Гладчук А.С.¹, Дубакова П.С.¹, Щепеткова К.М.¹, Степанов С.В.¹, Гафт С.С.¹, Суходолов Н.Г.^{2,3}, Батоцыренова Е.Г.¹, Александрова М.Л.¹, Краснов К.А.¹, Кашуро В.А.¹, Подольская Е.П.^{1,3}

Определение жирных кислот в биологических образцах с использованием технологии Ленгмюра

¹ФГБУН «Институт токсикологии Федерального медико-биологического агентства», г. Санкт-Петербург, Россия ²ФГБОУВО «Санкт-Петербургский государственный университет», г. Санкт-Петербург, Россия

³ФГБУН «Институт аналитического приборостроения Российской академии наук», г. Санкт-Петербург, Россия.

Технология Ленгмюра, позволяет получать нерастворимые в воде мономолекулярные слои амфифильных молекул, к которым, в первую очередь, относятся жирные кислоты (ЖК), играющие важную роль во множестве метаболических процессов. Ранее нами была показана возможность анализа насыщенных ЖК в виде монокарбоксилатов бария методом времяпролетной масс-спектрометрии с матрично-активированной лазерной десорбцией/ионизацией (МАЛДИ-МС) после растворения монослоев, полученных в установке Ленгмюра [1].

В данной работе мы предлагаем подход, в котором процесс формирования монослоев Ленгмюра переносится непосредственно на поверхность МАЛДИ мишени, что позволяет сократить и упростить пробоподготовку, а также значительно повышает чувствительность метода. При этом образование монослоя происходит в условиях, не приводящих к расщеплению липидов, следовательно, связанные ЖК не участвуют в формировании монослоя. Формирование монослоев осуществляется на капле водной субфазы (водный раствор ацетата бария с добавлением 2,5-дигидроксибензойной кислоты) объемом менее 1 мкл, нанесенной на пятно мишени. На поверхность капли наносят равный объем органического растворителя (гексан), содержащего ЖК, так, чтобы раствор стекал с поверхности водной капли. После высыхания органической фазы на поверхности пятна МАЛДИ мишени образуется монослой с упорядоченной структурой. После разрушения монослоя с помощью 90% водного ацетонитрила образец готов к МАЛДИ-МС анализу. Стоит отметить, что использование в качестве водной фазы раствора соли бария позволяет получать монослои, состоящие преФизико-химическая биология как основа современной медицины: тез. докл. Респ. конф. с междунар. участием, посвящ. 110-летию В.А. Бандарина (Минск, 24 мая 2019 г. : в 2 ч. ч. 1)

имущественно из монокарбоксилатов этого металла, а характерное изотопное распределение бария позволяет упростить идентификацию соединений, содержащих барий, в масс-спектрах. Для исследования параметров линейности и чувствительности метода была использована смесь пяти стандартов ЖК (лауриновая, тридекановая, миристиновая, пентадекановая, пальмитиновая), растворенных в гексане. По результатам экспериментов со стандартами ЖК предел обнаружения составил 10^{-14} моль, линейный динамический диапазон -10^4 , при этом значения точности не превышали 2%, а прецизионности -17%.

Разработанная методика была использована при исследовании хронического отравления крыс ацетатом ртути. В эксперименте белым беспородным лабораторным крысам массой 160-180 г в течение 1 месяца перорально вводили водный раствор, содержащий ацетат ртути в дозе 4 мг/кг. В плазме крови отравленных крыс (n=7) по сравнению с контрольной группой (n=7) были выявлены значимые (p<0,05) изменения относительной концентрации ряда ЖК: наряду с понижением содержания миристиновой, пентадекановой, пальмитолеиновой и других кислот наблюдалось повышение концентраций линолевой и арахидоновой кислот (статистическую обработку проводили с помощью программного обеспечения Progenesis MALDI 1.2), что свидетельствует об изменении метаболизма ЖК, вызванным воздействием ртути.

Таким образом, в результате работы предложен новый подход к анализу ЖК методом МАЛДИ-МС для идентификации и относительной количественной оценки ЖК в биологических образцах различной природы. Методика отличается высокой чувствительностью, экспрессностью, простотой выполнения анализа и интерпретации результатов. Предложенный подход может быть использован при фармакокинетических исследованиях и для разработки новых методик диагностики заболеваний.

Литература

1. Podolskaya, E.P. et al. Mendeleev Commun. 2018, 28 (3): 337-339.