothpastes are not dangerous if swallowed.

15. Select commonly used in dentistry bleaching agents:

- a) Hydrogen peroxide;
- d) Silver nitrate;
- b) Carbamide peroxide;
- e) Phenol.

c) Calcium peroxide;

16. Select drugs, that can color the enamel:

- a) Hydrogen peroxide;
- d) Resorcin;

b) Metronidazole:

e) Chlorhexidine.

c) Silver nitrate;

17. Select effective anti-halitosis agents:

a) Metronidasole;

d) Vitamine D;

b) Triclosan;

e) Local anestethics.

c) Acyclovir;

18. What drugs can cause irreversible damage of tooth formation and therefore not used in pregnant women and children:						
a) Ascorbic acid;	e) Tetracycline;					
b) Amoxicillin;	f) Cefaclor;					
c) Doxycycline;	g) Alendronate.					
d) Cefoperazone;						

- 19. Which antibacterial agents penetrate well into the joints and bones and can therefore be used in the treatment of osteomyelitis and arthritis:
 - a) Doxycycline; d) Nitrofurantoin; b) Amoxicillin; e) Rifampicin.
 - c) Ciprofloxacin;
- 20. Select antifungal medications for the treatment of oral candidiasis:
 - a) Nystatin;b) Miconazole;c) Metronidazole;d) Ornidazole;e) Tinidazole.

CONTENTS

Pharmacokinetics. Basic concepts	3
Pharmacodynamic	
Cholinomimetic and anticholinesterase drugs	8
Cholinergic antagonist (anticholinergic) drugs	12
Adrenergic drugs	16
Adrenergic antagonists	
General anesthetics. Ethyl alcohol. Anticonvulsants. Analgetics	23
Anxiolitic and sedative-hypnogenic drugs. Antipsychotisc	27
Antidepressants. Psychostimulants. Nootropic drugs and tonics	31
Drugs affecting the gastrointestinal tract	34
Drugs affecting blood system	36
Antihypertensive drugs	41
Antianginal and hypolipidemic drugs	43
Drugs used for the treatment of heart failure	45
Antiarrythmic drugs	47
Hormonal and anti-hormonal drugs	50
Anti-inflammatory drugs	54
Anti-allergic drugs. Drugs affecting the respiratory system	56
Synthetic antimicrobial drugs	61
Antibiotics, part I	65
Antibiotics, part II	67
Antifungal drugs. Antiprotozoal drugs	71
Antimycobacterial drugs. Antiviral drugs	75
Antiseptics and disenfectants	77
Drugs used in dentistry.	80