Актуальные проблемы микробиологии, вирусологии, иммунологии: материалы научно-практической конференции Минск, 19 октября 2018

Петракова О. В.

Белорусский государственный медицинский университет,

г. Минск

Гурманчук И. Е.

Белорусский государственный медицинский университет, г. Минск

Харламова А. Н.

Белорусский государственный медицинский университет,

г. Минск

Соколовская Е. В.

Белорусский государственный медицинский университет,

г. Минск

Черношей Д. А.

Белорусский государственный медицинский университет,

г. Минск

ВЛИЯНИЕ ЛИПОПОЛИСАХАРИДА E. COLI НА СОДЕРЖАНИЕ P65 В ЦИТОПЛАЗМЕ МОНОНУКЛЕАРОВ ПЕРИФЕРИЧЕСКОЙ КРОВИ ЧЕЛОВЕКА

NF-kB играет важную роль в регуляции множества функций клеток. Этот фактор принадлежит к категории быстродействующих первичных транскрипционных факторов, т. е. транскрипционных факторов, которые почти всегда присутствуют в клетках в неактивном состоянии и не требуют для своей активации синтеза новых белков (например, с-Jun и система факторов STAT). Это позволяет NF-kB реализовывать быстрый ответ на различные стимулы.

NF-kB представляет собой гомо- или гетеродимеры различных субъединиц: NF-kB1 (p50), NF-kB2 (p52), RelA (p65), RelB, c-Rel, p100, p105. Классический NF-kB является гетеродимером, состоящим из p50 (NFkB1) и p65 (RelA), однако в некоторых случаях состав NF-kB может изменяться, что влияет на набор регулируемых генов [1].

NF-kB является распространенным транскрипционным фактором, важным для нормальной функции иммунной системы. Он присутствует в цитоплазме неиндуцированных клеток в неактивном виде [2]. Неактивное состояние цитозольного NF-kB является результатом присоединения к нему белка (60–70кД), названного IkB. Обычно в цитоплазме существует неактивный гетеромерный комплекс NF-кB, ассоциированный с одним из нескольких ингибиторов IкВ: ІкВальфа, ІкВбета или др. Активация в различных случаях сводится к разрушению тримерного комплекса и отщеплению ингибитора с последующим его протеолизом и образованию димерного комплекса, состоящего из одинаковых или различных субъединиц NF-kB, который может транслоцироваться в ядро, связываться с ДНК и изменять транскрипцию. Выделяют 2 пути активации NF-кВ — классический и альтернативный. В классическом принимают участие RelA, RelB, and c-Rel, т. е. те белки, которые не имеют трансактивационного домена. В случае альтернативного пути NF-кВ в цитоплазме находится в виде предшественника р100 и р105.

Актуальные проблемы микробиологии, вирусологии, иммунологии: материалы научно-практической конференции Минск, 19 октября 2018

Активация NF-kB приводит к синтезу различных регуляторных белков, хемокинов и цитокинов, изменяющих метаболизм на уровне одной клетки, ткани, органа и даже всего организма. Протекающие реакции можно разделить на 2 группы: внутриклеточные — апоптоз, дифференцировка самой клетки, и внеклеточные — системный и локальный воспалительные ответы (синдром системного воспалительного ответа, сепсис, тяжелый сепсис, септический шок). Неадекватно сильная или длительная активация NF-kB приводит к гиперэкспрессии медиаторов воспаления, что является одной из причин повреждения организма при сепсисе и синдроме системного воспалительного ответа.

ЛПС является одним из факторов, приводящих к активации NF-kB. Он связывается с TLR 4, вызывая активацию двух сигнальных путей, каждый из которых приводит в свою очередь к активации NF-kB. MyD88-зависимый путь опосредуется киназами IRAK1 и IRAK4, которые фосфорилируют TRAF6, приводя к активации IKK комплекса [3]. В тоже время молекулярные особенности MyD88-независимого пути на сегодняшниий момент не до конца ясны. Известно, что данный путь включает в себя TIR-домен, содержащий адаптерный протеин TRIF, TRAM, RIP1 и RIP3 [3]. Однако оба пути приводят в конечном итоге к активации транскрипции гена ІкВα и деградации ІкВ [3].

МуD88-независимый путь также включает IRF-3-зависимую экспрессию ФНОα, что приводит к активации NF-кВ. Активация NF-кВ посредством МуD88-зависимого пути происходит раньше, чем активация через МуD88-независимый путь, поскольку синтез ФНОα требует времени [3]. Установлено, что действие ЛПС на клетки вызывает стабильную активацию NF-кВ, тогда как при обработке клеток непосредственно ФНОα активация транскрипционного фактора носит изменчивый характер [3]. Таким образом, было показано, что устойчивая активация NF-кВ обусловлена одновременной активацией и взаимодействием обоих сигнальных путей [3].

Материалы и методы. Мононуклеары получали из стабилизированной гепарином периферической крови условно здоровых доноров после центрифугирования ее на градиенте плотности (1,077 гр/см³). Полученные клетки отмывали, после чего из них готовили суспензию в концентрации 10^7 клеток в 1 мл. Для оценки влияния ЛПС на содержание p65 В цитоплазме клеток ИХ инкубировали в течение 60 минут в присутствии ЛПС E. coli (0111:B4) в конечной концентрации 20 мкг/мл. Для постановки контрольной пробы клетки инкубировали в полной культуральной среде без добавления ЛПС.

После окончания инкубации клетки центрифугировали и выделяли цитоплазматические лизаты согласно протоколу производителя (Active motif). В полученных лизатах определяли концентрацию белка spot-методом и окраской амидочерным [4]. Разделение белков проводили в полиакриламидном геле, после чего переносили на PVDF мембрану. Мембрану инкубировали с первыми антителами к р65 (Stressgen). Проявляли связавшиеся антитела с помощью антикроличьих антител, меченных пероксидазой (Rockland) с последующей инкубацией мембраны в субстратном растворе, содержащем тетраметилбензидин (Sigma). Проводили денситометрию, результаты стандартизировали по уровню белка в пробах.

Актуальные проблемы микробиологии, вирусологии, иммунологии: материалы научно-практической конференции Минск, 19 октября 2018

Результаты и обсуждение. Результаты исследования содержания р65 в цитоплазматических экстрактах мононуклеаров периферической крови доноров представлены в таблице.

Содержание р65 в цитоплаз	вматических лизатах моноі	луклеаров крови человека

Эксперимент (n = 5)	Содержание p65 (ЕД), M ± m	Минимум	Максимум	Нижний квартиль	Верхний квартиль
Контроль	$12,47 \pm 5,4$	5,50	28,44	5,64	19,30
ЛПС <i>E. coli</i> (20 мкг/мл)	$3,68 \pm 3,68$	0,00	14,73	0,00	7,37

Как видно из приведенных данных, содержание p65 в цитоплазме мононуклеаров периферической крови разных доноров значительно отличается. Это вполне соответствует данным литературы, согласно которой NF-kB присутствует в цитоплазме неиндуцированных клеток в неактивном виде [2].

При анализе действия ЛПС на содержание р65 в цитоплазме клеток было выявлено, воздействие ЛПС в течение 60 минут в концентрации 20 мкг/мл приводит к полному исчезновению р65 из цитоплазмы клеток в 80 % случаев. Это, по всей видимости, является результатом деградации комплекса белков NF-kB в цитоплазме и переходу р65 в ядро клеток. Однако в 1 случае было зарегистрировано увеличение содержания р65 в цитоплазме мононуклеаров по сравнению с пробой без ЛПС (в 2,6 раза). На наш взгляд это может быть связано с индивидуальными особенностями регуляции активности NK-кВ у этого донора, а также возможной предактивацией клеток *in vivo*.

Заключение. Таким образом, результатом действия ЛПС *E. coli* в дозе 20 мкг/мл на мононуклеары периферической крови человека *in vitro* является исчезновение р65 из цитоплазмы клеток после 60 минут воздействия. Также на основании полученных данных можно говорить о наличии индивидуальных особенностей реализации NF-kB-опосредованного ответа клеток на ЛПС.

ЛИТЕРАТУРА

- 1. Abraham, E. NF-kB activation / E. Abraham // Critical Care Medicine. Vol. 28. 2000. P. 100–104.
- 2. *The antioxidant* action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid / O. I. Aruoma [et al.] // Free Radic. Biol. Med. 1989. Vol. 6. № 6. P. 593–597.
- 3. Achieving Stability of Lipopolysaccharide-Induced NF-κB Activation / M. W. Covert [et al.] // Science, 2005. Vol. 309. № 5742. P. 1854–1857.
- 4. *Chapdelaine*, *P*. Protein estimation directly from SDS-PAGE loading buffer for standardization of samples from cell lysates or tissue homogenates before Western blot analysis / P. Chapdelaine, K. Vignola, M. A. Fortier // BioTechniques. 2001. Vol. 31. № 3. P. 478–482.