МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА БИОЛОГИИ

ПРАКТИЧЕСКИЕ ЗАДАНИЯ ПО МЕДИЦИНСКОЙ БИОЛОГИИ И ОБЩЕЙ ГЕНЕТИКЕ

Допущено Министерством образования Республики Беларусь в качестве учебного пособия для студентов учреждений высшего образования по специальностям «Лечебное дело», «Педиатрия», «Медико-профилактическое дело», «Стоматология»

В двух частях

Часть 1

Минск БГМУ 2020

УДК 57+575(075.8) ББК 28.70+28.704я73 П69

Авторы: доц. Е. В. Чаплинская; доц. В. Э. Бутвиловский; доц. Л. М. Сычик; доц. Е. И. Карасева; доц. Н. И. Мезен

Рецензенты: каф. медицинской биологии и общей генетики Витебского государственного ордена Дружбы народов медицинского университета; канд. мед. наук, проф. каф. медицинской биологии и генетики Гродненского государственного медицинского университета В. П. Андреев

Практические задания по медицинской биологии и общей генетике : учебное пособие. В 2 ч. Ч. 1 / Е. В. Чаплинская [и др.]. – Минск : БГМУ, 2020. - 174 с.

ISBN 978-985-21-0590-3.

Содержится более 640 закрытых заданий, 470 открытых и 330 комплексных заданий по учебному материалу разделов курса «Медицинская биология и общая генетика», относящихся к молекулярно-генетическому, клеточному и онтогенетическому уровням организации живых систем.

Предназначено для студентов 1-го курса лечебного, военно-медицинского, педиатрического, медико-профилактического, стоматологического факультетов.

УДК 57+575(075.8) ББК 28.70+28.704я73

ISBN 978-985-21-0590-3 (Ч. 1) ISBN 978-985-21-0591-0 © УО «Белорусский государственный медицинский университет», 2020

Разновариантный контроль знаний, в том числе и в виде практических заданий, все шире используется в учреждениях образования для наиболее объективной оценки уровня овладения учебным материалом обучающимися. На протяжении многих лет с этой целью на кафедре биологии используются различные формы практических заданий. Такие задания широко применяются студентами при изучении теоретического материала для подготовки к практическим занятиям, зачетам и экзаменам, а также для самооценки уровня знаний. Разные по структуре и сложности задания требуют от обучающихся сосредоточенности на деталях, которые при иных формах контроля могут ускользать от их внимания.

Настоящее издание содержит более 1000 практических заданий различной структуры и степени сложности. Они охватывают теоретический материал программы «Медицинская биология и общая генетика» для студентов 1-го курса медицинских вузов, отражающий особенности жизни на молекулярно-генетическом, клеточном, онтогенетическом уровнях.

Комплексные задания разработаны впервые. Именно такие задания требуют не только конкретных знаний, но и умения обобщать, анализировать и сопоставлять изучаемый материал. Они формируют логическое мышление у студента и привносят практикоориентированный вектор в процесс обучения на теоретической кафедре учреждения образования, что особенно важно для подготовки будущего практического врача, начиная с первых дней учебы в высшем учебном заведении.

Составление практических заданий является весьма кропотливой, трудоемкой и напряженной работой, в которой трудно полностью избежать ошибок. Авторы выражают глубокую благодарность рецензентам и всем преподавателям кафедры биологии за ценные замечания, высказанные ими при подготовке этого учебного пособия к изданию.

Мы с благодарностью примем все критические замечания и пожелания, которые постараемся учесть при подготовке последующих изданий.

Авторы

ВВЕДЕНИЕ

Активное привлечение в течение последних 10–15 лет практических заданий в учебном процессе на кафедре биологии, по нашему мнению, привело к определенному повышению уровня знаний у студентов-медиков. Однако в связи с бурным развитием молекулярной биологии с начала XXI века, а также ввиду изменений в 2016 г. типовой программы «Медицинская биология и общая генетика» для основных медицинских специальностей имеющийся в нашем арсенале банк тестовых заданий потребовал значительной корректировки, внесения актуальных дополнений, а также осуществления видоизменений (создание практических заданий новых форматов).

Настоящее издание охватывает ряд разделов программы «Медицинская биология и общая генетика» — Роль биологии в системе медицинского образования, Цитологические основы наследственности, Организация наследственного материала, Экспрессия генов, Генетика человека и др. — для студентов 1-го курса специальностей «Лечебное дело», «Педиатрия», «Медико-профилактическое дело», «Стоматология».

Рекомендации по использованию учебного пособия:

- 1. Приступать к выполнению практических заданий следует только после предварительного изучения и анализа теоретического материала соответствующего раздела учебной программы.
- 2. Начинать практическую работу следует с выполнения заданий закрытого типа. Необходимо внимательно прочитать вопрос, исключить явно неверные варианты ответа; учесть, что в формулировке вопроса может быть смысловая подсказка, а также помнить, что число правильных ответов варьирует от одного до трех. Кроме того, содержание заданий порой пересекается, что облегчает поиск правильных ответов.
- 3. На следующем этапе работы можно переходить к выполнению открытых заданий логически правильно завершить или дополнить предложенную формулировку. Этот тип заданий стимулирует запоминание правильного написания большого числа медицинских и биологических терминов и понятий.
- 4. Заключительным этапом проработки определенной темы учебной программы должно являться выполнение комплексных заданий, которые предполагают детальную и всестороннюю проработку, сравнение и сопоставление изучаемого теоретического материала, а также выяснение особенностей протекания биологических процессов и явлений.
- 5. На каждом из этапов работы для самоконтроля необходимо обращаться к ответам, которые приведены в конце учебного пособия.

Авторы

СПИСОК СОКРАЩЕНИЙ

А — аденин АДФ — аденозиндифосфорная кислота АКТГ — адренокортикотропный гормон АТФ — аденозинтрифосфорная кислота БАВ — биологически активные вещества Г — гуанин ГМО — генетически модифицированные объекты ДНК — дезоксирибонуклеиновая кислота ЖКТ — желудочно-кишечный тракт ЗОЖ — здоровый образ жизни иРНК — информационная рибонуклеиновая кислота КоА — кофермент А ПВК — пировиноградная кислота ПЦР — полимеразная цепная реакция РНК — рибонуклеиновая кислота рРНК — рибосомная рибонуклеиновая кислота СК — стволовые клетки Т — тимин тРНК — транспортная рибонуклеиновая кислота тыс. п.н. — тысяч пар нуклеотидов У — урацил УЗИ — ультразвуковое исследование Щ — цитозин ЦНС — центральная нервная система ЭКО — экстракорпоральное оплодотворение ЭПС — эндоплазматическая сеть 2n — диплоидный набор хромосом 1п — гаплоидный набор хромосом chr — хроматиды E. coli — Escherichia coli — Кишечная палочка *ex vivo* — «вне организма» G₁ — постмитотический интервал G₂ — премитотический интервал G_0 — «период покоя» HLA — human leucocyte antigens in situ — «на месте, как в организме» in vitro — «в пробирке» in vivo — «внутри живого организма» или «внутри клетки» Pl. — Plasmodium — род Плазмодии

S — синтетический период интерфазы

ЗАКРЫТЫЕ ЗАДАНИЯ

РОЛЬ БИОЛОГИИ В СИСТЕМЕ МЕДИЦИНСКОГО ОБРАЗОВАНИЯ

- **1. Уровни организации живого:** а) молекулярно-генетический и клеточный; б) тканевой и колониальный; в) субклеточный и сифоновый; г) организменный, биосферный и колониальный; д) популяционно-видовой и биогеоценотический.
- **2.** Субстрат жизни: а) комплекс белков и углеводов; б) комплекс белков и жиров; в) комплекс жиров и углеводов; г) комплекс жиров и нуклеиновых кислот; д) комплекс белков и нуклеиновых кислот.
- **3. Фундаментальные свойства живого:** а) рост и развитие; б) изменчивость и наследственность; в) самообновление и наследственность; г) самовоспроизведение и саморегуляция; д) гомеостаз и целостность.
- **4.** Живое как открытая система характеризуется: а) обменом веществ с окружающей средой; б) отсутствием обмена веществ с окружающей средой; в) обменом энергией с окружающей средой; г) отсутствием обмена энергией с окружающей средой; д) обменом информацией с окружающей средой.
- **5. Признаки типа Хордовые у человека:** а) закладка хорды у зародыша; б) закладка нервной трубки под хордой; в) дифференциация зубов; г) передний отдел пищеварительной трубки зародыша имеет жаберные щели; д) наличие позвоночника, закладка сердца на брюшной стороне.
- **6.** Видовые признаки Человека разумного: а) высокая степень развития головного мозга; б) наличие мышления и сознания, прямохождение; в) наличие волосяного покрова и ногтей; г) рука хватательного типа и прямохождение; д) высокая степень противопоставления большого пальца руки.
- **7. Методы цитологии, применяемые в медицине:** а) микроскопические и биохимические; б) цитогенетический и моделирования; в) гистохимические и микрургии; г) генеалогический и микроскопические; д) дифференциальное центрифугирование и цитогенетический.
- **8.** Первооткрывателем вирусов, как новой формы биологической жизни, является: а) О. А. Ковалевский; б) И. И. Мечников; в) И. П. Павлов; г) А. Флеминг; д) Д. И. Ивановский.
- **9.** Бактериолог, выделивший пенициллин исторически первый антибиотик: а) О. А. Ковалевский; б) И. И. Мечников; в) И. П. Павлов; г) А. Флеминг; д) Д. И. Ивановский.
- **10.** Создатель фагоцитарной теории иммунитета: а) О. А. Ковалевский; б) И. И. Мечников; в) И. П. Павлов; г) А. Флеминг; д) Д. И. Ивановский.
- **11.** Русский физиолог лауреат Нобелевской премии по физиологии пищеварения: а) О. А. Ковалевский; б) И. И. Мечников; в) И. П. Павлов; г) А. Флеминг; д) Д. И. Ивановский.

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ И КЛЕТОЧНЫЙ УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО

Цитологические основы наследственности

- 12. Основные положения современной клеточной теории: а) клетка основная структурно-функциональная и генетическая единица живого; б) клетки всех организмов сходны по строению, химическому составу и отличаются проявлениями процессов жизнедеятельности; в) новые клетки образуются в результате деления исходной клетки; г) новые клетки образуются из неклеточного вещества; д) клетки многоклеточных организмов специализированы и образуют ткани.
- **13. К неклеточным формам жизни относятся:** а) грибы и лишайники; б) бактерии и вирусы; в) вирусы; г) водоросли и бактериофаги; д) бактериофаги.
- **14.** Генетический аппарат вирусов представлен: а) ДНК; б) РНК; в) комплексом ДНК и РНК; г) комплексом ДНК и белка; д) комплексом РНК и белка.
- **15. Капсид вирусов представлен:** а) ДНК; б) РНК; в) комплексом ДНК и РНК; г) белком; д) комплексом РНК и белка.
- **16. Вироид** это: а) одноцепочечный участок молекулы ДНК без капсида; б) одноцепочечный участок молекулы ДНК с капсидом; в) одноцепочечный участок молекулы РНК без капсида; г) двухцепочечный участок молекулы РНК без капсида; д) одноцепочечный участок молекулы РНК с капсидом.
- **17. Лизогенным вирусом называется:** а) вирулентный вирус, вызывающий лизис клетки; б) умеренный вирус; в) вирус, находящийся в состоянии профага; г) умеренный вирус, вызывающий лизис клетки; д) вироид.
- **18. Характерные признаки прокариот:** а) наличие цитоплазматической мембраны и ядра; б) отсутствие ядра, митохондрий, скорость седиментации рибосом 70S; в) наличие митохондрий, мезосом и рибосом; г) наличие мезосом, ядра, скорость седиментации рибосом 70S; д) отсутствие ядра, скорость седиментации рибосом 80S.
- **19. К прокариотам относятся:** а) цианобактерии; б) цианобактерии и вирусы; в) бактериофаги и грибы; г) бактерии; д) грибы и вирусы.
- **20. Характерные признаки эукариот:** а) наличие плазмалеммы; б) наличие ядра, митохондрий и мезосом; в) отсутствие мезосом и рибосом; г) скорость седиментации рибосом 80S; д) отсутствие мезосом и цитоскелета.
- **21. К эукариотам относятся:** а) вирусы и грибы; б) цианобактерии и грибы; в) животные, протисты и бактерии; г) растения; д) грибы.
- **22.** Генетический аппарат прокариот представлен: а) кольцевой молекулой ДНК в комплексе с негистоновыми белками; б) кольцевой молекулой РНК; в) комплексом ДНК и РНК; г) комплексом ДНК и гистоновых белков; д) комплексом РНК и негистоновых белков.
- **23. Нуклеоид** это: а) «хромосома» прокариот; б) хромосома эукариот;
- в) кольцевая молекула ДНК, образующая комплекс с белками гистонами;
- г) кольцевая молекула ДНК, образующая комплекс с негистоновыми белками;
- д) мономер нуклеиновой кислоты.

- **24.** Генетический аппарат эукариот представлен: а) кольцевой молекулой ДНК; б) хромосомами; в) комплексом ДНК и РНК; г) комплексом ДНК и гистоновых белков; д) комплексом РНК и белка.
- **25.** Основные структурные компоненты эукариотической клетки: а) гликокаликс, плазмалемма и ядро; б) органеллы, цитозоль и включения; в) оболочка, цитоплазма и ядро; г) ядро, цитозоль и включения; д) органеллы, цитозоль и ядро.
- **26.** Основу элементарной мембраны составляет: а) мономолекулярный слой липидов; б) бимолекулярный слой липидов, гидрофильные концы которых обращены друг к другу; в) сплошной слой белковых молекул; г) сплошной слой углеводов; д) бимолекулярный слой липидов, гидрофобные концы которых обращены друг к другу.
- **27.** Элементарная мембрана содержит: а) одномолекулярный слой липидов; б) бимолекулярный слой углеводов; в) два сплошных слоя поверхностных белков; г) полуинтегральные белки; д) интегральные белки.
- **28.** Свойства элементарной мембраны: а) пластичность; б) непроницаемость и текучесть; в) полупроницаемость; г) эластичность; д) способность самозамыкаться.
- **29. Функции мембраны:** а) структурная, каталитическая, участвует в преобразовании энергии; б) барьерная и сигнальная; в) энергетическая и структурная; г) двигательная и защитная; д) механическая, структурная и двигательная.
- **30.** Способы поступления веществ в клетку: а) диффузия и экзоцитоз; б) осмос и облегченная диффузия; в) диффузия и эндоцитоз; г) активный транспорт и экзоцитоз; д) гетерофагия и эндоцитоз.
- **31. Без затрат энергии поступают вещества в клетку путем:** а) диффузии; б) облегченной диффузии; в) фагоцитоза и пиноцитоза; г) эндоцитоза и диффузии; д) пиноцитоза и осмоса.
- **32. Транспорт веществ в клетку с затратой энергии АТФ:** а) поступление в клетку ионов по градиенту концентрации; б) фагоцитоз; в) пиноцитоз и диффузия; г) осмос и эндоцитоз; д) поступление в клетку веществ против градиента концентрации.
- **33.** Эндоцитоз это: а) поступление в клетку аминокислот; б) фагоцитоз и пиноцитоз; в) пиноцитоз и поступление в клетку нуклеотидов; г) поступление в клетку веществ против градиента концентрации; д) поступление в клетку веществ по градиенту концентрации.
- **34.** Пассивный транспорт это: а) осмос; б) фагоцитоз и пиноцитоз; в) поступление веществ по градиенту концентрации; г) поступление в клетку CO_2 и глюкозы; д) поступление в клетку веществ против градиента концентрации.
- **35.** С затратами энергии поступают вещества в клетку путем: а) фагоцитоза и диффузии; б) облегченной диффузии и осмоса; в) осмоса и пиноцитоза; г) эндоцитоза; д) активного транспорта.
- **36.** Экзоцитоз это: а) поступление в клетку аминокислот; б) фагоцитоз; в) выделение из клетки веществ, заключенных в мембрану; г) поступление в клетку нуклеотидов; д) поступление в клетку веществ против градиента концентрации.

- **37. Органеллы общего назначения:** а) ЭПС и миофибриллы; б) митохондрии, рибосомы и сократительные вакуоли; в) митохондрии, комплекс Гольджи и лизосомы; г) псевдоподии, цитостом и ЭПС; д) сократительные вакуоли и хлоропласты.
- **38. Органеллы специального назначения:** а) ЭПС и миофибриллы; б) реснички, жгутики и цитофаринге; в) миофибриллы; г) лизосомы и хлоропласты; д) сократительные вакуоли и рибосомы.
- **39. Мембранные органеллы:** а) митохондрии и центросома; б) рибосомы и лизосомы; в) эндоплазматическая сеть и комплекс Гольджи; г) лизосомы и центросома; д) комплекс Гольджи, рибосомы и хлоропласты.
- **40. Немембранные органеллы:** а) митохондрии и центросома; б) рибосомы и лизосомы; в) эндоплазматическая сеть; г) комплекс Гольджи и рибосомы; д) центросома.
- **41. Органеллы анаболической системы клетки:** а) митохондрии и эндоплазматическая сеть; б) рибосомы и комплекс Гольджи; в) эндоплазматическая сеть; г) лизосомы и пероксисомы; д) глиоксисомы и рибосомы.
- **42. Органеллы катаболической системы клетки:** а) митохондрии; б) рибосомы, глиоксисомы и эндоплазматическая сеть; в) эндоплазматическая сеть и митохондрии; г) комплекс Гольджи и пероксисомы; д) пероксисомы и лизосомы.
- **43. Химический состав рибосом:** а) белок, иРНК и углеводы; б) ДНК и белок; в) иРНК, рРНК и белок; г) рРНК; д) белок.
- **44. Рибосомы располагаются:** а) на мембранах ЭПС и в гиалоплазме; б) в гиалоплазме и кариоплазме; в) на внутренней ядерной мембране и в хлоропластах; г) на наружной ядерной мембране и в митохондриях; д) в матриксе митохондрий и лизосомах.
- **45.** Информация о структуре рРНК и белков рибосом закодирована в (во): а) теломерах и ядрышковых организаторах; б) центромерах и теломерах; в) ядрышковых организаторах; г) спутниках хромосом; д) вторичных перетяжках спутничных хромосом.
- **46. Функции рибосом:** а) синтез углеводов и белков; б) синтез липидов и углеводов; в) синтез белков; г) расщепление углеводов и белков; д) расщепление белков.
- **47. Структурные компоненты** ЭПС: а) пузырьки; б) каналы; в) цистерны и граны; г) субъединицы и кристы; д) кристы и полости.
- **48. Каналы ЭПС соединяются с:** а) перинуклеарным пространством; б) ядрышком, перинуклеарным пространством; в) лизосомами и хромосомами; г) полостями комплекса Гольджи и митохондриями; д) хромосомами и ядерной пластинкой.
- **49. Функции ЭПС:** а) синтез белков; б) синтез ДНК и компартментализация; в) синтез жиров и углеводов; г) компартментализация и транспорт веществ; д) образование пероксисом и синтез РНК.
- **50.** Структурные компоненты комплекса Гольджи: а) пузырьки и цистерны; б) каналы, кристы и строма; в) граны, строма и пузырьки; г) субъединицы, кристы и вакуоли; д) кристы, матрикс и каналы.

- **51.** Функции комплекса Гольджи: а) сортировка, упаковка и секреция веществ; б) образование комплексных соединений органических веществ и лизосом; в) синтез АТФ, белков и глиоксисом; г) синтез цитоплазматических мембран; д) синтез белков и секреция веществ.
- **52. Первичные лизосомы** это: а) мелкие округлые тельца до 2 мм в диаметре; б) палочковидные тельца, имеют две элементарные мембраны; в) округлые тельца, имеют одну элементарную мембрану, до 2 мкм в диаметре; г) органеллы, матрикс которых содержит рибосомы; д) органеллы, матрикс которых содержит около 30 гидролитических ферментов.
- **53. Функции вторичных лизосом (фагосом):** а) расщепление белков и полисахаридов; б) синтез белков и полисахаридов; в) гетерофагия; г) синтез АТФ и аутофагия; д) разрушение личиночных органов при метаморфозе.
- **54.** Функции пероксисом: а) расщепление белков и полисахаридов; б) окисление аминокислот с образованием H_2O_2 ; в) синтез полисахаридов и жиров; г) гетерофагия и окисление аминокислот с образованием H_2O_2 ; д) разрушение личиночных органов при метаморфозе и аутофагия.
- **55. Функции глиоксисом:** а) расщепление белков и жиров; б) окисление аминокислот с образованием H_2O_2 ; в) синтез полисахаридов и превращение жиров в углеводы; г) расщепление полисахаридов; д) превращение жиров в углеводы.
- **56.** Структурные компоненты митохондрий: а) наружная, внутренняя мембраны и тилакоиды; б) кольцевая ДНК, рибосомы и кристы; в) тилакоиды и АТФ-сомы; г) кристы, цистерны и пузырьки; д) матрикс и тилакоиды.
- **57.** Функции митохондрий: а) синтез специфических белков; б) расщепление белков до аминокислот; в) синтез моносахаридов и $AT\Phi$; г) синтез $AM\Phi$; д) расщепление органических соединений до H_2O и CO_2 .
- **58. Этапы энергетического обмена:** а) подготовительный; б) гликогенез; в) гликогенолиз; г) гликолиз; д) гликонеогенез.
- **59.** Реакции подготовительного этапа энергетического обмена: а) пировиноградная кислота расщепляется до H_2O и CO_2 ; б) глюкоза расщепляется на 2 молекулы молочной кислоты, синтезируются 36 молекул $AT\Phi$; в) крупные органические молекулы расщепляются на мономеры; г) синтезируются крупные органические молекулы из мономеров и 2 молекулы $AT\Phi$; д) глюкоза расщепляется на 2 молекулы молочной кислоты, синтезируются 2 молекулы $AT\Phi$.
- **60. Подготовительный этап энергетического обмена протекает в:** а) кишечнике; б) митохондриях; в) кишечнике и ЭПС; г) цитозоле клеток и митохондриях; д) ядре клеток и цитозоле.
- **61.** Реакции анаэробного этапа энергетического обмена: а) пировиноградная кислота расщепляется до H₂O и CO₂; б) глюкоза расщепляется на 2 молекулы молочной кислоты, синтезируются 36 молекул АТФ; в) крупные органические молекулы расщепляются на мономеры; г) синтезируются 2 молекулы АТФ и крупные органические молекулы из мономеров; д) глюкоза расщепляется на 2 молекулы молочной кислоты, синтезируются 2 молекулы АТФ.
- **62. Анаэробный этап энергетического обмена протекает в:** а) кишечнике; б) цитозоле и митохондриях; в) цитозоле и ЭПС; г) цитозоле клеток; д) комплексе Гольджи и ядре клеток.

- **63. Реакции аэробного этапа энергетического обмена:** а) пировиноградная кислота расщепляется до H₂O и CO₂, синтезируются 2 молекулы АТФ; б) глюкоза расщепляется на 2 молекулы молочной кислоты, синтезируются 36 молекул АТФ; в) крупные органические молекулы расщепляются на мономеры, синтезируются 2 молекулы АТФ; г) синтезируются 2 молекулы АТФ и крупные органические молекулы из мономеров; д) пировиноградная кислота расщепляется до H₂O и CO₂, синтезируются 36 молекул АТФ.
- **64. Аэробный этап энергетического обмена протекает в:** а) кишечнике и цитозоле клеток; б) митохондриях; в) эндоплазматической сети и митохондриях; г) цитозоле клеток; д) комплексе Гольджи и митохондриях.
- **65.** Эффективность аэробного этапа энергетического обмена по сравнению с анаэробным: а) такая же; б) в 2 раза больше; в) в 5 раз больше; г) в 10 раз больше; д) в 18 раз больше.
- **66.** Структурные компоненты интерфазного ядра: а) кариолемма и строма; б) хроматин и тилакоиды; в) кариолимфа и граны, ядрышки; г) строма, кариолемма и хроматин; д) кариолимфа, хроматин и ядрышки.
- **67.** Особенности оболочки ядра (кариолеммы): а) две элементарные мембраны без рибосом и поры; б) одна элементарная мембрана с рибосомами на внутренней поверхности, связанная с каналами ЭПС; в) две элементарные мембраны и перинуклеарное пространство; г) одна элементарная мембрана с рибосомами на наружной поверхности и поры; д) ядерная пластинка, состоящая из белков на внутренней поверхности кариолеммы и поры.
- **68. Химический состав кариоплазмы:** а) ДНК, РНК и углеводы; б) белки, АТФ и липиды; в) комплекс ДНК и гистонов Н₂A; г) нуклеотиды, РНК и углеводы; д) РНК и рибосомы.
- **69. Химический состав ядрышка:** а) белки и ДНК; б) липиды и белки; в) только рРНК; г) иРНК, белки и рРНК; д) ферменты и рРНК.
- **70. Химический состав хроматина:** а) ДНК и иРНК; б) гистоны; в) АТФ; г) свободные нуклеотиды; д) рибосомы.
- **71. Функции кариоплазмы:** а) отделяет содержимое ядра от цитоплазмы; б) осуществляет взаимосвязь структур ядра; в) синтезирует ДНК; г) осуществляет обмен веществ между ядром и цитоплазмой; д) синтезирует белки.
- **72. Функции ядрышек:** а) осуществляют взаимосвязь кариоплазмы с цитоплазмой; б) осуществляют взаимосвязь структур ядра; в) синтезируют ДНК; г) обеспечивают сборку субъединиц рибосом; д) синтезируют рРНК и обеспечивают сборку субъединиц рибосом.
- **73. Функции ядра:** а) синтез специфических белков; б) хранение и передача генетической информации; г) синтез полисахаридов; д) регуляция процессов жизнедеятельности клетки.
- **74.** Структурные компоненты метафазной хромосомы: а) две хроматиды, центриоли и спутник; б) одна хроматида, центромера и теломеры; в) центромера, две хроматиды и теломеры; г) центриоль, спутник и вторичная перетяжка; д) вторичная перетяжка и кинетохор.
- **75. Правила хромосом:** а) непостоянства числа; б) парности и индивидуальности; в) индивидуальности, непостоянства числа и формы; г) непрерывности и непарности; д) постоянства числа.

- **76. Кариотип** это: а) гаплоидный набор хромосом; б) набор хромосом соматической клетки; в) набор хромосом половой клетки; г) диплоидный набор хромосом; д) совокупность генов в диплоидном наборе хромосом.
- 77. **Идиограмма** это: а) несистематизированный кариотип; б) систематизированный кариотип; в) порядок расположения генов в хромосоме; г) порядок расположения нуклеотидов в гене; д) расположение хромосом кариотипа по мере убывания их величины.
- **78.** Денверская классификация хромосом человека учитывает: а) размеры хромосом; б) количество хроматид; в) характер окрашивания хромосом; г) центромерный индекс; д) наличие центромер.
- **79. Центромерный индекс это:** а) количество центромер хромосомы; б) отношение длины короткого плеча к длинному; в) отношение длины короткого плеча к длине всей хромосомы; г) отношение длины длинного плеча к короткому; д) отношение длины длинного плеча к длине всей хромосомы.
- **80.** Парижская классификация хромосом человека учитывает: а) размеры теломер; б) количество хроматид; в) характер окрашивания хромосом; г) центромерный индекс; д) наличие вторичных перетяжек и спутников.
- **81. К** группе **А** по Денверской классификации относятся хромосомы человека: а) большие субметацентрические; б) малые субметацентрические; в) малые метацентрические; г) большие метацентрические; д) малые акроцентрические.
- **82.** К группе В по Денверской классификации относятся хромосомы человека: а) большие субметацентрические, ЦИ 24–30; б) малые субметацентрические, ЦИ 27–35; г) большие метацентрические, ЦИ 34; д) малые акроцентрические, спутничные.
- **83. К группе С по Денверской классификации относятся хромосомы человека:** а) большие субметацентрические, ЦИ около 15; б) средние субметацентрические, ЦИ 27–35; в) малые метацентрические, ЦИ 36–46; г) большие метацентрические, ЦИ 27–35; д) малые акроцентрические, ЦИ 13–33.
- **84. К** группе **D** по Денверской классификации относятся хромосомы человека: а) большие субметацентрические, ЦИ 27–35; б) малые метацентрические, ЦИ 13–33; в) большие метацентрические, спутничные; г) средние акроцентрические, ЦИ около 15; д) малые акроцентрические, ЦИ около 15.
- **85. К** группе **Е** по Денверской классификации относятся хромосомы человека: а) большие субметацентрические; б) малые субметацентрические; в) малые метацентрические; г) большие метацентрические; X-хромосома; д) малые акроцентрические.
- **86. К** группе **F** по Денверской классификации относятся хромосомы человека: а) большие субметацентрические, ЦИ 36–46; б) малые субметацентрические, ЦИ 36–46; в) малые метацентрические, ЦИ 13–33; г) большие метацентрические, ЦИ 34 и спутничные; д) малые акроцентрические, ЦИ 13–33.
- **87.** К группе G по Денверской классификации относятся хромосомы человека: а) большие субметацентрические; б) малые субметацентрические и Y-хромосома; в) малые метацентрические, ЦИ 13–33; г) большие метацентрические, ЦИ 26–40; д) малые акроцентрические.

- **88.** Основные типы деления клеток эукариот: а) митоз и амитоз; б) амитоз, митоз и шизогония; в) мейоз и почкование; г) шизогония, почкование и митоз; д) почкование и фрагментация.
- **89. Периоды интерфазы:** а) профаза, метафаза и премитотический; б) постмитотический; в) пресинтетический и синтетический; г) анафаза, телофаза и пресинтетический; д) постсинтетический;
- **90.** В пресинтетический (G₁) период интерфазы происходит: а) синтез РНК, белков и ферментов; б) синтез ДНК, РНК, белков и АТФ; в) синтез АТФ и рост клетки; г) накопление нуклеотидов ДНК, синтез белков ахроматинового веретена; д) синтез белков ахроматинового веретена, ДНК и РНК.
- **91.** В синтетический (S) период интерфазы происходит: а) удвоение пластид и митохондрий; б) синтез ДНК и рРНК; в) синтез АТФ и белков; г) накопление нуклеотидов ДНК, синтез иРНК и белков; д) синтез белков ахроматинового веретена и ДНК.
- **92.** В постсинтетический (G_2) период интерфазы происходит: а) синтез ДНК и ферментов; б) синтез ДНК, рРНК, рост клетки; в) синтез АТФ; г) накопление нуклеотидов ДНК; д) синтез белков ахроматинового веретена.
- 93. Содержание генетического материала в клетке в пресинтетический (G_1) период интерфазы: a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1nbiv4chr4c.
- **94.** Содержание генетического материала в клетке в конце синтетического (S) периода интерфазы: a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n4chr4c.
- 95. Содержание генетического материала в клетке в постсинтетический (G_2) период интерфазы: a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n4chr4c.
- **96.** Основные причины митоза: а) увеличение ядерно-цитоплазматического отношения; б) уменьшение ядерно-цитоплазматического отношения; в) репликация молекулы ДНК и «раневые гормоны»; г) «раневые гормоны» и митогенетические лучи; д) нарушение целостности кариолеммы.
- **97.** В профазу митоза происходит: а) конденсация хроматина и расхождение центриолей к полюсам; б) деконденсация хромосом и исчезновение ядрышек; в) растворение плазмолеммы и увеличение объема ядра; г) расположение хромосом на экваторе клетки; д) расхождение хроматид к полюсам клетки и конденсация хроматина.
- **98.** В метафазу митоза происходит: а) расхождение центриолей к полюсам клетки; б) деконденсация хромосом и цитокинез; в) растворение кариолеммы и расхождение центриолей к полюсам клетки; г) расположение хромосом на экваторе клетки и конденсация хроматина; д) расхождение хроматид к полюсам клетки.
- **99.** В анафазу митоза происходит: а) конденсация хроматина и расхождение хроматид к полюсам клетки; б) расхождение хроматид к полюсам клетки; в) растворение кариолеммы и конденсация хроматина; г) расположение хромосом на экваторе клетки и исчезновение ядрышка; д) деконденсация хромосом и цитокинез.

- **100.** В телофазу митоза происходит: а) конденсация хроматина и формирование ядерной оболочки; б) деконденсация хромосом и цитокинез; в) растворение кариолеммы и расхождение центриолей к полюсам клетки; г) расположение хромосом на экваторе клетки и цитокинез; д) расхождение хроматид к полюсам клетки и деконденсация хромосом.
- **101.** Содержание генетического материала в клетке в профазу митоза: a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n4chr4c.
- **102.** Содержание генетического материала в клетке в метафазу митоза: a) 1nbiv4chr4c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n1chr1c.
- 103. Содержание генетического материала у каждого полюса клетки в анафазу митоза: a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n4chr4c.
- **104.** Содержание генетического материала в клетке в телофазу митоза: a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n4chr4c.
- **105. Митозом делятся клетки:** а) соматические; б) половые; в) гаметогонии; г) клетки опухолей; д) клетки регенерирующих тканей.
- **106. Амитозом делятся клетки:** а) соматические и стареющие; б) половые и клетки эмбриона; в) гаметогонии; г) клетки опухолей; д) клетки регенерирующих тканей.
- **107. Мейозом делятся клетки:** а) соматические и стареющие; б) половые и клетки эмбриона; в) гаметоциты; г) клетки опухолей; д) клетки регенерирующих тканей.
- **108.** Последовательность стадий профазы мейоза **I**: а) диакинез, диплотена, пахитена, зиготена, лептотена; б) лептотена, диакинез, диплотена, пахитена, зиготена; в) лептотена, зиготена, диакинез, диплотена, пахитена; г) лептотена, зиготена, пахитена, диплотена, пахитена, зиготена, лептотена, диакинез.
- **109.** В профазу мейоза I происходит: а) конденсация хроматина; б) деконденсация хромосом; в) удвоение центросом; г) конъюгация хромосом; д) кроссинговер.
- **110. На стадии диакинеза происходит:** а) растворение ядрышек; б) деспирализация хромосом; в) присоединение ахроматиновых нитей к центромерам хромосом; г) конъюгация хромосом; д) кроссинговер.
- **111. Бивалент это:** а) структура, состоящая из двух негомологичных хромосом; б) структура, состоящая из двух гомологичных хромосом; в) структура, состоящая из четырех гомологичных хромосом; г) триада хроматид; д) тетрада хроматид.
- **112.** В метафазу мейоза I происходит: а) расхождение центриолей к полюсам клетки; б) деспирализация хромосом; в) биваленты располагаются на экваторе клетки; г) конъюгация хромосом; д) кроссинговер.
- **113. В анафазу мейоза I происходит:** а) конденсация хроматина; б) деконденсация хромосом; в) расхождение гомологичных хромосом к полюсам; г) конъюгация хромосом; д) кроссинговер.
- **114.** В телофазу мейоза I происходит: а) конденсация хроматина и растворение ядрышек; б) деконденсация хромосом и образование ядрышек; в) образование кариолеммы; г) конъюгация хромосом и кроссинговер; д) цитокинез.

- **115.** Содержание генетического материала в клетке в профазу мейоза **I:** a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1nbiv2chr2c.
- **116.** Содержание генетического материала в клетке в метафазу мейоза **I:** a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1nbiv4chr4c.
- **117.** Содержание генетического материала у каждого полюса клетки в анафазу мейоза I: a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n4chr4c.
- **118.** Содержание генетического материала в клетке в телофазу мейоза **I:** a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n4chr4c.
- **119. В анафазу мейоза II происходит:** а) спирализация хроматина; б) деспирализация хромосом; в) расхождение хромосом к полюсам клетки; г) конъюгация хромосом и кроссинговер; д) расхождение хроматид к полюсам клетки.
- **120. Биваленты образуются в стадию мейоза I:** а) лептотену; б) зиготену; в) пахитену; г) диплотену; д) диакинез.
- **121. Кроссинговер происходит в стадию мейоза І:** а) лептотену; б) зиготену; в) пахитену; г) диплотену; д) диакинез.
- **122.** В результате мейоза образуются клетки: а) половые с диплоидным набором хромосом; б) с гаплоидным набором хромосом; в) соматические с диплоидным набором хромосом; г) соматические с гаплоидным набором хромосом; д) половые.
- **123.** Гаметогенез это: а) деление соматических клеток; б) размножение гамет; в) слияние гамет; г) процесс образования и созревания гамет; д) мейотическое деление клеток.
- **124. Периоды сперматогенеза:** а) развития, размножения, роста и формирования; б) размножения, роста, созревания и формирования; в) роста, созревания, формирования и развития; г) созревания, развития, роста и формирования; д) размножения, роста и созревания.
- **125. Периоды овогенеза:** а) развития, размножения и роста; б) размножения, роста и созревания; в) роста, созревания и формирования; г) созревания, формирования и развития; д) формирования, роста и развития.
- **126.** В период размножения при гаметогенезе клетки делятся: а) митозом; б) мейозом; в) амитозом; г) фрагментацией; д) шизогонией.
- **127.** В период созревания при гаметогенезе клетки делятся: а) митозом; б) мейозом; в) амитозом; г) фрагментацией; д) шизогонией.

ОРГАНИЗАЦИЯ НАСЛЕДСТВЕННОГО МАТЕРИАЛА

- **128. Роль нуклеиновых кислот в передаче наследственной информации была доказана опытами:** а) по гибридизации; б) по трансформации у бактерий; в) по трансдукции у микроорганизмов; г) X. Френкель-Конрата; д) по выявлению сцепления генов.
- **129. Нуклеотид это:** а) «хромосома» прокариот; б) хромосома эукариот; в) кольцевая молекула ДНК, образующая комплекс с гистоновыми белками;
- г) кольцевая молекула ДНК, образующая комплекс с негистоновыми белками;
- д) мономер нуклеиновой кислоты.
- **130. Нуклеотиды в цепи ДНК соединяются связями:** а) водородными; б) ковалентными; в) фосфодиэфирными; г) пептидными; д) дисульфидными.

- **131. Мономером молекулы ДНК является:** а) аминокислота; б) ген; в) кодон; г) нуклеотид; д) пара нуклеотидов.
- **132.** В состав нуклеотидов ДНК входят азотистые основания: а) аденин, гуанин, тимин и урацил; б) только гуанин и цитозин; в) только цитозин, тимин и аденин; г) тимин, гуанин, аденин и цитозин; д) урацил, аденин, гуанин и цитозин.
- **133.** В состав нуклеотидов РНК входят азотистые основания: а) аденин, гуанин, тимин и урацил; б) только гуанин и цитозин; в) цитозин, тимин и аденин; г) тимин, гуанин, аденин и цитозин; д) урацил, аденин, гуанин и цитозин.
- **134.** Состав нуклеотида ДНК: а) аминокислота, рибоза и азотистое основание; б) дезоксирибоза и азотистое основание; в) рибоза и остаток фосфорной кислоты; г) остаток фосфорной кислоты, азотистое основание и дезоксирибоза; д) азотистое основание, рибоза и остаток фосфорной кислоты.
- **135.** Состав нуклеотида РНК: а) аминокислота, рибоза и азотистое основание; б) дезоксирибоза и азотистое основание; в) рибоза и остаток фосфорной кислоты; г) остаток фосфорной кислоты, азотистое основание и дезоксирибоза; д) азотистое основание, рибоза и остаток фосфорной кислоты.
- **136. Урацил комплементарен:** а) аденину; б) гуанину; в) цитозину; г) тимину; д) урацилу.
- **137. Аденин комплементарен:** а) аденину и тимину; б) гуанину и урацилу; в) цитозину и тимину; г) тимину и урацилу; д) гуанину и цитозину.
- **138. Гуанин комплементарен:** а) аденину; б) гуанину; в) цитозину; г) тимину; д) урацилу.
- **139. Цитозин комплементарен:** а) аденину; б) гуанину; в) цитозину; г) тимину; д) урацилу.
- **140. Тимин комплементарен:** а) аденину; б) гуанину; в) цитозину; г) тимину; д) урацилу.
- **141. Пуриновыми основаниями являются:** а) А и Γ ; б) Ц и T; в) Γ и T; Γ) А и Ц; д) Γ и Ц.
- **142.** Комплементарные пары нуклеотидов двойной цепочки ДНК удерживаются связями: а) водородными; б) ковалентными; в) фосфодиэфирными; г) пептидными; д) дисульфидными.
- **143.** ДНК содержится в: а) рибосомах и хроматине ядра; б) хроматине ядра, гиалоплазме и митохондриях; в) гиалоплазме и хлоропластах; г) митохондриях и хлоропластах; д) хроматине ядра.
- **144. РНК содержится в:** а) рибосомах и лизосомах; б) хроматине ядра, ядрышке и гиалоплазме; в) гиалоплазме, хлоропластах и ядрышках; г) митохондриях, рибосомах и кариолимфе; д) хлоропластах, гиалоплазме и лизосомах.
- **145. Функции ДНК:** а) хранит и воспроизводит генетическую информацию; б) транспортирует аминокислоты к рибосоме; в) передает генетическую информацию дочерним молекулам ДНК; г) транспортирует аминокислоты; детерминирует синтез иРНК; д) детерминирует синтез рРНК.
- **146. Функции иРНК:** а) хранит генетическую информацию; б) транспортирует аминокислоты к рибосоме; в) передает генетическую информацию дочерним молекулам иРНК; г) определяет порядок аминокислот в молекуле полипептида; д) переносит генетическую информацию от ДНК к рибосоме.

- **147. Функции тРНК:** а) хранит генетическую информацию; б) транспортирует аминокислоты к рибосоме; в) передает генетическую информацию дочерним молекулам тРНК; г) непосредственно участвует в сборке молекул полипептидов; д) переносит генетическую информацию от ДНК к рибосоме.
- **148. Функции рРНК:** а) хранит генетическую информацию; б) транспортирует аминокислоты к рибосоме; в) обеспечивает пространственное взаиморасположение иРНК и тРНК; г) непосредственно участвует в сборке молекул полипептидов; д) переносит генетическую информацию от ДНК к рибосоме.
- **149. Уровни упаковки генетического материала эукариот:** а) нуклеосомный; б) нуклеотидный; в) соленоидный; г) суперхроматидный; д) фибриллярный.
- **150.** Для нуклеосомного уровня упаковки генетического материала характерно: а) укорочение нити ДНК в 20 раз; б) образование нитью ДНК около двух витков вокруг белкового октамера; в) петли и изгибы нуклеосомной нити; г) диаметр нуклеосомной нити около 25 нм; д) укорочение нити ДНК в 5–7 раз.
- **151.** Для соленоидного уровня упаковки генетического материала характерно: а) наличие гистонового октамера, укорочение нити ДНК в 2 раза; б) диаметр супернуклеосомной нити около 25 мм; в) петли и изгибы нуклеосомной нити; г) диаметр супернуклеосомной нити около 30 нм; д) укорочение нити ДНК в 10–20 раз.
- **152.** Для супернуклеосомного уровня упаковки генетического материала характерно: а) спирализация и «сшивание» нуклеосомной нити гистоном H₁; б) образование нитью ДНК около двух витков вокруг октамера, диаметр супернуклеосомной нити около 50 нм; в) петли и изгибы нуклеосомной нити, укорочение нити ДНК в 6–7 раз; г) диаметр супернуклеосомной нити около 13 нм; д) диаметр супернуклеосомной нити около 30 нм.
- **153.** Для хроматидного уровня упаковки генетического материала характерно: а) спирализация и «сшивание» нуклеосомной нити гистоном H_1 ; б) 6–10 нуклеосом в одном витке спирали, диаметр петель около 15 нм; в) петли и изгибы супернуклеосомной нити; г) диаметр петель от 50 нм; д) диаметр петель около 25 нм.
- **154.** Для уровня упаковки метафазной хромосомы генетического материала характерно: а) спирализация и «сшивание» нуклеосомной нити гистоном Н₁, укорочение нити ДНК в 10 раз; б) 6–10 нуклеосом в одном витке спирали, диаметр витка спирали около 30 нм; в) петли и изгибы супернуклеосомной нити, укорочение нити ДНК в 5 раз; г) спирализация хроматид в метафазе; д) диаметр петель около 25 нм.
- **155. Направления потоков генетической информации:** а) от ДНК к ДНК; б) ДНК к иРНК; в) иРНК к рРНК; г) рРНК к белку; д) от белка к иРНК.
- **156.** В передаче генетической информации участвуют ферменты: а) аминоацил-тРНК-синтетаза; б) РНК-полимераза; в) эндонуклеаза; г) рестриктаза; д) ревертаза.
- **157. Аутосинтетическая функция гена это:** а) транскрипция; б) трансляция; в) репликация ДНК; г) трансформация; д) трансдукция.

- **158.** Гетеросинтетическая функция гена это: а) транскрипция и репликация; б) трансляция и транскрипция; в) репликация ДНК и репарация; г) трансформация и трансляция; д) только трансляция.
- **159.** Принципы репликации молекулы ДНК: а) полуконсервативность; б) прерывистость; в) параллельность; г) антипараллельность; д) неперекрываемость.
- **160. Репликон это единица:** а) считывания информации; б) функции гена; в) рекомбинации; г) репликации; д) кроссинговера.
- **161. В процессе репликации ДНК участвуют ферменты:** а) ДНК-полимераза; б) РНК-полимераза и хеликаза; в) ревертаза; г) рестриктаза; д) лигаза.
- **162. Фермент лигаза:** а) расщепляет молекулу ДНК на две цепочки; б) синтезирует дочернюю цепочку ДНК при репликации; в) синтезирует цепочку иРНК при транскрипции; г) сшивает нуклеотиды ДНК при репликации или репарации; д) вырезает поврежденные участки ДНК при репарации.
- **163. Фермент ДНК-полимераза:** а) расщепляет молекулу РНК; б) синтезирует дочернюю цепочку ДНК при репликации; в) синтезирует цепочку иРНК при транскрипции; г) сшивает нуклеотиды ДНК при репликации или репарации; д) вырезает поврежденные участки ДНК при репарации.
- **164. Фермент РНК-полимераза:** а) расщепляет молекулу ДНК на две цепочки; б) синтезирует дочернюю цепочку ДНК при репликации; в) синтезирует цепочку иРНК при транскрипции; г) сшивает нуклеотиды ДНК при репликации или репарации; д) вырезает поврежденные участки ДНК при репарации.
- **165. Фермент экзонуклеаза:** а) расщепляет молекулу ДНК на две цепочки; б) синтезирует дочернюю цепочку ДНК при репликации; в) сшивает нуклеотиды ДНК при репликации или репарации; г) вырезает поврежденные участки ДНК при репарации; д) узнает поврежденный участок ДНК и рядом разрывает цепочку.
- **166. Фермент эндонуклеаза:** а) расщепляет молекулу ДНК на две цепочки; б) синтезирует дочернюю цепочку ДНК при репликации; в) сшивает нуклеотиды ДНК при репликации или репарации; г) вырезает поврежденные участки ДНК при репарации; д) узнает поврежденный участок ДНК и рядом разрывает цепочку.
- **167.** Генетический код это: а) нуклеотид ДНК; б) триплет нуклеотидов ДНК; в) ген; г) система записи генетической информации; д) последовательность нуклеотидов в молекуле РНК.
- **168.** Свойства генетического кода: а) наличие разделительных знаков внутри гена и вырожденность; б) отсутствие разделительных знаков внутри гена и избыточность; в) триплетность и универсальность; г) универсальность и перекрываемость; д) перекрываемость и специфичность.
- **169. Кодоны терминаторы РНК:** а) УАА и УГА; б) УАЦ, УАА и АЦА; в) УАГ; г) УГА, УГЦ и УЦА; д) УГЦ и УАГ.
- **170. Кодоны терминаторы** Д**НК:** а) АТТ, АТЦ и АЦГ; б) АТГ и АЦТ; в) АТЦ и АЦТ; г) АЦТ и АЦГ; д) АГТ и АТТ.
 - 171. Инициирующий кодон РНК: а) АГУ; б) УАЦ; в) УАГ; г) АУГ; д) АУА.
 - 172. Инициирующий кодон ДНК: а) АТТ; б) АТГ; в) ТАЦ; г) АЦТ; д) АГТ.

- **173.** Этапы биосинтеза белка: а) репликация и транскрипция; б) репарация и трансляция; в) транскрипция и трансляция; г) репликация и репарация; д) трансляция и репликация.
- **174. Биосинтез белка ускоряют:** а) противоопухолевые препараты; б) анаболические стероиды и предшественники нуклеотидов; в) предшественники нуклеотидов и антибиотики; г) модифицированные азотистые основания; д) инсулин.
- **175. Биосинтез белка угнетают:** а) противоопухолевые препараты; б) анаболические стероиды и модифицированные азотистые основания; в) предшественники нуклеотидов и нуклеозиды; г) антибиотики и анаболические стероиды; д) инсулин и антибиотики.
- **176.** Стадии трансляции: а) репликация и терминация; б) транскрипция и элонгация; в) инициация и элонгация; г) элонгация и репликация; д) терминация.
- **177.** Свойства гена: а) стабильность и лабильность; б) целостность и плейотропность; в) целостность, специфичность и однозначность; г) дискретность и неспецифичность; д) специфичность, триплетность и универсальность.
- **178.** Специфичность это свойство гена: а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **179. Плейотропия это свойство гена:** а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **180. Лабильность это свойство гена:** а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **181.** Экспрессивность это свойство гена: а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **182. Пенетрантность это свойство гена:** а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.

Экспрессия генов у про- и эукариот

- **183.** Элементарной структурной единицей гена является: а) азотистое основание; б) пара комплементарных нуклеотидов; в) кодон; г) один нуклеотид; д) триплет нуклеотидов.
- **184.** Элементарной функциональной единицей гена является: а) один нуклеотид; б) пара комплементарных нуклеотидов; в) кодон; г) транскриптон; д) триплет нуклеотидов.
- **185.** Уровни структурно-функциональной организации генетического материала эукариот: а) генный и геномный; б) хромосомный, клеточный и ге-

- номный; в) геномный и субклеточный; г) клеточный, организменный и генный; д) организменный и популяционный.
- **186.** Следствие генного уровня организации наследственного материала **эукариот:** а) сцепленное наследование генов; б) независимое наследование генов; в) мутации отдельных генов; г) кроссинговер и взаимодействие генов; д) внутриаллельное взаимодействие генов и сцепление генов.
- **187.** Следствие хромосомного уровня организации наследственного материала эукариот: а) сцепленное наследование генов; б) независимое наследование генов; в) мутации отдельных генов и взаимодействие генов; г) кроссинговер; д) хромосомные мутации.
- **188.** Следствие геномного уровня организации наследственного материала эукариот: а) сцепленное наследование генов и кроссинговер; б) независимое наследование генов и хромосомные мутации; в) мутации отдельных генов и кроссинговер; г) геномные мутации; д) взаимодействие генов.
- **189. Классификация генов:** а) структурные, модификаторы и репрессоры; б) интроны, экзоны и ингибиторы; в) функциональные и структурные; г) корепрессоры и операторы; д) регуляторы и интенсификаторы.
- **190. Классификация функциональных генов:** а) регуляторы и репрессоры; б) операторы и корепрессоры; в) интенсификаторы, модификаторы и репрессоры; г) ингибиторы и репрессоры; д) модификаторы и операторы.
- **191. Роль структурных генов:** а) содержат информацию о структуре белкарепрессора; б) содержат информацию о структуре белков-ферментов; в) содержат информацию о структуре белков-гистонов; г) содержат информацию о структуре РНК; д) содержат информацию о структуре РНК и белка-репрессора.
- **192. Роль функциональных генов:** а) содержат информацию о структуре белка-репрессора; б) содержат информацию о структуре белков-ферментов; в) содержат информацию о структуре белков-гистонов; г) содержат информацию о структуре иРНК; регулируют работу структурных генов; д) содержат информацию о структуре рРНК.
- **193.** Ген-регулятор: а) содержит информацию о структуре белка-репрессора; б) содержит информацию о структуре белков-ферментов; в) содержит информацию о структуре белков-гистонов; г) содержит информацию о структуре иРНК; д) непосредственно регулирует работу структурных генов.
- **194. Роль гена-оператора:** а) содержит информацию о структуре белкарепрессора; б) содержит информацию о структуре белков-ферментов; в) «включает» и «выключает» структурные гены; г) содержит информацию о структуре иРНК; д) регулирует работу функциональных генов.
- **195. Роль промотора:** а) содержит информацию о структуре белка-репрессора; б) содержит информацию о структуре белков-ферментов; в) «включает» и «выключает» структурные гены; г) содержит информацию о структуре иРНК; д) место первичного прикрепления фермента РНК-полимеразы.
- **196.** Вещества, стимулирующие синтез ферментов, которые их расщепляют: а) ингибиторы; б) индукторы; в) белки-репрессоры; г) интенсификаторы; д) модификаторы.
- **197.** Единица транскрипции прокариот: а) нуклеотид; б) кодон; в) оперон; г) транскриптон; д) промотор.

- **198.** Единица транскрипции эукариот: а) нуклеотид; б) кодон; в) оперон; г) транскриптон; д) промотор.
- **199. В состав оперона входят:** а) ген-оператор и интрон; б) ген-регулятор и экзон; в) ген-оператор и структурные гены; г) экзоны и промотор; д) промотор и ген-регулятор.
- **200.** В состав транскриптона входят: а) экзоны и интроны; б) гены-операторы и гены-регуляторы; в) структурный ген и инициатор; г) промотор, терминатор и репрессор; д) инициатор и гены-регуляторы.
- **201.** В состав информативной зоны транскриптона входят: а) гены-регуляторы; б) гены-операторы; в) интроны; г) экзоны; д) промотор.
- **202.** В состав неинформативной зоны транскриптона входят: а) генырегуляторы; б) гены-операторы; в) интроны; г) экзоны; д) промотор.
- **203.** Информацию о структуре полипептидов в транскриптоне содержат: а) гены-регуляторы; б) гены-операторы; в) интроны; г) экзоны; д) промотор.
- **204. Процессы, протекающие при созревании про-иРНК:** а) считывание порядка расположения нуклеотидов с одной цепи ДНК; б) выход про-иРНК в цитоплазму; в) ферментативное разрушение неинформативной части про-иРНК; г) сплайсинг экзонов; д) сплайсинг интронов.
- **205.** Уникальные последовательности нуклеотидов выполняют функции: а) генов-регуляторов и экзонов; б) генов-операторов и интронов; в) интронов и экзонов; г) экзонов; д) промоторов.
- **206.** Повторяющиеся последовательности нуклеотидов выполняют функции: а) регулирования репликации молекулы ДНК; б) экзонов; в) интронов и участвуют в кроссинговере; г) экзонов и терминаторов; д) промоторов и инициаторов.
- **207. Функции интронов:** а) регулируют процесс трансляции и репликацию молекул ДНК; б) регулируют процесс транскрипции; в) участвуют в кроссинговере и регулируют процесс трансляции; г) содержат запасную информацию, обеспечивающую изменчивость; д) регулируют процесс трансляции.
- **208. Химическую основу плазмид составляют молекулы:** а) РНК; б) ДНК; в) белков; г) липидов; д) полисахаридов.
- **209. Кольцевые молекулы ДНК содержат:** а) клетки прокариот и пластиды; б) митохондрии и ядро; в) пластиды и вирусы; г) ядро и пластиды; д) митохондрии.
- 210. Критерии цитоплазматической наследственности: а) наличие количественного менделевского расщепления в потомстве; б) отсутствие количественного менделевского расщепления в потомстве; в) возможность выявления сцепления, разные результаты реципрокных скрещиваний; г) наследование по материнской линии, невозможность выявить сцепление; д) одинаковые результаты реципрокных скрещиваний, отсутствие количественного менделевского расщепления в потомстве.
- **211.** Особенности генома митохондрий человека: а) кольцевая молекула ДНК, содержащая около 16 500 пар нуклеотидов; б) кольцевая молекула ДНК, содержащая около 50 000 пар нуклеотидов, входят гены рРНК; в) транскрибируются обе цепочки, содержит гены цитохрома b; г) транскрибируется одна це-

почка, входят гены рРНК; д) содержит информацию о 22 различных тРНК, кольцевая молекула ДНК содержит 160 500 пар нуклеотидов.

212. Наследственные болезни человека, обусловленные мутациями митохондриальных генов: а) фенилкетонурия; б) синдром Лея; в) гемофилия; г) синдром Лебера; д) синдром Дауна.

ГЕННАЯ ИНЖЕНЕРИЯ

- **213. Целью генной инженерии является:** а) конструирование генетических структур по заранее намеченному плану; б) расшифровка порядка нуклеотидов участка ДНК; в) создание организмов с новой генетической программой; г) выявление групп сцепления, секвенирование генов; д) построение генетической карты хромосомы.
- **214. Основные этапы генной инженерии:** а) получение необходимого генетического материала; б) построение генетической карты хромосомы; в) расшифровка порядка нуклеотидов участка ДНК и создание рекомбинантной ДНК; г) отбор трансформированных клеток; д) включение рекомбинантной молекулы ДНК в хромосому.
- **215.** Способы получения генов для пересадки: а) синтез простых генов химическим путем; б) синтез генов на молекуле белка; в) синтез сложных генов с помощью обратной транскрипции; г) построение генетической карты хромосомы; д) вырезание генов с помощью рестриктаз.
- **216.** Рекомбинантные молекулы ДНК могут быть получены методами встраивания гена в: а) белковую молекулу; б) плазмиду бактерий; в) геном вируса; г) липидную молекулу; д) геном бактериофага.
- **217. Ферменты, применяемые в генной инженерии:** а) ДНК-полимеразы; б) липазы и рестриктазы; в) ревертазы и рестриктазы; г) рестриктазы и амилазы; д) лигазы.
- **218.** Методами генной инженерии получены: а) штаммы кишечной палочки, способные синтезировать инулин; б) штаммы кишечной палочки, способные синтезировать соматотропин; в) растения, способные усваивать атмосферный азот; г) микроорганизмы, способные синтезировать из пищевых белков углеводы нефти; д) противовирусные сыворотки.
- **219.** Будущее генной инженерии базируется на следующих достижениях молекулярной биологии: а) возможности переноса генетической информации у эукариот половым путем; б) получении модификаций с помощью химических мутагенов; в) секвенировании генов; г) замене дефектных генов; д) включении в геном человека искусственно синтезированных генов.

ОНТОГЕНЕТИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОГО

ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ

- **220.** Основные закономерности наследования были открыты: а) Γ . Менделем; б) Γ . де Фризом; в) К. Корренсом; Γ) Э. Чермаком; д) Т. Морганом.
- **221.** Особенности гибридологического метода Г. Менделя: а) анализировал одну или две пары альтернативных признаков; б) анализировал много альтернативных признаков; в) анализ начинал со скрещивания гомозиготных организмов; г) анализировал гибриды нескольких поколений; д) анализировал гибриды только одного поколения.
- **222. Чистые линии это организмы:** а) гетерозиготные; б) гомозиготные; в) дающие расщепление при скрещивании с аналогичной по генотипу особью; г) не дающие расщепления при скрещивании с аналогичной по генотипу особью; д) дигетерозиготные.
- **223. Аллельные гены расположены в:** а) одной хромосоме; б) одинаковых локусах гомологичных хромосом; в) разных локусах гомологичных хромосом; г) одинаковых локусах негомологичных хромосом; д) разных локусах негомологичных хромосом.
- **224. Неаллельные гены не могут располагаться в:** а) одной хромосоме; б) одинаковых локусах гомологичных хромосом; в) разных локусах гомологичных хромосом; г) разных хромосомах; д) разных локусах негомологичных хромосом.
- **225.** Доминантный ген это ген: а) проявляющийся только в гомозиготном состоянии; б) проявляющийся только в гетерозиготном состоянии; в) проявляющийся в гомо- и гетерозиготном состоянии; г) подавляющий рецессивный ген; д) подавляемый рецессивным геном.
- 226. Рецессивный ген это ген: а) проявляющийся в гомозиготном состоянии при полном доминировании; б) проявляющийся в гетерозиготном состоянии при полном доминировании; в) всегда проявляющийся в гомо- и гетерозиготном состоянии; г) проявляющийся в гетерозиготном состоянии при неполном доминировании; д) подавляемый доминантным геном при полном доминировании.
- **227. Свойства гомозиготного организма:** а) образует один тип гамет; б) образует 2 типа гамет; в) содержит одинаковые аллельные гены; г) содержит разные аллельные гены; д) дает расщепление при скрещивании с аналогичной по генотипу особью.
- **228.** Свойства гетерозиготного организма: а) образует один тип гамет; б) образует два типа гамет; в) содержит одинаковые аллельные гены; г) содержит разные аллельные гены; д) не дает расщепления при скрещивании с аналогичной по генотипу особью.
- **229.** Генотип это совокупность: а) генов в гаплоидном наборе хромосом; б) ядерных генов и генов цитоплазмы; в) генов сперматиды; г) генов редукционного тельца; д) генов овогонии.
- **230. Фенотип это совокупность:** а) физических характеристик особи; б) всех представителей выборки; в) размаха вариации признака; г) различных феноменов; д) внешних и внутренних признаков организма.

- **231.** Основные положения гипотезы чистоты гамет: а) гены одной аллельной пары у гибридного организма гибридизируются; б) гены одной аллельной пары у гибридного организма не гибридизируются; в) гены разных аллельных пар могут гибридизироваться; г) оба аллельных гена попадают в одну гамету; д) из каждой пары аллельных генов в гамету попадает один ген.
- **232. Первый закон Менделя называется:** а) чистоты гамет; б) сцепленного наследования; в) единообразия гибридов первого поколения; г) расщепления признаков у гибридов; д) независимого наследования признаков у гибридов.
- **233.** Второй закон Менделя называется: а) чистоты гамет; б) доминирования; в) единообразия гибридов первого поколения; г) расщепления признаков у гибридов; д) независимого наследования признаков.
- **234. Третий закон Менделя называется:** а) чистоты гамет; б) доминирования; в) единообразия гибридов первого поколения; г) расщепления признаков у гибридов; д) независимого наследования признаков.
- **235.** Условия, необходимые для проявления законов Менделя: а) кодоминирование; б) неполное доминирование; в) наличие летальных генов; г) механизм равновероятного образования гамет и зигот разного типа; д) гены разных аллельных пар находятся в одной хромосоме.
- **236.** Условия, ограничивающие проявления законов Менделя: а) полное доминирование; б) неполное доминирование; в) наличие летальных генов; г) механизм равновероятного образования гамет и зигот разного типа; д) гены разных аллельных пар находятся в разных хромосомах.
- **237. Анализирующее скрещивание применяется для выявления:** а) мутаций; б) фенотипа особи; в) генотипа особи с рецессивным признаком; г) генотипа особи с доминантным признаком; д) летальных генов.
- **238.** Виды внутриаллельного взаимодействия генов: а) эффект положения и полное доминирование; б) криптомерия и сверхдоминирование; в) кодоминирование и аллельное исключение; г) комплементарность и сверхдоминирование; д) полное доминирование и полимерия.
- **239. Характеристика полного доминирования:** а) доминантный ген не полностью подавляет действие рецессивного гена; б) доминантный ген полностью подавляет действие рецессивного гена; в) гомо- и гетерозиготы фенотипически неотличимы; г) гомо- и гетерозиготы фенотипически различны; д) доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном.
- **240. Характеристика неполного доминирования:** а) доминантный ген не полностью подавляет действие рецессивного гена; б) доминантный ген полностью подавляет действие рецессивного гена; в) гомо- и гетерозиготы фенотипически неотличимы; г) гомо- и гетерозиготы фенотипически различны; д) доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном.
- **241. Характеристика сверхдоминирования:** а) разновидность взаимодействия аллельных генов; б) доминантный ген полностью подавляет действие рецессивного гена; в) гомо- и гетерозиготы фенотипически неотличимы; г) разновидность взаимодействия неаллельных генов; д) доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном.

- **242. Характеристика кодоминирования:** а) доминантный ген не полностью подавляет действие рецессивного гена; б) разновидность взаимодействия аллельных генов, гены равнозначны; в) гомо- и гетерозиготы фенотипически неотличимы; г) разновидность взаимодействия неаллельных генов; д) доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном.
- **243. Характеристика аллельного исключения:** а) доминантный ген полностью подавляет действие рецессивного гена; б) разновидность взаимодействия аллельных генов; в) разновидность взаимодействия неаллельных генов; г) доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном; д) у гетерозиготного организма в разных клетках активны разные аллели одного гена.
- **244. Виды межаллельного взаимодействия генов:** а) эффект положения и криптомерия; б) эпистаз и некумулятивная полимерия; в) кодоминирование и полимерия; г) комплементарность и плейотропия; д) сверхдоминирование и пороговый эффект.
- 245. Характеристика комплементарности: а) взаимное влияние генов разных аллелей, занимающих соседние локусы одной хромосомы; б) присутствие в генотипе двух доминантных генов из разных аллельных пар приводит к проявлению нового признака; в) присутствие в генотипе двух пар рецессивных генов из разных аллельных пар приводит к проявлению нового признака; г) доминантный (рецессивный) ген из одной аллельной пары подавляет действие доминантного (рецессивного) гена из другой аллельной пары; д) гены из разных аллельных пар влияют на степень проявления одного признака.
- 246. Характеристика эпистаза: а) взаимное влияние генов разных аллелей, занимающих соседние локусы одной хромосомы; б) присутствие в генотипе двух доминантных генов из разных аллельных пар приводит к проявлению нового признака; в) присутствие в генотипе двух рецессивных генов из разных аллельных пар приводит к проявлению нового признака; г) доминантный (рецессивный) ген из одной аллельной пары подавляет действие доминантного (рецессивного) гена из другой аллельной пары; д) один ген влияет на проявление разных признаков.
- **247. Характеристика полимерии:** а) взаимное влияние генов разных аллелей, занимающих соседние локусы одной хромосомы; б) присутствие в генотипе двух доминантных генов из разных аллельных пар приводит к проявлению нового признака; в) присутствие в генотипе двух рецессивных генов из разных аллельных пар приводит к проявлению нового признака; г) один ген влияет на проявление разных признаков; д) гены из разных аллельных пар влияют на степень проявления одного признака.
- 248. Характеристика эффекта положения гена: а) взаимное влияние генов разных аллелей, занимающих соседние локусы одной хромосомы; б) присутствие в генотипе двух доминантных генов из разных аллельных пар приводит к проявлению нового признака; в) присутствие в генотипе двух рецессивных генов из разных аллельных пар приводит к проявлению нового признака; г) доминантный (рецессивный) ген из одной аллельной пары подавляет действие доминантного (рецессивного) гена из другой аллельной пары; д) гены из разных аллельных пар влияют на степень проявления одного признака.

- **249. Характеристика плейотропии:** а) присутствие в генотипе двух доминантных генов из разных аллельных пар приводит к проявлению нового признака; б) присутствие в генотипе двух рецессивных генов из разных аллельных пар приводит к проявлению нового признака; в) доминантный (рецессивный) ген из одной аллельной пары подавляет действие доминантного (рецессивного) гена из другой аллельной пары; г) гены из разных аллельных пар влияют на проявление одного признака; д) один ген влияет на проявление нескольких признаков.
- **250.** Явление сцепления наблюдается при расположении генов разных аллельных пар: а) в одной хромосоме; б) в разных хромосомах; в) только в аутосомах; г) только в X-хромосоме; д) только в Y-хромосоме.
- **251. Полное сцепление генов наблюдается:** а) у самки мухи дрозофилы и самца тутового шелкопряда; б) если гены разных аллельных пар расположены в разных хромосомах; в) если происходит кроссинговер; г) если не происходит кроссинговер; д) у самца мухи дрозофилы и самки тутового шелкопряда.
- **252. Неполное сцепление генов наблюдается:** а) если гены разных аллельных пар расположены в одной хромосоме; б) если гены разных аллельных пар расположены в разных хромосомах; в) если происходит кроссинговер; г) если не происходит кроссинговер; д) у самца мухи дрозофилы и самки тутового шелкопряда.
- **253.** Основные положения хромосомной теории наследственности: а) аллельные гены расположены в линейном порядке в одинаковых локусах гомологичных хромосом; б) аллельные гены занимают разные локусы гомологичных хромосом; в) число групп сцепления равно гаплоидному набору хромосом; г) число групп сцепления равно диплоидному набору хромосом; д) между гомологичными хромосомами у самца дрозофилы возможен кроссинговер.
- **254.** Расщепление по фенотипу для моногибридного скрещивания гетерозигот при полном доминировании: a) 41,5:8,5:8,5:41,5; б) 3:1; в) 1:2:1; г) 9:3:3:1; д) 1:1.
- **255.** Расщепление по фенотипу для дигибридного скрещивания гомозигот при полном доминировании: а) отсутствует; б) 3:1; в) 1:2:1; г) 9:3:3:1; д) 1:1.
- **256.** Расщепление по фенотипу для дигибридного скрещивания гетерозигот при полном доминировании: a) 41,5:8,5:8,5:41,5; б) 3:1; в) 1:2:1; г) 9:3:3:1; д) 1:1.
- **257.** Расщепление по фенотипу для моногибридного скрещивания гетерозигот при неполном доминировании: a) 41,5:8,5:8,5:41,5; б) 3:1; в) 1:2:1; г) 9:3:3:1; д) 1:1.
- **258.** Расщепление по фенотипу для моногибридного скрещивания гомозигот при полном доминировании: a) отсутствует; б) 3:1; в) 1:2:1; г) 9:3:3:1; д) 1:1.
- **259.** Расщепление по фенотипу при неполном сцеплении генов в опытах Моргана: а) 3 : 1; б) 1 : 2 : 1; в) 9 : 3 : 3 : 1; г) 1 : 1; д) 41,5 : 8,5 : 8,5 : 41,5.
- **260.** Расщепление по фенотипу при полном сцеплении генов в опытах Моргана: a) 41,5 : 8,5 : 8,5 : 41,5; б) 3 : 1; в) 1 : 2 : 1; г) 9 : 3 : 3 : 1; д) 1 : 1.

Биология и генетика пола

- **261. Первичные половые признаки:** а) органы, принимающие непосредственное участие в репродукции; б) органы, не участвующие в гаметогенезе и оплодотворении; в) привлекают особей противоположного пола; г) формируются в процессе полового созревания; д) наружные и внутренние половые органы.
- **262.** Вторичные половые признаки: а) наружные и внутренние половые органы; б) принимают непосредственное участие в репродукции; в) способствуют встрече особей разного пола; г) развиваются под влиянием половых гормонов; д) появляются у организмов в первый период среднего возраста.
- **263.** Вторичными половыми признаками являются: а) яичники; б) яички; в) предстательная железа; г) степень развития молочных желез; д) тимус.
- **264.** Соматические признаки, обусловленные полом, подразделяют на: а) ограниченные полом; б) контролируемые полом; в) X-сцепленные; г) вторичные половые признаки; д) первичные половые признаки.
- **265.** Развитие признаков, ограниченных полом, обусловлено генами, локализованными в: а) аутосомах только мужского организма; б) аутосомах только женского организма; в) гомологичных участках X- и Y-хромосом; г) негомологичных участках X-хромосомы; д) аутосомах обоих полов.
- **266. Характерные черты признаков, ограниченных полом:** а) проявляются фенотипически только у женских особей; б) проявляются фенотипически только у мужских особей; в) проявляются фенотипически у обоих полов; г) проявляются фенотипически только у одного пола; д) степень проявления зависит от пола.
- **267.** Развитие признаков, контролируемых полом, обусловлено генами, локализованными в: а) аутосомах только мужского организма; б) аутосомах только женского организма; в) аутосомах обоих полов; г) негомологичных участках X-хромосомы; д) негомологичных участках Y-хромосомы.
- **268. Характерные черты признаков, контролируемых полом:** а) проявляются фенотипически только у женских особей; б) проявляются фенотипически только у мужских особей; в) обусловлены генами половых хромосом; г) проявляются фенотипически только у одного пола; д) степень и частота проявления зависит от пола.
- **269. Развитие признаков, сцепленных с полом, обусловлено генами, ло- кализованными в:** а) аутосомах мужского организма; б) аутосомах женского организма; в) гомологичных участках X- и Y-хромосом; г) негомологичных участках X-хромосомы; д) аутосомах обоих полов.
- **270.** Характерные черты признаков, сцепленных с Х-хромосомой: а) проявляются фенотипически только у женских особей; б) проявляются фенотипически только у мужских особей; в) проявляются фенотипически преимущественно у мужских особей; г) не проявляются у особей женского пола; д) не проявляются у особей мужского пола.
- **271. Примеры признаков, сцепленных с Х-хромосомой:** а) нормальное цветовое зрение и дальтонизм; б) европеоидный разрез глаз; в) положительный резус-фактор; г) синдром «кошачьего крика»; д) нормальный рост зубов и их полное отсутствие.

- **272.** Развитие голандрических признаков обусловлено генами, локализованными в: а) аутосомах мужского организма; б) хромосомах половых клеток; в) гомологичных участках X- и Y-хромосом; г) негомологичных участках X-хромосомы; д) негомологичных участках Y-хромосомы.
- **273. Характерные черты голандрических признаков:** а) проявляются фенотипически только у женских особей; б) проявляются фенотипически только у мужских особей; в) проявляются фенотипически преимущественно у мужских особей; г) проявляются фенотипически преимущественно у женских особей; д) степень проявления зависит от пола.
- **274. Примеры голандрических признаков:** а) обволошенность средних фаланг пальцев; б) нормальная свертываемость крови и гемофилия; в) приросшая мочка уха; г) отрицательный резус-фактор; д) нормальный рост зубов и их полное отсутствие;
- **275.** Формирование закладок половой железы идет до следующей недели эмбриогенеза: а) 1- \ddot{u} ; б) 2- \ddot{u} ; в) 3- \ddot{u} ; г) 4- \ddot{u} ; д) 5- \ddot{u} .
- **276.** Дифференцировка закладок в половые железы происходит в следующие недели эмбриогенеза: а) с 1-й по 4-ю; б) с 4-й по 6-ю; в) с 4-й по 8-ю; г) с 4-й по 12-ю; д) с 10-й по 15-ю.
- **277.** Формирование закладок половой железы до **4-**й недели эмбриогенеза идет под контролем генов: а) аутосом; б) одной X-хромосомы; в) двух X-хромосом; г) Y-хромосомы; д) X- и Y-хромосом.
- **278.** Дифференцировка закладок в половые железы идет под контролем **генов:** а) аутосом; б) одной X-хромосомы; в) второй X-хромосомы; г) Y-хромосомы; д) плазмогенов.
- **279. При отсутствии в кариотипе второй половой хромосомы гонады:** а) дифференцируются; б) не дифференцируются; в) на их месте образуются соединительнотканные тяжи; г) частично атрофируются; д) полностью атрофируются.
- **280.** Характерные признаки синдрома Морриса: а) набор половых хромосом X0; б) набор половых хромосом XXY; в) в эмбриогенезе закладываются яичники; г) не образуется белок-рецептор, обеспечивающий чувствительность соматических клеток к тестостерону; д) не образуется белок-рецептор, обеспечивающий чувствительность соматических клеток к эстрогену.
- **281.** Физикальные детерминанты пола у человека: а) генетический пол; б) гонадный пол; в) цитологический пол; г) гаметный пол; д) психологический пол.
- **282.** Нарушения физикальных детерминант пола у человека: а) генетический пол; б) гомосексуализм; в) трансвестизм; г) гаметный пол; д) гермафродитизм.
- **283.** Социально-психологические детерминанты пола у человека: а) морфофизиологический пол; б) гаметный пол; в) половое самосознание; г) гражданский пол; д) выбор полового партнера.
- **284.** Гетеросексуализм это явление, когда человек: а) выбирает полового партнера другого пола; б) выбирает полового партнера своего пола; в) ведет себя как принадлежащий к другому полу; г) желает изменить свой пол; д) гермафродит.

- **285.** Гомосексуализм это явление, когда человек: а) выбирает полового партнера другого пола; б) выбирает полового партнера своего пола; в) ведет себя как принадлежащий к другому полу; г) желает изменить свой пол; д) гермафродит.
- **286. Транссексуализм это явление, когда человек:** а) выбирает полового партнера другого пола; б) выбирает полового партнера своего пола; в) ведет себя как принадлежащий к другому полу; г) желает изменить свой пол; д) бесплоден.
- **287. Трансвестизм это явление, когда человек:** а) выбирает полового партнера другого пола; б) выбирает полового партнера своего пола; в) половое удовлетворение достигается при переодевании в одежду другого пола; г) желает изменить свой пол; д) бесплоден.
- **288.** Гинандроморфы это организмы, содержащие: а) диплоидный набор хромосом; б) гаплоидный набор хромосом; в) полиплоидный набор хромосом; г) разный набор аутосом в разных соматических клетках; д) разный набор половых хромосом в разных соматических клетках.
- **289.** Примеры хромосомных болезней пола у человека это синдромы: а) Дауна; б) Патау; в) «кошачьего крика»; г) Эдвардса; д) Клайнфелтера.
- **290. Характеристика синдрома Шерешевского—Тернера:** а) кариотип 45,X0; б) снижен интеллект; в) повышен риск заболевания шизофренией; г) недоразвиты первичные и вторичные половые признаки; д) крыловидная складка кожи на шее.
- **291. Характеристика синдрома Клайнфелтера:** а) кариотип 47,ХХҮ; б) крыловидная складка кожи на шее; в) женский организм с мужеподобным телосложением; г) гинекомастия; д) кариотип 47,ХХХ.
- **292. Характеристика синдрома трисомии Х:** а) кариотип 47,ХХХ; б) кариотип 47,ХХХ; в) женский организм с мужеподобным телосложением; г) мужской организм с женоподобным телосложением; д) низкий рост.
- **293. Характеристика больных с лишними Y-хромосомами:** а) агрессивное поведение; б) повышен интеллект; в) высокий рост, относительно короткие руки и ноги; г) низкий рост, относительно длинные руки и ноги; д) половые железы развиты нормально.
- **294.** Запись кариотипа при синдроме Шерешевского-Тернера: а) 46,XY,5p⁻; б) 45,X0; в) 47,XXY; г) 47,XX,21⁺; д) 46,XX,9p⁺.
- **295.** Запись кариотипа при синдроме Клайнфелтера: a) 47,XXY; б) 45,X0; в) 47,XXX; г) 46,XY; д) 46,XY,9p⁺.
- **296. Тельце Барра** э**то:** а) активная Y-хромосома; б) инактивированная Y-хромосома; в) активная X-хромосома; г) инактивированная X-хромосома; д) инактивированные X- и Y-хромосомы.
- **297.** Основные положения гипотезы М. Лайон: а) обе X-хромосомы женского организма активны постоянно; б) одна из X-хромосом женского организма инактивируется на 16-й неделе эмбриогенеза с образованием глыбки полового хроматина; в) отцовская и материнская X-хромосомы содержат аллельные, но не абсолютно одинаковые гены; г) отцовская и материнская X-хромосомы содержат абсолютно одинаковые гены; д) в женском организме имеется большее разнообразие ферментов, кодируемых генами, локализованными в X-хромосомах.

298. Причины большей жизнестойкости женского организма: а) мозаицизм по половым хромосомам; б) мозаицизм по аутосомам; в) мозаицизм по аутосомам; г) меньшая связь с вредными и опасными условиями труда; д) женщины менее подвержены инфекционным заболеваниям.

Изменчивость

- **299. Фенокопия это:** а) одинаковое фенотипическое проявление мутаций разных генов; б) полное подавление действия одного гена другим геном; в) явление, когда ненаследственная изменчивость копирует наследственную изменчивость; г) степень фенотипического проявления гена; д) явление, когда ген изменяется под действием среды и копирует другой признак.
- **300.** Генокопия это: а) вид взаимодействия генов; б) одинаковое фенотипическое проявление мутаций разных генов; в) явление, когда признак изменяется под действием среды и копирует признак другого генотипа; г) степень фенотипического проявления гена; д) частота фенотипического проявления гена.
- **301.** Свойства модификаций: а) носят приспособительный характер; б) наследуются; в) не наследуются; г) являются материалом для естественного отбора; д) являются материалом для искусственного отбора.
- **302. Норма реакции** это: а) вид взаимодействия генов; б) границы модификационной изменчивости; в) явление, когда признак изменяется под действием среды и копирует признак другого генотипа; г) границы комбинативной изменчивости; д) частота фенотипического проявления гена.
- **303. Комбинативная изменчивость обусловлена:** а) мутациями; б) перекомбинацией генов при кроссинговере; в) независимым расхождением хромосом в анафазу мейоза II и хроматид в анафазу мейоза I; г) случайным сочетанием гамет при оплодотворении; д) внутриаллельным взаимодействием генов.
- **304.** Свойства мутаций: а) носят приспособительный характер; б) наследуются; в) не наследуются; г) носят групповой характер; д) возникают внезапно.
- **305.** Свойства спонтанных мутаций: а) носят приспособительный характер; б) наследуются; в) не наследуются; г) являются материалом для искусственного отбора; д) носят групповой характер.
- **306. Мутагенные факторы подразделяют на:** а) физические; б) экологические; в) химические; г) антропогенные; д) биологические.
- **307. К** физическим мутагенам относят: а) ионизирующие излучения; б) природные органические и неорганические вещества; в) продукты промышленной переработки природных соединений; г) вирусы; д) продукты метаболизма паразитов.
- **308.** Физические мутагены вызывают: а) образование Т-Т димеров; б) дезаминирование и алкилирование нуклеотидов; в) замену азотистых оснований их аналогами; г) разрывы нитей веретена деления; д) встраивание ДНК вируса в ДНК клеток хозяина.
- **309. К химическим мутагенам относят:** а) ионизирующие излучения; б) некоторые природные органические и неорганические соединения; в) рентгеновские лучи; г) некоторые лекарства; д) конечные продукты диссимиляции.

- **310. Химические мутагены вызывают:** а) образование Т-Т димеров; б) дезаминирование и алкилирование нуклеотидов; в) замену азотистых оснований их аналогами; г) разрывы нитей веретена деления; д) встраивание вирусной ДНК в ДНК клеток хозяина.
- **311. К биологическим мутагенам относят:** а) водоросли; б) пищевые добавки; в) лишайники; г) вирусы; д) продукты метаболизма паразитов.
- **312. Биологические мутагены вызывают:** а) нарушение структуры генов и хромосом; б) полиплоидию; в) образование тиминовых димеров; г) гаплоидию; д) встраивание своей ДНК в ДНК клеток хозяина.
- **313. Виды мутаций по вызвавшим их причинам:** а) соматические и геномные; б) спонтанные и филогенетические; в) генеративные и хромосомные; г) индуцированные и экологические; д) спонтанные и индуцированные.
- **314. Виды мутаций по мутировавшим клеткам:** а) соматические; б) спонтанные; в) генеративные; г) индуцированные; д) генные.
- **315. Характерные признаки соматических мутаций:** а) происходят в половых клетках; б) происходят в соматических клетках; в) проявляются фенотипически у самой особи; г) передаются потомкам при половом размножении; д) передаются потомкам при бесполом размножении.
- **316.** Фенотипические проявления соматических мутаций у человека: а) фенилкетонурия; б) синдром Дауна; в) энурез; г) галактоземия; д) разный цвет глаз.
- **317. Характерные признаки генеративных мутаций:** а) происходят в половых клетках; б) происходят в соматических клетках; в) проявляются у самой особи; г) передаются потомкам при половом размножении; д) передаются потомкам при бесполом размножении.
- **318.** Фенотипические проявления генеративных мутаций у человека: а) фенилкетонурия; б) синдром Дауна; в) злокачественные опухоли; г) гипертоническая болезнь; д) разный цвет глаз.
- **319. Виды мутаций по исходу для организма:** а) соматические; б) нейтральные; в) полулетальные; г) летальные; д) хромосомные.
- **320.** Фенотипические проявления полулетальных мутаций у человека: а) коклюш; б) краснуха; в) внутриутробная гибель плода; г) гемофилия; д) серповидно-клеточная анемия.
- **321. Фенотипические проявления нейтральных мутаций у человека:** а) фенилкетонурия; б) синдром Шерешевского–Тернера; в) разный цвет глаз; г) гемофилия; д) серповидно-клеточная анемия.
- **322.** Виды мутаций по изменениям генетического материала: а) соматические и летальные; б) геномные и генные; в) генеративные и хромосомные; г) генные и хромосомные; д) хромосомные и индуцированные.
- **323.** Геномные мутации обусловлены: а) нерасхождением хромосом и хроматид в анафазу митоза или мейоза; б) нарушением процесса кроссинговера; в) эндомитозом; г) изменением структуры хромосом; д) разрушением нитей веретена деления.
- **324. Виды геномных мутаций:** а) полиплоидия; б) делеция; в) дупликация; г) анеуплоидия; д) гаплоидия.

- **325. Полиплоидия это:** а) некратное гаплоидному увеличение числа хромосом; б) кратное гаплоидному увеличение числа хромосом; в) некратное гаплоидному уменьшение числа хромосом; г) кратное гаплоидному уменьшение числа хромосом; д) одинарный набор хромосом.
- **326.** Гаплоидия это: а) положительная мутация; б) нулисомия; в) моносомия; г) отсутствие одной хромосомы; д) одинарный набор хромосом.
- **327. Анеуплоидия** это: а) некратное гаплоидному увеличение числа хромосом; б) кратное гаплоидному увеличение числа хромосом; в) некратное гаплоидному уменьшение числа хромосом; г) кратное гаплоидному уменьшение числа хромосом; д) одинарный набор хромосом.
- **328. Виды анеуплоидий:** а) полиплоидия; б) трисомия; в) нулисомия; г) транзиция; д) дупликация.
- **329.** Фенотипические проявления геномных мутаций у человека это синдромы (болезни): а) Дауна; б) Коновалова—Вильсона; в) «кошачьего крика»; г) Леша—Нихана; д) Клайнфелтера.
- **330. Хромосомные мутации обусловлены:** а) изменением порядка нуклеотидов в молекуле ДНК; б) инверсией; в) кратным увеличением числа хромосом; г) анеуплоидией; д) уменьшением числа хромосом.
- **331. Виды хромосомных мутаций:** а) делеции; б) трисомии; в) репликации; г) транзиции; д) нулисомии.
- **332.** Делеция это: а) поворот участка хромосомы на 180°; б) нехватка среднего участка хромосомы; в) удвоение терминального участка хромосомы; г) уменьшение числа хромосом; д) обмен участками негомологичных хромосом.
- **333.** Дупликация это: а) поворот участка хромосомы на 180°; б) удвоение участка хромосомы; в) нехватка терминального участка хромосомы; г) нехватка среднего участка хромосомы; д) обмен участками негомологичных хромосом.
- **334.** Кольцевые хромосомы образуются в случае, если: а) две негомологичные хромосомы обмениваются сегментами; б) сегменты одной хромосомы переносятся на другую; в) две акроцентрические хромосомы соединяются своими центромерами; г) происходит делеция теломер; д) плечи хромосом представляют собой зеркальное отражение.
- **335. Инверсия это:** а) поворот участка хромосомы на 180°; б) удвоение участка хромосомы; в) нехватка терминального участка хромосомы; г) нехватка среднего участка хромосомы; д) обмен участками негомологичных хромосом.
- **336. Транслокация это:** а) поворот участка хромосомы на 180°; б) удвоение участка хромосомы; в) нехватка участка хромосомы; г) уменьшение числа хромосом; д) обмен участками негомологичных хромосом.
- **337. Транслокации бывают:** а) реципрокные; б) нереципрокные; в) транзиции; г) трансверсии; д) трансгенации.
- **338. Робертсоновские транслокации:** а) две негомологичные хромосомы обмениваются сегментами; б) сегменты одной хромосомы переносятся на другую; в) две акроцентрические хромосомы соединяются своими центромерами; г) участок хромосомы поворачивается на 180°; д) плечи хромосом представляют собой зеркальное отражение.

- **339. Реципрокные транслокации:** а) две негомологичные хромосомы обмениваются сегментами; б) сегменты одной хромосомы переносятся на другую; в) две акроцентрические хромосомы соединяются своими центромерами; г) участок хромосомы поворачивается на 180°; д) плечи хромосом представляют собой зеркальное отражение.
- **340. Нереципрокные транслокации:** а) две негомологичные хромосомы обмениваются сегментами; б) сегменты одной хромосомы переносятся на другую негомологичную; в) две акроцентрические хромосомы соединяются своими центромерами; г) участок хромосомы поворачивается на 180°; д) теряется терминальный участок хромосомы.
- **341.** Фенотипические проявления хромосомных мутаций у человека это синдромы (болезни): а) Дауна; б) Патау; в) «кошачьего крика»; г) Вольфа– Хиршхорна; д) Клайнфелтера.
- **342. Генные мутации обусловлены:** а) изменением порядка нуклеотидов в молекуле тРНК; б) изменением структуры хромосом; в) кратным увеличением числа хромосом; г) транслокациями; д) трансверсиями.
- **343. Виды мутаций структурных генов:** а) трансдукции; б) транспозиции; в) транслокации; г) сдвиг рамки считывания; д) транзиции.
- **344.** Виды мутаций функциональных генов: а) транспозиции; б) нарушение чередования рекогниции и терминации; в) нарушение чередования инициации и элонгации; г) нарушение чередования индукции и репрессии; д) транзиции.
- **345. Миссенс-мутации структурных генов приводят к:** а) прекращению синтеза полипептида; б) синтезу других полипептидов; в) образованию «бессмысленных» кодонов; г) замене одной аминокислоты в полипептиде; д) замене нескольких аминокислот в полипептиде.
- **346. Нонсенс-мутации структурных генов приводят к:** а) остановке синтеза полипептида до его завершения; б) синтезу других полипептидов; в) нарушению транскрипции; г) замене одной аминокислоты в полипептиде; д) замене нескольких аминокислот в полипептиде.
- **347.** Устойчивость генетического материала не обеспечивается: а) гаплоидным набором хромосом; б) диплоидным набором хромосом; в) двойной спиралью ДНК; г) вырожденностью генетического кода; д) репарацией нарушений структуры молекулы ДНК.
- **348. Репарация генетического материала обеспечивается:** а) фотореактивацией; б) диплоидным набором хромосом; в) двойной спиралью ДНК; г) вырожденностью генетического кода; д) повтором некоторых генов.
- **349. Разновидности репарации генетического материала:** а) посттрансляционная; б) фотореактивация; в) пострепликативная; г) эксцизионная; д) «сшивание» синтезированного участка ДНК с ДНК-полимеразой.
- 350. Последовательность этапов темновой репарации генетического материала: 1) синтез нового участка ДНК; 2) «сшивание» синтезированного участка ДНК с основной нитью; 3) «узнавание» поврежденного участка; 4) «вырезание» поврежденного участка; 5) репликация молекулы ДНК: а) 1-5-2-3; б) 5-1-3-2; в) 3-4-5-2; г) 3-4-2-1; д) 3-4-1-2.

- **351. Ферменты, участвующие в темновой репарации:** а) РНК-полимераза; б) ДНК-полимераза; в) лиаза; г) экзонуклеаза; д) рестриктаза.
- **352. Болезни человека, обусловленные нарушением процессов репарации:** а) болезнь Вильсона–Коновалова; б) синдром Дауна; в) синдром «кошачьего крика»; г) пигментная ксеродерма; д) фенилкетонурия.
- **353. В основе канцерогенеза согласно мутационной концепции лежат:** а) стойкие нарушения регуляции активности генов; б) хромосомные мутации соматических клеток; в) геномные мутации соматических клеток; г) генные мутации соматических клеток; д) наличие в соматических клетках организма онкогенов в неактивном состоянии.
- **354.** В основе канцерогенеза согласно эпигеномной концепции лежат: а) стойкие нарушения регуляции активности генов; б) хромосомные мутации соматических клеток; в) геномные мутации соматических клеток; г) повреждения структурных генов; д) включение вирусной ДНК в геном соматических клеток.
- **355.** В основе канцерогенеза согласно вирусо-генетической концепции лежат: а) стойкие нарушения регуляции активности генов; б) геномные и хромосомные мутации соматических клеток; в) включения вирусной ДНК в геном соматических клеток; г) повреждения функциональных генов; д) наличие в соматических клетках организма онкогенов в неактивном состоянии.
- **356.** В основе канцерогенеза согласно концепции онкогена лежат: а) получение организмами протоонкогенов от родителей либо внесение их интегративными вирусами; б) хромосомные мутации соматических клеток; в) наличие в соматических клетках организма протоонкогенов; г) геномные мутации соматических клеток; д) включения вирусной ДНК в геном соматических клеток.

МЕТОДЫ ИЗУЧЕНИЯ ГЕНЕТИКИ ЧЕЛОВЕКА

- **357.** Генетика человека изучает: а) генетические карты политенных хромосом; б) наследование нормальных и патологических признаков у человека; в) цитологические карты политенных хромосом; г) полное сцепление генов; д) механизмы наследственной предрасположенности к мультифакториальным заболеваниям.
- **358. Трудности изучения генетики человека:** а) простой кариотип; б) раннее половое созревание; в) малое количество потомков; г) большое количество потомков; д) возможность экспериментирования.
- 359. Задачи генетики человека на современном этапе: а) ранняя диагностика наследственных болезней путем совершенствования экспресс-методов и методов пренатальной диагностики; б) разработка методов генной терапии на основе генной и клеточной инженерии; в) применение гибридологического метода; г) широкое внедрение в медицинскую практику медико-генетического консультирования; д) изучение первичных и вторичных половых признаков.
- **360. Методы изучения генетики человека:** а) основные и экспериментальные; б) пренатальной диагностики и гибридологический; в) экспресс-диагностики и основные; г) молекулярно-генетические и палеонтологические; д) социологические и сравнительно-анатомические.

- **361. Клинико-генеалогический метод основан на:** а) использовании математического выражения закона Харди—Вайнберга; б) создании и изучении математических моделей; в) построении и анализе родословных; г) изучении монои дизиготных близнецов; д) микроскопическом изучении кариотипа.
- **362. Клинико-генеалогический метод позволяет установить:** а) роль наследственности и среды в проявлении признака; б) наследственный характер признака; в) тип наследования; г) изменения кариотипа; д) коэффициент наследования.
- **363.** Этапы генеалогического анализа: а) сбор анамнеза; б) определение частот генов и генотипов в популяции; в) построение генетической карты хромосомы; г) изучение роли среды в проявлении признака; д) анализ родословной.
- **364. Пробанд** это: а) больной, обратившийся к врачу; б) врач-генетик; в) индивидуум, с которого начинается построение родословной; г) беременная женщина; д) сестра больного, обратившаяся к врачу.
- **365.** Сибсы это: а) все родственники пробанда; б) дяди пробанда; в) тети пробанда; г) родители пробанда; д) братья и сестры пробанда.
- **366. Типы наследования признаков:** а) гоносомно-аутосомный; б) аутосомно-гоносомный; в) аутосомно-рецессивный; г) X-сцепленный доминантный; д) голандрический.
- **367. Аутосомно-доминантный тип наследования характеризуется:** а) больные в каждом поколении; б) больные не в каждом поколении; в) здоровый ребенок у больных гомозиготных родителей; г) болеют в равной степени мужчины и женщины; д) наследование по горизонтали.
- **368. Аутосомно-рецессивный тип наследования характеризуется:** а) больные в каждом поколении; б) больные не в каждом поколении; в) больной ребенок у здоровых гомозиготных родителей; г) болеют в равной степени мужчины и женщины; д) наследование по вертикали.
- **369. Х-сцепленный доминантный тип наследования характеризуется:** а) больные в каждом поколении; б) больные не в каждом поколении; в) чаще болеют мальчики; г) отец передает признак всем своим дочерям; д) наследование по горизонтали.
- **370. Х-сцепленный рецессивный тип наследования характеризуется:** а) больные в каждом поколении; б) больные не в каждом поколении; в) больной ребенок у здоровых родителей; г) болеют преимущественно мужчины; д) наследование идет по вертикали.
- **371.** Голандрический тип наследования характеризуется: а) болеют и мужчины и женщины, вероятность наследования признака у мальчиков 50%; б) болеют и мужчины и женщины, вероятность наследования признака у мальчиков 100%; в) у больного отца больны все его дети; г) болеют только мужчины; д) у больного отца больны все его сыновья, вероятность наследования признака у них 100%.
- **372.** Достоверно чаще рождаются больные в семьях с кровнородственными браками при типе наследования: а) аутосомно-доминантном; б) аутосомно-рецессивном; в) X-сцепленном рецессивном; г) X-сцепленном доминантном; д) голандрическом.

- **373. Близнецовый метод основан на:** а) определении коэффициента наследования; б) определении коэффициента конкордантности; в) определении коэффициента дискордантности; г) изучении интеллекта близнецов; д) изучении родственников близнецов.
- **374. Близнецовый метод позволяет установить:** а) роль наследственности и среды в проявлении признака; б) наследственный ли данный признак; в) тип и характер наследования; г) генные мутации; д) пенетрантность гена.
- **375.** Для монозиготных близнецов характерно: а) развитие из одной зиготы и разные генотипы; б) развитие из разных зигот и одинаковые генотипы; в) разные генотипы и низкая степень конкордантности признаков; г) одинаковые генотипы и низкая степень конкордантности признаков; д) высокая степень конкордантности и низкая степень дискордантности признаков.
- **376.** Для дизиготных близнецов характерно: а) развитие из одной зиготы и разные генотипы; б) развитие из разных зигот и одинаковые генотипы; в) разные генотипы и низкая степень конкордантности признаков; г) одинаковые генотипы и низкая степень конкордантности признаков; д) высокая степень конкордантности и низкая степень дискордантности признаков.
- **377. Критерии зиготности близнецов:** а) одежда и группы крови по AB0-системе; б) пол и группы крови по Rh- и MN-системам; в) цвет глаз и перенесенные стрессы; г) рост и температура тела; д) дерматоглифические показатели.
- **378.** Формула Хольцингера используется для вычисления: а) частоты генов и генотипов в популяции; б) коэффициента наследования; в) роли среды в проявлении признака; г) вероятности наследования; д) степени генетического риска.
- **379. Популяционно-статистический метод основан на:** а) законе Н. И. Вавилова; б) законах Γ . Менделя; в) законе Т. Моргана; Γ 0 законе Харди–Вайнберга; д) формуле Хольцингера.
- **380.** Математическое выражение закона Харди–Вайнберга используется для расчетов: а) частот генов и генотипов в больших популяциях людей; б) частот генов и генотипов в малых популяциях людей; в) частоты рождаемости близнецов; г) коэффициента наследования; д) степени генетического риска.
- **381. Цитогенетический метод основан на:** а) использовании закона Харди–Вайнберга; б) изучении активности ферментов; в) построении и анализе родословных; г) изучении моно- и дизиготных близнецов; д) изучении кариотипа.
- **382. Цитогенетический метод позволяет установить:** а) роль наследственности и среды в проявлении признака; б) хромосомные мутации; в) пенетрантность гена; г) генные мутации; д) тип и характер наследования.
- 383. Последовательность этапов цитогенетического метода: 1) обработка клеток гипотоническим раствором NaCl; 2) окрашивание хромосом; 3) остановка митоза колхицином на стадии метафазы; 4) культивирование клеток на искусственных питательных средах; 5) стимуляция митоза $\Phi\Gamma$ A: a) 1-5-3-4-2; б) 4-5-3-1-2; в) 4-1-5-3-2; г) 5-3-4-1-2; д) 4-5-1-3-2.
- **384.** Биохимические методы генетики человека это изучение: а) общего анализа крови; б) активности ферментов плазмы крови; в) активности ферментов желудочного сока; г) состава первичной мочи; д) пространственной структуры ферментов.

- **385.** Биохимические методы генетики человека позволяют установить: а) роль наследственности и среды в проявлении признака; б) хромосомные мутации; в) геномные мутации; г) генные мутации; д) пенетрантность гена.
- **386.** Биохимические нагрузочные тесты позволяют установить: а) гетерозиготных носителей рецессивных патологических генов; б) хромосомные мутации; в) геномные мутации; г) генные мутации; д) тип наследования.
- **387. Методы рекомбинантной ДНК основаны на:** а) использовании математического выражения закона Харди–Вайнберга; б) возможности выделения фрагментов ДНК и установления в них последовательности нуклеотидов; в) построении и анализе родословных; г) изучении активности ферментных систем; д) микроскопическом изучении кариотипа.
- **388. Методы рекомбинантной ДНК позволяют:** а) изолировать отдельные гены и их части; б) выявлять геномные мутации; в) создавать неограниченное количество копий генов; г) выявлять хромосомные мутации; д) выявлять тип наследования.
- **389. Метод клонирования ДНК позволяет:** а) изолировать отдельные гены и их части; б) выявлять генные и геномные мутации; в) создавать неограниченное количество копий генов; г) транскрибировать и транслировать гены; д) выявлять генные и хромосомные мутации.
- **390. Метод гибридизации нуклеиновых кислот позволяет:** а) изолировать отдельные гены и их части; б) выявлять геномные мутации; в) выявлять определенный ген среди многих других; г) транскрибировать и транслировать гены; д) устанавливать порядок нуклеотидов в гене.
- **391.** Методы генетики соматических клеток основаны на: а) использовании закона Харди–Вайнберга; б) выделении фрагментов ДНК и установлении в них последовательности нуклеотидов; в) возможности получать потомство одной клетки; г) возможности отбора клеток с заданными свойствами; д) микроскопическом изучении кариотипа.
- **392. Метод клонирования соматических клеток позволяет:** а) использовать математическое выражение закона Харди—Вайнберга; б) выделять фрагменты ДНК и устанавливать в них последовательность нуклеотидов; в) получать потомство одной клетки; г) отбирать клетки с заданными свойствами; д) гибридизировать соматические клетки.
- **393.** Экспресс-методы изучения генетики человека это: а) точное установление генетического диагноза; б) цитогенетическое исследование; в) быстрые методы исследования; г) скрининг-методы; д) УЗИ.
- **394.** Требования, предъявляемые к экспресс-методам генетики человека: а) можно проводить в любые сроки беременности; б) надежные и экономичные; в) материал для исследования должен быть легкодоступным и информативным; г) исследованию могут подвергаться любые соматические клетки; д) обязательны для каждой беременной женщины.
- **395. К** экспресс-методам относятся: а) тест Гатри; б) изучение полового хроматина; в) составление идиограммы; г) амниоцентез; д) определение эмбрионспецифичных белков.

- **396.** Микробиологические тесты позволяют: а) строить генетические карты хромосом человека; б) определять количество X-хромосом; в) определять количество Y-хромосом; г) выявлять некоторые хромосомные мутации; д) выявлять некоторые дефекты обмена веществ.
- **397. Определение Х-полового хроматина позволяет:** а) картировать Х-хромосому; б) определять количество Х-хромосом; в) диагностировать синдром Морриса; г) определить возраст человека; д) доказать гипотезу М. Лайон.
- **398.** Выявление Y-полового хроматина позволяет: а) картировать Y-хромосом; б) определить количество X-хромосом; в) определить количество Y-хромосом; г) составить идиограмму; д) диагностировать синдром Шерешевского—Тернера.
- **399.** Дерматоглифический анализ это: а) изучение кожи тела; б) изучение кожи лица; в) изучение заболеваний кожи; г) изучение папиллярных узоров пальцев, ладоней и стоп; д) этап биологического моделирования.
- **400.** Дерматоглифический анализ позволяет: а) изучить патогенез заболеваний кожи; б) разработать меры профилактики заболеваний кожи; в) установить причины возникновения заболеваний кожи; г) выявлять наследственную компоненту заболевания; д) диагностировать дефекты обмена веществ.
- **401. Пренатальная диагностика позволяет:** а) диагностировать наследственную патологию у новорожденного; б) диагностировать наследственную патологию до рождения ребенка; в) взять кровь новорожденного на исследование; г) предупредить рождение ребенка с наследственной патологией; д) прервать патологическую беременность без согласия матери.
- **402. Показания** для пренатальной диагностики: а) наличие в семье родственников, переболевших энцефалитом; б) наличие в семье ребенка с цингой; в) возраст беременной женщины свыше 40 лет; г) наличие у матери гена Y-сцепленного рецессивного заболевания; д) наличие у беременной спонтанных абортов.
- **403. Непрямые методы пренатальной диагностики:** а) определение альфа-фетопротеина в крови матери; б) ультрасонография; в) биопсия ворсин хориона; г) амниоцентез; д) фетоскопия.
- **404.** Показания для прямых инвазивных методов пренатальной диагностики: а) наличие в семье родственников, переболевших энцефалитом; б) наличие в семье точно установленного наследственного заболевания; в) возраст беременной женщины свыше 37 лет; г) беременность; д) наличие у беременной спонтанных абортов, выкидышей и мертворождений.
- **405. Прямые неинвазивные методы пренатальной диагностики:** а) определение альфа-фетопротеина; б) ультрасонография; в) биопсия ворсин хориона; г) амниоцентез; д) фетоскопия.
- **406. Суть амниоцентеза:** а) позволяет выявлять генные, хромосомные и геномные мутации; б) взятие клеток хориона; в) проводят на 8–10 неделе беременности; г) проводят на 15–17 неделе беременности; д) клетки плода используют для цитогенетических методов исследований, а амниотическую жидкость для биохимических.
- **407. Суть фетоскопии:** а) взятие амниотический жидкости через шейку матки; б) взятие биоптата печени плода; в) отсутствует риск прерывания беременности; г) осмотр плода фиброоптическим эндоскопом; д) клетки плода

используют для биохимических методов исследований, а амниотическую жидкость — для цитогенетических.

- **408. Суть биопсии ворсин хориона:** а) взятие ворсинок эпителия хориона через шейку матки; б) взятие амниотической жидкости; в) проводят на 17–20 неделе беременности; г) позволяет выявлять генные, хромосомные и геномные мутации; д) амниотическую жидкость используют для анализа ДНК.
- **409. Методы пренатальной диагностики позволяют установить диа- гноз:** а) большинства хромосомных болезней; б) большинства инфекционных болезней; в) всех генных болезней; г) любой наследственной патологии; д) болезней матери.
- **410. Методы пренатальной диагностики:** а) непрямые инвазивные; б) прямые неинвазивные; в) биопсия ворсин хориона; г) амниоцентез; д) тест Гатри.
- **411.** Исследование альфа-фетопротеина позволяет выявить: а) болезни обмена веществ плода; б) грубые пороки развития плода; в) врожденные пороки сердца плода; г) хромосомные болезни матери; д) заболевания обмена веществ матери.
- **412. Уровень альфа-фетопротеина понижен:** а) при болезнях обмена веществ плода; б) нарушении течения беременности; в) трисомии по 21-хромосоме у плода; г) моносомии по 21-хромосоме у плода; д) при делеции длинного плеча 21-хромосомы плода.
- **413.** Ультрасонография позволяет выявить: а) болезни обмена веществ; б) дефекты эндокринного аппарата; в) многоплодную беременность; г) анэнцефалию; д) врожденную глухоту.
- **414.** Оптимальные сроки проведения прямых неинвазивных методов пренатальной диагностики: а) 6–8 неделя; б) 8–10 неделя; в) 12–20 неделя; г) 23–30 неделя; д) 30–35 неделя.

НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ ЧЕЛОВЕКА

- **415.** Генные болезни классифицируют на основании: а) типа наследования; б) видов генных мутаций, лежащих в основе болезни; в) преимущественного поражения определенной системы или органа; г) характера метаболического дефекта; д) локализации мутантного гена в хромосоме.
- **416. Моногенные болезни обусловлены:** а) мутацией одного гена; б) дупликацией нескольких генов; в) мутацией нескольких генов; г) делецией двух и более генов; д) вставкой двух и более генов.
- **417. Мутации структурных генов приводят к:** а) появлению аномальных белков и нарушению течения биохимических реакций; б) отсутствию аномальных белков и снижению содержания нормального белка; в) отсутствию необходимых белков; г) появлению аномальных белков и повышению содержания нормального белка; д) повышению содержания нормального белка и отсутствию аномальных белков.
- **418. Мутации функциональных генов приводят преимущественно к:** а) нарушению течения биохимических реакций; б) отсутствию аномальных белков; в) отсутствию необходимых белков; г) снижению содержания нормального белка; д) повышению содержания нормального белка.

- **419. Несовместимость матери и плода по резус-фактору наблюдается если:** а) мать Rh^+ , отец Rh^+ , ребенок Rh^+ ; б) мать Rh^+ , отец Rh^- , ребенок Rh^- ; г) мать Rh^- , отец Rh^+ , ребенок Rh^+ ; д) мать Rh^- , отец Rh^+ , ребенок Rh^- .
- **420. Для фенилкетонурии характерно:** а) отсутствие фермента фенилаланингидроксилазы в результате трисомии по 19 хромосоме; б) фенилаланингидроксилаза превращает фенилаланин в тирозин; в) наследование по аутосомнорецессивному типу; г) наследование по аутосомно-доминантному типу; д) тирозиназа превращает тирозин в меланин.
- **421.** Диагностические признаки фенилкетонурии: а) от больных исходит «мышиный» запах, интеллект не нарушен; б) повышены возбудимость и тонус мышц, умственная отсталость; в) снижены возбудимость и тонус мышц, слабая пигментация кожи; г) судорожные эпилептиформные припадки, кровоизлияния в суставы; д) повышенное содержание фенилаланингидроксилазы в крови.
- 422. Вероятность рождения больного ребенка в семье, в которой отец болен фенилкетонурией, а мать гомозиготна по нормальному аллелю, составляет: а) 0%; б) 25%; в) 33%; г) 50%; д) 75%.
- **423.** Вероятность рождения больного ребенка в семье, в которой мать и отец гетерозиготны по гену фенилкетонурии, составляет: а) 0%; б) 25%; в) 33%; г) 50%; д) 75%.
- 424. Вероятность рождения больного ребенка в семье, в которой мать больна фенилкетонурией, а отец гомозиготен по нормальному аллелю, составляет: а) 0%; б) 25%; в) 33%; г) 50%; д) 75%.
- **425.** Вероятность рождения больного ребенка от родителей с разноло-кусной аутосомно-рецессивной патологией: а) 0%; б) 25%; в) 33%; г) 50%; д) 75%.
- **426.** Вероятность рождения здорового ребенка от родителей с разнолокусной аутосомно-рецессивной патологией: а) 0 %; б) 25 %; в) 33 %; г) 50 %; д) 100 %.
- **427.** Генетические причины и тип наследования альбинизма: а) геномная мутация; б) генная мутация; в) хромосомная аберрация; г) наследование по аутосомно-рецессивному типу; д) наследование по аутосомно-доминантному типу.
- **428.** Дефекты обменных процессов при альбинизме: а) тироксин не превращается в тирозин; б) меланин не превращается в тирозин; в) отсутствует пигмент меланин; г) меланин не превращается в тироксин; д) тирозин не превращается в меланин.
- **429.** Диагностические признаки альбинизма: а) пониженная чувствительность к ультрафиолетовым лучам; б) молочно-белый цвет кожи; в) депигментированные волосы; г) пигментированные волосы; д) снижена острота зрения.
- **430.** Генетические причины, следствия и тип наследования алкаптонурии: а) отсутствие фермента оксидазы в результате мутации гена; б) гомогентизиновая кислота не превращается в ацетоуксусную и фумаровую кислоты; в) наследование по аутосомно-рецессивному типу; г) наследование по аутосомно-доминантному типу; д) ацетоуксусная кислота не превращается в гомогентизиновую кислоту.

- **431.** Диагностические признаки алкаптонурии: а) депигментированные волосы; б) пигментация соединительной ткани и кожи цвета охры; в) потемнение мочи на воздухе; г) гемартрозы; д) поражение позвоночника и суставов.
- **432.** Генетические причины, следствия и тип наследования галактоземии: а) отсутствие галактозо-1-фосфатуридилтрансферазы в результате мутации гена; б) галактозо-1-фосфат не превращается в уридин-дифосфогалактозу; в) наследование по аутосомно-рецессивному типу; г) наследование по аутосомно-доминантному типу; д) уридин-дифосфогалактоза не превращается в галактозо-1-фосфат.
- **433.** Диагностические признаки галактоземии: а) желтуха новорожденных; б) рвота, понос, увеличение печени и селезенки; в) депигментация кожи и волос; г) склонность к самоповреждениям; д) умственная отсталость.
- **434.** Генетические причины, следствия и тип наследования мукополисахаридозов: а) происходит разрушение гликозаминогликанов; б) происходит накопление гликозаминогликанов; в) наследование по аутосомно-рецессивному типу; г) наследование по аутосомно-доминантному типу; д) синтез дефектных ферментов лизосомных гидролаз в результате мутации гена.
- **435.** Диагностические признаки мукополисахаридозов (синдром Гурлера): а) тугоподвижность суставов и искривление позвоночника; б) помутнение склеры; в) увеличение печени и селезенки; г) гемартрозы; д) умственная отсталость.
- **436.** Генетические причины, следствия и тип наследования сфинголипидозов: а) отсутствие ферментов, катализирующих расщепление сфинголипидов в результате мутации гена; б) накопление сфинголипидов; в) наследование по аутосомно-рецессивному типу; г) наследование по аутосомно-доминантному типу; д) отсутствие ферментов, катализирующих синтез сфинголипидов в результате мутации гена.
- **437.** Диагностические признаки сфинголипидозов (болезнь Тея–Сакса): а) мышечная гипотония; б) слепота и умственная отсталость; в) искривление позвоночника; г) полная обездвиженность; д) снижение уровня холестерина в плазме крови.
- **438.** Для гиперлипопротеинемий характерно: а) наследование аутосомнорецессивное; б) доминантные мутации, обусловливающие дефекты ферментов обмена липидов плазмы крови; в) рецессивные мутации, обусловливающие дефекты рецепторов обмена липидов; г) повышенное содержание глюкозы в крови; д) снижение уровня холестерина в плазме крови.
- **439.** Диагностические признаки гиперлипопротеинемий: а) сниженное содержание белков плазмы крови; б) повышенное содержание белков плазмы крови; в) повышенное содержание в плазме крови жирных кислот, триглицеридов и холестерина; г) сниженное содержание в плазме крови жирных кислот, триглицеридов и холестерина; д) развитие инфаркта в возрасте до 35 лет.
- **440.** Генетические причины, следствия и тип наследования синдрома Леша—Нихана: а) тип наследования аутосомно-рецессивный; б) недостаточность фермента гипоксантин-фосфорибозилтрансферазы; в) избыточность фермента гипоксантин-фосфорибозилтрансферазы; г) пуриновые основания не присоединяются к нуклеотидам; д) тип наследования X-сцепленный рецессивный.

- **441.** Диагностические признаки синдрома Леша–Нихана: а) повышенный уровень гомогентизиновой кислоты в крови; б) образование камней в мочевыводящих путях; в) повышенный уровень ацетоуксусной кислоты в крови; г) раннее развитие инфаркта; д) склонность к самоповреждениям.
- **442.** Генетические причины, следствия и тип наследования болезни Вильсона—Коновалова: а) тип наследования аутосомно-рецессивный; б) нарушение метаболизма железа; в) снижение синтеза белка церуллоплазмина в результате мутации гена; г) церуллоплазмин не обеспечивает транспорт меди в организме; д) тип наследования X-сцепленный рецессивный.
- **443.** Диагностические признаки болезни Вильсона–Коновалова: а) повышенное содержание меди в крови; б) повышенное содержание железа в крови; в) накопление меди в тканях печени и мозга с последующей их дегенерацией; г) накопление железа в тканях печени и мозга с последующей их дегенерацией; д) нарушение функций печени и центральной нервной системы.
- **444.** Генетические причины и тип наследования гемофилии **A:** а) нарушение свертывания крови; б) дефект V фактора свертывания крови в результате мутации гена; в) ген расположен в длинном плече X-хромосомы; г) ген расположен в коротком плече X-хромосомы; д) тип наследования X-сцепленный рецессивный.
- **445.** Диагностические признаки гемофилии **A:** а) время свертывания крови 5–6 минут; б) носовые кровотечения и паралич нижних конечностей; в) множественные гематомы; г) кровоизлияния в крупные суставы и снижение интеллекта; д) кровь в моче и высокое артериальное давление.
- **446.** Вероятность рождения больного мальчика женщиной, имеющей больных гемофилией сына и брата: a) 0%; б) 25%; в) 33%; г) 50%; д) 75%.
- **447.** Вероятность рождения больной девочки женщиной, имеющей больных гемофилией сына и брата: a) 0 %; б) 25 %; в) 33 %; г) 50 %; д) 75 %.
- **448.** Генетические причины серповидно-клеточной анемии и их последствия: а) изменение одного кодона; б) в 6-м положении альфа-цепи гемоглобина глутаминовая кислота замещена валином; в) в 6-м положении бета-цепи гемоглобина глутаминовая кислота замещена валином; г) в 6-м положении бета-цепи гемоглобина валин замещен на глутаминовую кислоту; д) НbS обладает низкой способностью связывать кислород.
- **449.** Диагностические признаки серповидно-клеточной анемии: а) у гомозигот эритроциты серповидной формы; б) у гомозигот эритроциты двояковогнутой формы; в) гемолиз эритроцитов; г) гематомы; д) у гомозигот тромбоциты двояковогнутой формы.
- **450.** Генетические причины муковисцидоза и их последствия: а) мутация гена в длинном плече 7-й хромосомы; б) мутация гена в коротком плече 7-й хромосомы; в) тип наследования аутосомно-рецессивный; г) тип наследования X-сцепленный рецессивный; д) множественное поражение желез внешней секреции.
- **451.** Диагностические признаки муковисцидоза: а) рецидивирующие пневмонии и эмфизема легких; б) рецидивирующая анемия; в) кровоизлияния в суставы; г) гематомы; д) обильный зловонный стул.

- **452.** Генетические причины ахондроплазии и их последствия: а) мутация гена в коротком плече 4-й хромосомы; б) мутация гена рецептора фактора роста фибробластов; в) аутосомно-рецессивный тип наследования; г) аутосомнодоминантный тип наследования; д) усиление роста и развития хрящевой ткани в эпифизах трубчатых костей.
- **453.** Диагностические признаки ахондроплазии: а) низкий рост за счет значительного укорочения конечностей; б) длина туловища уменьшена; в) длина туловища нормальная; г) запавшая переносица; д) сколиоз.
- **454.** Генетические причины и тип наследования миодистрофии Дюшенна: а) мутация гена в коротком плече X-хромосомы; б) мутация гена в длинном плече X-хромосомы; в) X-сцепленный доминантный тип наследования; г) X-сцепленный рецессивный тип наследования; д) аутосомно-доминантный тип наследования.
- **455.** Диагностические признаки миодистрофии Дюшенна: а) прогрессирующая слабость мышц; б) увеличение мышечной массы; в) выступающие челюсти; г) «утиная походка»; д) дети прикованы к постели с 10–11 лет.
- **456.** Диагностические признаки синдрома ломкой **X-хромосомы:** а) умеренная или глубокая умственная отсталость; б) большие яички; в) утиная походка; г) повышенная ломкость костей; д) снижение свертывания крови.
- **457. Характерные признаки синдрома Марфана:** а) набор половых хромосом XX; б) набор половых хромосом XY; в) в эмбриогенезе закладываются яички; г) не образуется белок-рецептор, обеспечивающий чувствительность соматических клеток к мужскому половому гормону; д) арахнодактилия.
- **458. В основе хромосомных болезней лежат мутации:** а) триплоидии; б) трисомии; в) моносомии; г) гаплоидия; д) частичные трисомии.
- **459.** У живорожденных детей не встречаются: а) трисомии по аутосомам; б) моносомии по аутосомам; в) нулисомии по аутосомам; г) трисомии по половым хромосомам; д) моносомии по половым хромосомам.
- **460. Хромосомные болезни диагностируются методами:** а) рентгеноскопическим; б) экспресс-диагностики; в) цитогенетическим; г) клинико-генеалогическим; д) биохимическими.
- **461.** Запись кариотипа при синдроме Патау: а) 47,XXY; б) 47,XX,18+; в) 47,XXX; г) 48,XXYY; д) 47,XY,13+.
- **462.** Диагностические признаки синдрома Патау: а) макроцефалия; б) расщелины губы и неба; в) полидактилия; г) недоразвитие гортани; д) деформированные ушные раковины.
- **463.** Запись кариотипа при синдроме Эдвардса: а) 45,XX,18⁻; б) 7,XY,13⁺; в) 47,XX,18⁺; г) 47,XY,21⁺; д) 46,XY,9p⁺.
- **464.** Диагностические признаки синдрома Эдвардса: а) макроцефалия; б) врожденные пороки сердца; в) большая нижняя челюсть и ротовое отверстие; г) недоразвитие гортани; д) «стопа-качалка».
- **465.** Запись кариотипа при синдроме Дауна: а) 45,XX,21⁻; б) 47,XY,13⁺; в) 47,XX,21⁺; г) 47,XY,21⁺; д) 46,XX,5p⁻.
- **466.** Диагностические признаки синдрома Дауна: а) «мышиный запах»; б) синдактилия пальцев стоп; в) лунообразное лицо; г) монголоидный разрез глазных щелей; д) светлые пятна на радужке.

- **467.** Запись кариотипа при синдроме трисомии по короткому плечу **9-й хромосомы:** а) 45,ХХ,9⁻; б) 46,ХХ,9р⁺; в) 47,ХХ,18⁺; г) 47,ХҮ,21⁺; д) 46,ХҮ,9р⁺.
- **468.** Диагностические признаки синдрома трисомии по короткому плечу **9-й хромосомы:** а) микроцефалия; б) макроцефалия; в) недоразвитие гортани; г) антимонголоидный разрез глазных щелей; д) недоразвитие ногтей и дистальных фаланг пальцев.
- **469.** Запись кариотипа при синдроме Вольфа–Хиршхорна: а) 45,ХХ,4⁻; б) 46,ХҮ,4p⁻; в) 47,ХХ,18⁺; г) 47,ХҮ,4⁺; д) 46,ХХ,4p⁻.
- **470.** Диагностические признаки синдрома Вольфа—Хиршхорна: а) умеренно выраженная микроцефалия; б) клювовидный нос; в) умеренно выраженная макроцефалия; г) недоразвитие гортани; д) расщелины верхней губы и неба.
- **471.** Запись кариотипа при синдроме Лежена: а) 45,XX,5⁻; б) 46,XY,5p⁻; в) 47,XX,18⁺; г) 47,XY,5⁺; д) 46,XX,5p⁻.
- **472.** Диагностические признаки синдрома Лежена: а) плач ребенка напоминает кошачье мяуканье; б) лунообразное лицо; в) макроцефалия; г) узкий разрез глазных щелей; д) умственная отсталость.
- **473.** Для развития болезней с наследственной предрасположенностью необходимо: а) наличие одного мутантного гена; б) наличие определенной комбинации нескольких генов; в) наличие определенной хромосомной аберрации; г) наличие определенной геномной мутации; д) действие определенных факторов внешней среды.
- **474.** Моногенные болезни с наследственной предрасположенностью характеризуются: а) наличием одного мутантного гена; б) наличием определенной комбинации нескольких генов; в) наследованием по законам Менделя; г) наследованием с отклонениями от законов Менделя; д) проявлением при действии специфических факторов внешней среды.
- **475.** Полигенные болезни с наследственной предрасположенностью характеризуются: а) наличием одного мутантного гена; б) наличием определенной комбинации нескольких генов; в) наследованием по законам Менделя; г) наследованием с отклонениями от законов Менделя; д) проявлением при действии специфических факторов внешней среды.

МЕДИКО-ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ

- **476. Профилактика наследственных болезней достигается путем:** а) установления степени генетического риска в обследуемой семье; б) снижения частоты всех заболеваний; в) снижения частоты генетически обусловленных болезней; г) снижения частоты врожденных пороков развития; д) повышения рождаемости.
- **477.** Задачи медико-генетического консультирования: а) консультирование семей и больных с наследственной патологией; б) пренатальная диагностика наследственных и врожденных заболеваний; в) секвенирование генов; г) консультирование семей и больных с врожденной патологией; д) диспансерное наблюдение больных с хроническими заболеваниями.
- **478.** Этапы составления генетического прогноза: а) определение степени генетического риска; б) проведение цитогенетического обследования; в) оценка

- тяжести социальных и медицинских последствий предполагаемой аномалии; г) оценка перспектив применения методов пренатальной диагностики; д) использование экспресс-методов обследования.
- **479.** Генетический риск это вероятность: а) мертворождения; б) заболеваний беременной женщины; в) возникновения наследственной болезни у плода; г) возникновения болезни с наследственной предрасположенностью у плода; д) внутриутробной гибели плода.
- **480.** Повышенным в легкой степени считают генетический риск: а) до 5 %; б) 5–10 %; в) 10–20 %; г) 20–30 %; д) около 50 %.
- **481.** Повышенным в средней степени считают генетический риск: а) до 5 %; б) 5–10 %; в) 10–20 %; г) 20–30 %; д) около 50 %.
- **482.** Высоким считают генетический риск: а) до 5 %; б) 5–10 %; в) 10–20 %; г) 20–30 %; д) около 50 %.
- **483.** Показания для направления семьи в медико-генетическую консультацию: а) наличие сходных наследственных заболеваний у нескольких членов семьи; б) задержка физического развития ребенка; в) появление в семье инфекционного заболевания; г) появление в семье паразитарного заболевания; д) развод супругов.
- **484.** Примеры применения симптоматического лечения при наследственной патологии: а) анальгетики при воспалительных процессах; б) антибиотики при болевом синдроме; в) успокаивающие при повышенной возбудимости; г) исключение из пищи неметаболируемого вещества; д) хирургическое исправление врожденных дефектов.
- **485.** Примеры применения патогенетического лечения при наследственной патологии: а) анальгетики при болевом синдроме; б) метаболическая ингибиция; в) генная терапия; г) исключение из пищи неметаболируемого вещества; д) ограничение в пище неметаболируемого вещества.
- **486.** Примеры применения этиологического лечения при наследственной патологии: а) метаболическая ингибиция; б) антибиотики; в) заместительная терапия; г) исключение из пищи неметаболируемого вещества; д) генная терапия.
- **487. Наследственные болезни**, **поддающиеся коррекции специальными диетами:** а) синдром Дауна; б) фенилкетонурия; в) муковисцидоз; г) галактоземия; д) миодистрофия Дюшенна.
- 488. Метаболическая ингибиция, как один из видов коррекции обмена веществ, включает: а) ограничение поступления вещества с пищей; б) ускоренное выведение из организма субстрата патологической реакции; в) возмещение несинтезируемого продукта; г) снижение интенсивности синтеза патологического субстрата; д) защита органов от поступления излишков продуктов катаболизма.

Размножение животных и человека

- **489. Основные формы размножения организмов:** а) половое; б) вегетативное; в) партеногенез; г) фрагментация; д) бесполое.
- **490. Формы бесполого размножения многоклеточных животных:** а) вегетативными органами; б) конъюгация; в) копуляция; г) полиэмбриония; д) фрагментация.

- **491. Характеристика полового размножения:** а) в воспроизведении себе подобного участвуют две особи; б) в воспроизведении себе подобного всегда участвует одна особь; в) генотип дочерней особи отличается от родительских; г) генотип дочерней особи идентичен родительским; д) быстро увеличивается число дочерних особей.
- **492. Половой процесс** это: а) размножение организмов; б) слияние двух гамет; в) образование половых клеток; г) обмен генетической информацией между особями одного вида; д) объединение генетической информации особей одного вида.
- **493. Копуляция** это: а) процесс образования половых клеток; б) процесс созревания половых клеток; в) обмен генетической информацией между особями разных видов; г) объединение генетической информации особей одного вида; д) обмен генетической информацией между особями одного вида.
- **494. Конъюгация** это: а) процесс образования половых клеток; б) слияние половых клеток; в) обмен генетической информацией между особями разных видов; г) объединение генетической информации особей одного вида; д) обмен генетической информацией между особями одного вида.
- **495. Оогамия это:** а) слияние двух половых клеток, одинаковых по величине, форме и подвижности; б) обмен генетической информацией между особями одного вида; в) слияние двух половых клеток, незначительно отличающихся по величине, форме и подвижности; г) слияние яйцеклетки и сперматозоида; д) слияние соматических клеток.
- **496. Характерные признаки яйцеклетки:** а) подвижна; б) неподвижна; в) цитоплазма содержит все органеллы; г) ЯЦО = 1/6-1/8; д) цитоплазма сегрегирована.
- **497.** Типы яйцеклеток в зависимости от содержания и распределения желтка: а) изолецитальные; б) анимальные; в) вегетативные; г) центролецитальные; д) смешанные.
- **498. Изолецитальные яйцеклетки:** а) содержат много желтка; б) содержат мало желтка; в) желток распределен равномерно; г) желток сконцентрирован на вегетативном полюсе; д) желток расположен на анимальном полюсе.
- **499. Характерные признаки сперматозоида:** а) подвижен; б) неподвижен; в) имеет округлую или овальную форму; г) имеет головку, шейку и хвост; д) содержит мало желтка.
- **500.** Осеменение это: а) слияние яйцеклетки и сперматозоида; б) выход яйцеклетки из яичника; в) процессы, обеспечивающие встречу гамет; г) созревание сперматозоидов; д) половой процесс.
- **501.** Продвижение сперматозоидов в женских половых путях обеспечивается: а) подвижностью сперматозоидов; б) неподвижностью яйцеклетки; в) сокращением мышц матки; г) выделением гиногамонов; д) сокращением мышц брюшной стенки.
- **502. Оплодотворение это:** а) слияние яйцеклетки и сперматозоида; б) процесс сближения яйцеклетки и сперматозоида; в) движение сперматозоидов по половым путям самки; г) выход яйцеклетки из яичника; д) половой процесс.

- **503.** Оплодотворение включает в себя: а) разрушение яйцеклеток гиалуронидазой сперматозоидов; б) акросомную реакцию; в) дробление яйцеклетки; г) проникновение головки, шейки и хвоста сперматозоида в цитоплазму яйцеклетки; д) созревание пронуклеусов.
- **504. Партеногенез это:** а) слияние сперматозоида и яйцеклетки; б) редуцированная форма полового размножения; в) половой процесс; г) развитие яйцеклетки после оплодотворения; д) развитие яйцеклетки без оплодотворения.
- **505. Виды партеногенеза:** а) диплоидный; б) триплоидный; в) апомиксис; г) бесполый; д) половой.
- **506.** Гиногенез это: а) облигатный партеногенез; б) факультативный партеногенез; в) развитие организма на базе генетической информации только мужских гамет; г) развитие организма на базе генетической информации только женских гамет; д) половой процесс.
- **507. Андрогенез это:** а) облигатный партеногенез; б) факультативный партеногенез; в) развитие организма на базе генетической информации только мужских гамет; г) развитие организма на базе генетической информации только женских гамет; д) развитие яйцеклетки после оплодотворения.
- **508.** Особенности репродукции человека: а) женщины способны к репродукции с периода полового созревания до пожилого возраста; б) мужчины способны к репродукции с периода полового созревания до 50 лет; в) у женщин в течение лунного месяца один овоцит II порядка; г) у мужчин сперматозоиды образуются периодически; д) чем старше мужчина, тем больший промежуток времени между мейозом I и мейозом II.
- **509.** Факторы, влияющие на задержку овуляции и, тем самым, способствующие «старению» яйцеклетки: а) тяжелый физический труд; б) гипоксия и окислительный стресс фолликулов; в) состояние дистресса (разрушительного стресса); г) продолжительность сна менее 7 часов; д) нарушение баланса эстроген-прогестерон.
- **510. Негативно сказываются на женской фертильности**: а) прием антибиотиков; б) употребление легальных и нелегальных наркотиков; в) контакт с алдрином, диелдрином, диоксином, фурановыми соединениями, которые обладают эстрогеноподобным эффектом; г) умеренные физические нагрузки; д) сбалансированное питание.
- **511. Негативно сказываются на мужской фертильности**: а) травмы половых органов; б) гипертермия, или перегрев, яичек; в) хронические болезни (артериальная гипертензия, сахарный диабет и т. д.); г) нормальный индекс массы тела; д) отсутствие воспалительных и инфекционных заболеваний половой системы.
- **512.** Мужское бесплодие в последние годы диагностируется чаще ввиду: а) здорового образа жизни мужчин; б) соблюдения режима труда и отдыха; в) полноценного питания мужчин, г) широкой распространенности вредных привычек среди мужчин (злоупотребление алкоголем, употребление напитков с высоким содержанием кофеина); д) лечения некоторыми препаратами (антибиотиками, цитостатиками, антидепрессантами).
- **513.** С увеличением возраста отца в его половых клетках отмечается: а) увеличение ошибок репликации ДНК; б) увеличение числа повреждений ДНК,

не связанных с репликацией; в) ежегодное увеличение на 1,47 новых мутаций у потомков; г) ежегодное увеличение на 0,37 новых мутаций у потомков; д) достаточно равномерное распределение мутаций по геному.

- **514.** С увеличением возраста матери в ее половых клетках отмечается: а) увеличение ошибок репликации ДНК; б) увеличение числа повреждений ДНК, не связанных с репликацией; в) ежегодное увеличение на 1,47 новых мутаций у потомков; г) ежегодное увеличение на 0,37 новых мутаций у потомков; д) неравномерное распределение мутаций по геному.
- 515. Общие рекомендации по повышению физиологической активности половых клеток: а) придерживаться низкокалорийной диеты; б) исключить из рациона все копченое, жареное, маринованное; в) получить одобрение гинеколога или андролога на использование витаминно-минеральных комплексов, содержащих цинк, магний, селен, фолиевую кислоту, витаминов В и С, а также биологически активных добавок для восстановления фертильности; г) по показаниям применять специализированные медикаменты: стимуляторы овуляции и гонадотропины; д) употреблять алкоголь, напитки с высоким содержанием кофеина.

Эмбриональное развитие животных и человека

- **516. Онтогенез это:** а) историческое развитие вида; б) половое размножение; в) индивидуальное развитие особи; г) образование и созревание гамет; д) дробление зиготы.
- **517. Периоды онтогенеза:** а) прогенез; б) зиготный; в) пренатальный; г) рождение; д) смерть.
- **518. Предэмбриональный период онтогенеза включает:** а) закладку первичных половых клеток; б) образование и созревание половых клеток; в) оплодотворение; г) дробление зиготы; д) образование морулы.
- **519.** Эмбриональный период онтогенеза включает: а) гаметогенез; б) половое созревание; в) метаморфоз; г) гаструляцию; д) морфогенез.
- **520. Тип дробления зиготы зависит от:** а) величины яйцеклетки; б) формы яйцеклетки; в) количества желтка; г) распределения желтка; д) потенций цитоплазмы яйцеклетки.
- **521. Тип дробления изолецитальных яйцеклеток:** а) неполное поверхностное; б) неполное дискоидальное; в) полное неравномерное; г) полное равномерное; д) неполное равномерное.
- **522. Тип дробления резко телолецитальных яйцеклеток:** а) неполное поверхностное; б) неполное дискоидальное; в) полное неравномерное; г) полное равномерное; д) неполное равномерное.
- **523. Тип дробления центролецитальных яйцеклеток:** а) неполное поверхностное; б) неполное дискоидальное; в) полное неравномерное; г) полное равномерное; д) полное поверхностное.
- **524. Бластула содержит:** а) один слой клеток; б) два слоя клеток; в) три слоя клеток; г) бластопор; д) бластоцель.
- **525.** Гаструла содержит: а) один слой клеток; б) эктодерму; в) энтодерму; г) гастропор; д) бластоцель.

- **526.** Способы гаструляции: а) инвагинация; б) телобластический; в) иммиграция; г) деламинация; д) энтероцельный.
- **527.** Способы закладки третьего зародышевого листка: а) инвагинация; б) телобластический; в) иммиграция; г) деламинация; д) энтероцельный.
- **528.** В процессе эмбриогенеза у хордовых закладываются: а) пульсирующий сосуд (сердце) на спинной стороне; б) нервная трубка над хордой; в) нервная трубка под хордой; г) пищеварительная трубка над хордой; д) пищеварительная трубка под хордой.
- **529. Производные эктодермы:** а) эпителий средней кишки; б) нервная система; в) дыхательная система; г) мочеполовая система; д) дерма кожи.
- **530. Производные энтодермы:** а) эпителий задней кишки; б) нервная система; в) дыхательная система; г) мочеполовая система; д) хорда.
- **531. Производные мезодермы:** а) мышцы; б) скелет; в) дыхательная система; г) хорда; д) эпидермис.
- **532. Производные дерматома:** а) эпителий кишечника; б) нервная система; в) дыхательная система; г) мочеполовая система; д) собственно кожа.
- **533. Производные миотома:** а) эпителий кишечника; б) нервная система; в) скелетные мышцы; г) мочеполовая система; д) собственно кожа.
- **534. Производные склеротома:** а) эпителий кишечника; б) собственно кожа; в) дыхательная система; г) мочеполовая система; д) скелет.
- **535. Производные нефрогонотома:** а) эпителий кишечника; б) нервная система; в) дыхательная система; г) мочеполовая система; д) собственно кожа.
- **536. Провизорные органы хордовых:** а) пищеварительная трубка; б) хорион; в) хорда; г) желточный мешок; д) нервная трубка.
- **537. Периоды эмбрионального развития человека:** а) прогенез; б) начальный; в) плодный; г) предзародышевый; д) предэмбриональный.
- **538.** Первопричинами дифференцировки клеток в процессе эмбриогенеза являются: а) химическая однородность цитоплазмы яйцеклетки; б) химическая разнородность цитоплазмы яйцеклетки; в) химическая однородность цитоплазмы сперматозоида; г) химическая разнородность цитоплазмы сперматозоида; д) разные потенции анимального и вегетативного полюсов яйцеклетки.
- **539.** Реализация действия генов в онтогенезе: а) ДНК → белок-фермент → иРНК → биохимическая реакция → признак; б) ДНК → иРНК → белок-фермент → биохимическая реакция → признак; в) другие гены влияют на проявление признака; г) другие гены не влияют на проявление признака; д) факторы внешней среды не влияют на проявление признака.
- **540.** Последовательность этапов дифференцировки клеток в эмбриогенезе: а) химическая разнородность цитоплазмы яйцеклетки переходит в химическую однородность цитоплазмы бластомеров; б) в разных бластомерах локализованы одинаковые индукторы; в) в разных бластомерах включаются одинаковые транскриптоны; г) в разных бластомерах включаются разные транскриптоны; д) в разных бластомерах синтезируются разные ферменты и протекают разные биохимические реакции.
- **541.** Клонирование организмов возможно благодаря: а) содержанию в ядре соматической клетки неполного набора генов; б) содержанию в ядре соматической клетки полного набора генов; в) содержанию в цитоплазме яйце-

- клетки полного набора индукторов; г) содержанию в цитоплазме яйцеклетки неполного набора индукторов; д) последовательному включению и выключению определенных блоков генов.
- **542.** Все гены организма, в зависимости от места их действия, можно подразделить на: а) функционирующие в единичных клетках; б) функционирующие во всех клетках; в) функционирующие в клетках одной ткани; г) специфичные для одного типа клеток; д) функционирующие в клетках одного органа.
- **543.** Главные механизмы дифференцировки клеток это: а) блокировка разных транскриптонов на определенном этапе развития; б) включение в работу всех генов на определенном этапе развития; в) блокировка всех генов на определенном этапе развития; г) деблокировка разных транскриптонов на определенном этапе развития; д) блокировка одного гена на определенном этапе развития.
- **544.** На ранних стадиях эмбриогенеза (до ранней гаструлы) для клеток зародыша характерно: а) они тотипотентны; б) они детерминированы; в) в них могут включаться в работу большинство транскриптонов; г) в них могут включаться в работу отдельные транскриптоны; д) в них заблокированы отдельные опероны.
- **545.** На стадии поздней гаструлы для клеток зародыша характерно: а) они тотипотентны; б) они детерминированы; в) в них могут включаться в работу большинство транскриптонов; г) в них могут включаться в работу отдельные транскриптоны; д) в них заблокировано большинство транскриптонов.
- **546. Характерные признаки тотипотентных клеток:** а) их развитие окончательно запрограммировано; б) их развитие не запрограммировано; в) каждая из них может дать начало любому типу клеток; г) каждая из них может дать начало только определенному типу клеток; д) большинство транскриптонов заблокированы.
- **547. Характерные признаки детерминированных клеток:** а) их развитие окончательно запрограммировано; б) их развитие не запрограммировано; в) каждая из них может дать начало любому типу клеток; г) каждая из них может дать начало только определенному типу клеток; д) в работу может включаться большинство блоков генов.
- **548. Характеристика зависимой дифференцировки клеток зародыша:** а) происходит до стадии ранней гаструлы; б) клетки относительно тотипотентны; в) клетки детерминированы; г) их развитие зависит от индукторов соседних клеток; д) их развитие не зависит от индукторов соседних клеток.
- **549. Характеристика независимой дифференцировки клеток зароды- ша:** а) происходит до стадии ранней гаструлы; б) происходит на стадии поздней гаструлы; в) клетки детерминированы; г) их развитие зависит от индукторов соседних клеток; д) их развитие не зависит от индукторов соседних клеток.
- **550.** Эмбриональная индукция это: а) влияние одной группы клеток эмбриона на другие путем выделения индукторов; б) влияние одной группы клеток эмбриона на другие путем гравитационных полей; в) влияние одной группы клеток эмбриона на другие путем электрических полей; г) влияние одной группы клеток эмбриона на другие путем температурных полей; д) падение интенсивности обменных процессов от головного к хвостовому концу эмбриона.

- **551. Морфогенетические поля** это: а) влияние одной группы клеток эмбриона на другие путем выделения индукторов; б) влияние одной группы клеток эмбриона на другие путем гравитационных полей; в) влияние одной группы клеток эмбриона на другие путем электрических полей; г) позиционная информация клетки; д) падение интенсивности обменных процессов от головного к хвостовому концу эмбриона.
- **552.** Градиенты физиологической активности это: а) влияние одной группы клеток эмбриона на другие путем выделения индукторов; б) влияние одной группы клеток эмбриона на другие путем гравитационных полей; в) позиционная информация клетки; г) влияние одной группы клеток эмбриона на другие путем температурных полей; д) падение интенсивности обменных процессов от головного к хвостовому концу эмбриона.
- **553. Первичным индуктором в эмбриогенезе хордовых являются:** а) клетки нижней губы гастропора; б) клетки верхней губы гастропора; в) нервная трубка; г) хорда; д) клетки эктодермы брюшной стороны гаструлы.
- **554.** В критические периоды эмбриогенеза имеет место: а) более интенсивное влияние неблагоприятных факторов среды на эмбрион; б) более низкая чувствительность к неблагоприятным факторам среды у плода; в) наибольшая чувствительность эмбриона и плода к действию факторов внешней среды; г) наименьшая чувствительность эмбриона и плода к действию факторов внешней среды; д) появление «новых» и исчезновение «старых» индукторов.
- **555. Критические периоды эмбриогенеза у человека:** а) предэмбриональный; б) оплодотворение; в) имплантация; г) плацентация; д) роды.
- **556.** Причины критических периодов эмбриогенеза: а) изменение условий существования и питания эмбриона; б) остановка развития эмбриона; в) появление новых индукторов; г) активная дедифференцировка клеток; д) недостаточное питание беременной женщины.
- **557.** Отрицательное влияние на эмбриогенез оказывают: а) разнообразная пища; б) недостаточное количество витаминов, аминокислот и минеральных солей в пищевом рационе беременной женщины; в) позитивное настроение; г) употребление алкоголя, наркотиков, никотина беременной женщиной; д) физическая нагрузка на организм беременной.

ПОСТНАТАЛЬНОЕ РАЗВИТИЕ ЧЕЛОВЕКА

- **558. Постэмбриональный онтогенез включает периоды:** а) гисто- и органогенез; б) рождение или выход из яйцевых оболочек; в) ювенильный; г) репродуктивный; д) пострепродуктивный.
- **559. Типы постнатального развития:** а) равномерное; б) непрямое (с метаморфозом); в) непрямое (без метаморфоза); г) внутриутробное; д) неполное.
- **560.** Детский возраст у человека подразделяется на периоды: а) новорождения; б) грудной; в) раннего детства; г) юношеский; д) подростковый.
- **561. Половое созревание у человека происходит в периоды:** а) грудной; б) первый период детства; в) второй период детства; г) подростковый; д) юношеский.

- **562.** Наилучший период для деторождения у человека: а) второй период детства; б) подростковый; в) юношеский; г) I период среднего возраста; д) II период среднего возраста.
- **563.** Первые биохимические и физиологические признаки старения появляются у человека в возрасте: а) 15 лет; б) 25 лет; в) 35 лет; г) 45 лет; д) 55 лет.
- **564.** Период наиболее активной трудовой деятельности и профессионализма у человека: а) второй период детства; б) подростковый; в) юношеский; г) I период среднего возраста; д) II период среднего возраста.
- **565. Критические периоды постнатального онтогенеза у человека:** а) роды; б) новорождения; в) полового созревания; г) полового увядания; д) старческий возраст.
- **566. Наиболее интенсивный рост у человека наблюдается:** а) на первом году жизни; б) на втором году жизни; в) на третьем году жизни; г) с 4 до 7 лет; д) в период полового увядания.
- **567.** Характеристика общего типа роста органов и тканей человека: а) интенсивный рост с рождения и до 10–12 лет; б) равномерный рост на протяжении всего периода; в) интенсивный рост в первый год жизни и в период полового созревания; г) интенсивный рост до 11–12 лет, затем уменьшение объема ткани до уровня взрослого организма; д) быстрый рост в период полового увядания.
- **568. Общий тип роста характерен** для: а) тела в целом; б) головы, головного и спинного мозга; в) тимуса и селезенки; г) половых органов; д) скелета и мышц.
- **569.** Характеристика мозгового типа роста органов и тканей человека: а) интенсивный рост с рождения и до 10–12 лет; б) равномерный рост на протяжении всего периода; в) интенсивный рост в первый год жизни и в период полового созревания; г) интенсивный рост до 11–12 лет, затем уменьшение объема ткани до уровня взрослого организма; д) быстрый рост в период полового увядания.
- **570. Мозговой тип роста характерен для:** а) для тела в целом; б) головы, головного и спинного мозга; в) тимуса и селезенки; г) половых органов; д) скелета и мышц.
- **571.** Характеристика лимфоидного типа роста органов и тканей человека: а) интенсивный рост с рождения и до 10–12 лет; б) равномерный рост на протяжении всего периода; в) интенсивный рост в первый год жизни и в период полового созревания; г) интенсивный рост до 11–12 лет, затем уменьшение объема ткани до уровня взрослого организма; д) быстрый рост после периода полового увядания.
- **572. Лимфоидный тип роста характерен для:** а) тела в целом; б) головы, головного и спинного мозга; в) тимуса и селезенки; г) половых органов; д) органов дыхания.
- **573.** Характеристика репродуктивного типа роста органов и тканей человека: а) интенсивный рост с рождения и до 10–12 лет; б) быстрый рост после периода полового созревания; в) интенсивный рост в первый год жизни и в период полового созревания; г) интенсивный рост до 11–12 лет, затем уменьшение объема ткани до уровня взрослого организма; д) быстрый рост в период полового увядания.

- **574. Репродуктивный тип роста характерен для:** а) тела в целом; б) головы, головного и спинного мозга; в) тимуса и селезенки; г) половых органов; д) скелета и мышц.
- **575.** В регуляции роста человека существенную роль играют гормоны: а) мозгового вещества надпочечников; б) средней доли гипофиза; в) щитовидной железы; г) поджелудочной железы; д) половых желез.
- **576. Акселерация это:** а) замедление физического и физиологического развития детей и подростков; б) ускорение физического и физиологического развития детей и подростков; в) увеличение массы тела у пожилых людей на 10 кг; г) увеличение роста новорожденных на 8 см; д) замедление полового созревания.
- **577. Причины акселерации:** а) повышение гетерозиготности вследствие смешанных браков; б) снижение гетерозиготности вследствие смешанных браков; в) улучшение питания; г) отсутствие миграции населения; д) повышение заболеваемости детей.
- **578. Хронологический возраст** это: а) на сколько лет выглядит человек; б) возраст по паспорту; в) количество прожитых лет; г) истинный возраст; д) истинный возраст \pm 10 лет.
- **579. Биологический возраст это:** а) на сколько лет выглядит человек; б) возраст по паспорту; в) количество прожитых лет; г) истинный возраст; д) истинный возраст минус 10 лет.
- **580. Критерии биологического возраста:** а) уровень IQ; б) размеры половых органов; в) скелетозрелость; г) рост человека; д) зубная зрелость.
- **581. Конституция человека это:** а) наследственные особенности морфологии, физиологии и поведения; б) сиюминутное состояние человека; в) стойкие, генетически обусловленные нарушения морфологии, физиологии и поведения; г) реактивность; д) сопротивляемость болезнетворным агентам.
- **582.** Габитус человека это: а) стойкие, генетически обусловленные особенности морфологии, физиологии и поведения; б) стойкие, генетически обусловленные нарушения морфологии, физиологии и поведения; в) соответствие конституции и биологического возраста; г) состояние и цвет кожных покровов; д) особенности обменных процессов.
- **583. Конституционные типы людей:** а) астенический; б) эктоморфный; в) мезодермальный; г) нормальный; д) эндоморфный.
- **584. Морфофизиологические особенности астеников:** а) широкая грудная клетка; б) узкая грудная клетка; в) пониженная возбудимость; г) высокое содержание холестерина в крови; д) низкое артериальное давление.
- **585. Морфофизиологические особенности нормостеников:** а) пропорциональное телосложение; б) узкая грудная клетка; в) толстые кости; г) умеренное отложение жира; д) высокое содержание холестерина в крови.
- **586. Морфофизиологические особенности гиперстеников:** а) широкая грудная клетка; б) узкая грудная клетка; в) толстые кости; г) большие отложения жира; д) спокойны, но неуравновешенны.
- **587. Астеники предрасположены к:** а) неврозам; б) гипертонической болезни; в) язвенной болезни желудка и 12-перстной кишки; г) туберкулезу; д) болезням верхних дыхательных путей.

- **588. Нормостеники предрасположены к:** а) невралгиям; б) гипертонической болезни; в) язвенной болезни желудка и 12-перстной кишки; г) атеросклерозу; д) болезням верхних дыхательных путей.
- **589.** Гиперстеники предрасположены к: а) неврозам; б) гипертонической болезни; в) язвенной болезни желудка и 12-перстной кишки; г) атеросклерозу; д) ожирению.
- **590.** Геронтология изучает: а) закономерности старения организмов; б) признаки старения; в) особенности развития заболеваний у людей старческого возраста; г) особенности лечения заболеваний у людей старческого возраста; д) особенности профилактики заболеваний у людей старческого возраста.
- **591.** Гериатрия изучает: а) закономерности старения организмов; б) первые проявления старения; в) особенности развития заболеваний у людей старческого возраста; г) особенности лечения заболеваний у людей старческого возраста; д) морфологические и биохимические признаки старения.
- **592. На организменном уровне признаки старения проявляются:** а) изменением осанки и формы тела; б) появлением седины; в) улучшением памяти; г) ухудшением памяти; д) улучшением зрения и слуха.
- **593.** На органном уровне возрастные изменения проявляются: а) увеличением жизненной емкости легких; б) ослаблением интенсивности фильтрации в почечных клубочках; в) снижением продукции половых гормонов; г) повышением продукции гормонов гипофиза; д) улучшением работы органов пищеварения.
- **594.** На клеточном уровне признаки старения проявляются: а) уменьшением содержания воды в клетке; б) повышением содержания воды в клетке; в) снижением активного транспорта ионов; г) снижением активности ферментов окислительного фосфорилирования; д) повышением активности ферментов репарации ДНК.
- **595.** Суть гормональной гипотезы старения: а) изменения коллоидных свойств цитоплазмы клеток; б) снижение продукции эстрогенов; в) изменения активности гипоталамических ядер; г) нарушение процессов адаптации и регуляции; д) накопление мутаций в генетическом аппарате клеток.
- **596.** Суть интоксикационной гипотезы старения: а) изменения коллоидных свойств цитоплазмы клеток; б) снижение продукции половых гормонов; в) накопление продуктов гниения в толстом кишечнике и всасывание их в кровь; г) нарушение процессов адаптации и регуляции; д) накопление мутаций в генетическом аппарате клеток.
- **597.** Суть генетических гипотез старения: а) изменения коллоидных свойств цитоплазмы клеток; б) снижение продукции половых гормонов; в) нарушение процессов репарации и репликации ДНК; г) нарушение процессов адаптации и регуляции; д) включение «генов старения».
- **598.** Суть гипотезы генетически запрограммированного числа митозов: а) фибробласты эмбрионов человека в культуре дают около 100 генераций; б) при делении клетки теломеры хромосом теряют несколько нуклеотидов; в) с каждым митозом длина теломеров увеличивается; г) когда длина теломеров
- достигает критической величины, клетки теряют способность делиться; д) накопление мутаций в генетическом аппарате клеток.

- **599.** Доказательствами генетически запрограммированного числа митозов клеток являются: а) фибробласты эмбрионов человека в культуре дают около 50 генераций; б) при каждой репликации молекулы ДНК теряется несколько нуклеотидов центромеры; в) при каждой репликации молекулы ДНК добавляется несколько нуклеотидов теломеров; г) с каждым митозом длина центромеры уменьшается; д) с каждым митозом длина теломеров увеличивается.
- **600.** Характерные признаки клинической смерти: а) потеря сознания; б) остановка сердца; в) метаболизм клеток нарушен; г) наличие пульса; д) остановка дыхания.
- **601. Характерные признаки биологической смерти:** а) потеря сознания; б) остановка сердца; в) метаболизм клеток нарушен; г) метаболизм клеток не нарушен; д) наличие пульса.
- **602.** Пассивная эвтаназия это: а) биологическая смерть; б) отмена врачом жизнеподдерживающего лечения безнадежно больного; в) отказ безнадежно больного от жизнеподдерживающего лечения; г) преднамеренное вмешательство врача с целью прервать жизнь безнадежно больного пациента по просьбе ближайших родственников; д) преднамеренное вмешательство врача с целью прервать жизнь безнадежно больного пациента по его просьбе.
- **603. Активная эвтаназия это:** а) биологическая смерть; б) клиническая смерть; в) отказ безнадежно больного от жизнеподдерживающего лечения; г) преднамеренное вмешательство врача с целью прервать жизнь безнадежно больного пациента по просьбе ближайших родственников; д) преднамеренное вмешательство врача с целью прервать жизнь безнадежно больного пациента по его просьбе.

Гомеостаз и хронобиология

- **604. Термин «гомеостаз» предложил(и):** а) Г. Селье; б) Р. Реомюр; в) У. Кеннон; г) Б. Токин; д) Г. Свобода.
- **605.** Гомеостаз это: а) относительное постоянство внутренней среды организма; б) способность сохранять динамическое относительное постоянство состава и свойств организма; в) приспособленность организмов; г) способность биологических систем противостоять изменениям; д) развитие патологического процесса.
- **606. Молекулярно-генетический уровень гомеостаза обеспечивается:** а) репарацией и репликацией ДНК; б) репликацией ДНК и увеличением числа органелл клетки; в) пролиферацией клеток и репликацией ДНК; г) пролиферацией клеток и клеточной дифференцировкой; д) клеточной дифференцировкой и восстановлением клеточных органелл.
- **607.** Стабильность гомеостаза организма обеспечивается: а) отрицательной обратной связью между входными и выходными переменными гомеостатической системы; б) положительной обратной связью между входными и выходными переменными гомеостатической системы; в) отрицательной прямой связью между входными и выходными переменными гомеостатической системы; г) положительной прямой связью между входными и выходными переменными гомеостатической системы; г) положительной прямой связью между входными и выходными переменными гомеостатической системы; г) положительной прямой связью между входными и выходными переменными гомеостатической системы; г)

тической системы; д) отсутствием связи между входными и выходными переменными гомеостатической системы.

- **608.** В регуляции гомеостаза организма участвуют: а) кора больших полушарий и клетки костного мозга; б) сегментарные центры спинного мозга и органелл клетки; в) сегментарные центры спинного мозга и гормоны желез внутренней секреции; г) клетки костного мозга и ядра ствола головного мозга; д) клетки костного мозга и сегментарные центры спинного мозга.
- **609.** Защитные механизмы, обеспечивающие гомеостаз: а) барьерные свойства кожи и производственная гимнастика; б) фагоцитоз и антимикробные свойства лизоцима слюны; в) аллергические и биохимические реакции; г) клеточный и гуморальный иммунитет; д) гаметогенез и осеменение.
- **610.** Стадии стресс-реакции: а) мобилизация защитных механизмов; б) повышение сопротивляемости организма; в) истощение жизненных ресурсов; г) трансляция; д) ассимиляция и диссимиляция.
- **611.** Стадии стресс-реакции, сохраняющие гомеостаз: а) мобилизация защитных механизмов; б) повышение сопротивляемости организма; в) истощение защитных механизмов; г) трансляция; д) ассимиляция.
- **612.** Стадии стресс-реакции, нарушающие гомеостаз: а) мобилизация защитных механизмов; б) повышение сопротивляемости организма; в) истощение защитных механизмов; г) трансляция; д) диссимиляция.
- **613. Разновидности биологических ритмов:** а) суточные и лунные; б) циркадные и минутные; в) суточные и минутные; г) лунные и вековые; д) годичные и циркадные.
- **614. Менструальный цикл у женщин является биологическим ритмом:** а) суточным; б) циркадным; в) месячным; г) лунным; д) квартальным.
- **615.** В медицине биологические ритмы учитываются при: а) проведении операций и взятии крови для диагностики малярии; б) назначении лекарственных препаратов и взятии крови для диагностики трипаносомозов; в) назначении лекарственных препаратов и взятии крови для диагностики филяриатозов; г) проведении операций и взятии крови для диагностики трипаносомозов; д) проведении профилактических осмотров и флюорографии.
- **616.** В нулевой день физиологического цикла чаще происходят: а) эмоциональные срывы; б) подъем работоспособности; в) несчастные случаи; г) ухудшение умственных способностей; д) эмоциональный подъем.
- **617.** В нулевой день эмоционального цикла чаще происходят: а) эмоциональные срывы; б) подъем работоспособности; в) несчастные случаи; г) ухудшение умственных способностей; д) эмоциональный подъем.
- **618. В нулевой день интеллектуального цикла чаще происходят:** а) эмоциональные срывы; б) подъем работоспособности; в) несчастные случаи; г) ухудшение умственных способностей; д) эмоциональный подъем.
- **619.** Наивысшая биоэлектрическая активность головного мозга человека наблюдается: а) с 12 до 14 часов и с 20 до 22 часов; б) с 8 до 12 часов и с 17 до 19 часов; в) с 14 до 17 часов и с 20 до 22 часов; г) на протяжении суток; д) с 8 до 12 часов и с 20 до 22 часов.

- **620.** Сезонная зависимость характерна для заболеваний: а) язвенная болезнь и ревматизм; б) фенилкетонурия и ревматизм; в) ревматизм и подагра; г) синдром Патау и энтеробиоз; д) подагра и фенилкетонурия.
- **621.** В дни повышенной солнечной активности происходят обострения: а) малярии и ишемической болезни сердца; б) ишемической болезни сердца и амебиаза; в) психических болезней и ишемической болезни сердца; г) психических болезней и галактоземии; д) аскаридоза и амебиаза.

РЕГЕНЕРАЦИЯ И ТРАНСПЛАНТАЦИЯ

- **622. Термин «регенерация» предложил(и):** а) Г. Селье; б) Р. Реомюр; в) У. Кеннон; г) Б. Токин; д) Г. Свобода.
- **623. Виды регенерации:** а) физиологическая; б) компенсаторная; в) репаративная; г) заместительная; д) определенная.
- **624.** Способы репаративной регенерации: а) эпиморфоз и эндоморфоз; б) морфаллаксис и полиэмбриония; в) компенсаторная и регенерационная гипертрофия; г) гипертрофия и эндоморфоз; д) эпителизация ран и эпиморфоз.
- **625.** Физиологическая регенерация является проявлением такого свойства живого, как: а) наследственность; б) изменчивость; в) раздражимость; г) саморегуляция; д) самообновление.
- **626.** Эпиморфоз представляет собой: а) разновидность физиологической регенерации; б) перестройку регенерирующего участка; в) разновидность репаративной регенерации; г) соматический эмбриогенез; д) отрастание нового органа от ампутационной (раневой) поверхности.
- **627. Морфаллаксис представляет собой:** а) разновидность физиологической регенерации; б) перестройку регенерирующего участка; в) разновидность репаративной регенерации; г) соматический эмбриогенез; д) отрастание нового органа от ампутационной поверхности.
- **628. Атипичная регенерация представляет собой:** а) разновидность физиологической регенерации; б) гипоморфоз и гетероморфоз; в) соматический эмбриогенез; г) образование у ящерицы хвоста вместо глаза; д) образование усика у ракообразных вместо конечности.
- **629.** Физиологическая регенерация у человека осуществляется за счет: а) клеток желтого костного мозга и пролиферативных зон в эпидермисе; б) клеток красного костного мозга и пролиферативных зон в эпидермисе; в) пролиферативных зон в эпидермисе и мышечных клеток; г) половых и нервных клеток; д) стволовых клеток.
- **630.** Появление конечности на месте глаза у членистоногих представляет собой: а) разновидность физиологической регенерации; б) гипоморфоз; в) соматический эмбриогенез; г) морфаллаксис; д) атипичную регенерацию.
- **631.** Физиологической регенерацией является: а) обновление эпидермиса кожи и регенерация щупалец у гидры; б) обновление эпидермиса роговицы глаза; в) обновление эпителия слизистой кишечника; г) обновление клеток крови и восстановление морской звезды из одного луча; д) регенерация щупалец у гидры и восстановление морской звезды из одного луча.

- **632.** Основной способ репаративной регенерации внутренних органов у млекопитающих: а) эпиморфоз; б) морфаллаксис; в) компенсаторная гипотрофия; г) регенерационная гипертрофия; д) гетероморфоз.
- **633. Трансплантация** это: а) пересадка ткани; б) синтез иРНК; в) способ бесполого размножения растений; г) пересадка органа; д) способность вируса встраивать чужеродную ДНК в ДНК бактерий.
- **634. Аллотрансплантация это пересадка:** а) собственных тканей или органов; б) тканей от генетически идентичных организмов; в) органов от генетически идентичных организмов; г) органов от организма того же вида; д) тканей и органов от организмов другого вида.
- **635. Ксенотрансплантация** это пересадка: а) собственных тканей или органов; б) тканей и органов от генетически идентичных организмов; в) органов от организма того же вида; г) органов от организмов другого вида; д) тканей от организмов другого вида.
- **636. Изотрансплантация** это пересадка: а) собственных тканей или органов; б) тканей от генетически идентичных организмов; в) органов от генетически идентичных организмов; г) органов от организма того же вида; д) органов от организмов другого вида.
- **637. Аутотрансплантация это пересадка:** а) собственных тканей или органов; б) тканей от генетически идентичных организмов; в) органов от генетически идентичных организмов; г) органов от организма того же вида; д) тканей и органов от организмов другого вида.
- **638. Разновидности трансплантации:** а) гетеротрансплантация и ксенотрансплантация; б) гибридизация соматических клеток и аллотрансплантация; в) аутотрансплантация и аллотрансплантация; г) гомотрансплантация и изотрансплантация; д) аллотрансплантация и ксенотрансплантация.
- **639. Тканевая совместимость наблюдается при пересадке:** а) собственных тканей или органов; б) тканей и органов от генетически идентичных организмов; в) органов от организма того же вида; г) органов от организмов другого вида; д) тканей от организмов другого вида.
- **640.** Тканевая несовместимость наблюдается при пересадке: а) собственных тканей или органов; б) тканей от генетически идентичных организмов; в) органов от генетически идентичных организмов; г) органов и тканей от организма того же вида; д) органов и тканей от организмов другого вида.
- **641.** Способы преодоления тканевой несовместимости: а) использование кадаверных органов и ксенотрансплантация; б) гибридизация соматических клеток и использование иммунодепрессантов; в) ксенотрансплантация и создание искусственной толерантности; г) гибридизация соматических клеток и иммуногенетический подбор донора и реципиента; д) иммуногенетический подбор донора и реципиента и создание искусственной толерантности.
- **642.** У человека гены главного комплекса гистосовместимости локализованы в хромосоме: а) 7-й; б) 12-й; в) 11-й; г) 5-й; д) 6-й.

ОТКРЫТЫЕ ЗАДАНИЯ

РОЛЬ БИОЛОГИИ В СИСТЕМЕ МЕДИЦИНСКОГО ОБРАЗОВАНИЯ

- **1.** Создание клеточной теории в XIX веке послужило научной основой связи биологии и ...
- **2.** Составная часть физической антропологии, связанная с вопросами медицины, называется ... антропология.
 - 3. Квадратичный весовой показатель у человека составляет ...
 - 4. Автором учения о трансмиссивных болезнях является ...
 - 5. Основоположником микробиологии является ...
 - 6. Меры борьбы с гельминтозами разработал ...
 - 7. Основы эволюционной и популяционной генетики заложил ...
- **8.** «Медицина, взятая в плане теории это прежде всего биология» писал крупнейший теоретик медицины ...

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ И КЛЕТОЧНЫЙ УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО

ЦИТОЛОГИЧЕСКИЕ ОСНОВЫ НАСЛЕДСТВЕННОСТИ

- 9. Автором положения клеточной теории «omnis cellula e cellula» является ...
- **10.** Н. Даусон и Р. Даниэль предложили ... модель строения биологической мембраны.
- **11.** Жидкостно-мозаичная модель строения мембраны была предложена ... и
- **12.** Способность биологических мембран разделять цитоплазму на отсеки называется ...
- **13.** Свойствами мембраны являются: избирательная проницаемость, текучесть, способность к самозамыканию и ...
- **14.** Функция мембран, обеспечивающая взаимодействие клетки с другими клетками многоклеточного организма, называется ...
 - 15. Транспорт веществ в клетку путем растворения в липидах называется ...
- **16.** Облегченный транспорт веществ осуществляется при участии ... белков мембраны.
 - 17. Аминокислоты поступают в клетку ... транспортом.
 - 18. Углеводы, входящие в состав плазмалеммы, выполняют ... функцию.
- **19.** В состав мембран входят следующие липиды: фосфолипиды, гликолипиды, и ...
- **20.** Рецепторный аппарат, расположенный на наружной поверхности плазмалеммы, называется ...
 - 21. Гликокаликс выполняет ... функцию.
 - 22. Головки молекул фосфолипидов обладают ... свойствами.
 - 23. Белки, пронизывающие один слой липидов, называются ...
- **24.** Белки-переносчики, осуществляющие транспорт через мембрану аминокислот, сахаров, жирных кислот, называются ...

- **25.** Биологическая мембрана, ограничивающая цитоплазму клетки, называется ...
 - 26. Свойство мембраны восстанавливаться после разрыва называется ...
 - 27. В состав клеточной стенки бактерий входит полисахарид ...
- **28.** Бензол и многие наркотические вещества поступают в клетку в результате ... транспорта.
 - 29. Выделение из клетки веществ, заключенных в мембрану, называется ...
 - 30. В результате диффузии через мембраны легко проходят вещества.
- **31.** Способ поступления веществ в клетку, сопровождающийся изменением конформации мембраны, называется ...
 - 32. Захват мембраной клетки капель жидкости это ...
- **33.** Опорный полимер клеточной стенки бактерий, имеющий сетчатую структуру и образующий ее жесткий наружный каркас, называется ...
- **34.** Перенос веществ через мембрану с участием белков-переносчиков это
- **35.** Мелкие незаряженные молекулы поступают в клетку путем ... транспорта.
 - 36. Способность мембраны изменять свою архитектонику называется ...
- **37.** Макромолекула или частица, захваченная мембраной и поступившая в цитоплазму, образует ...
 - 38. При слиянии эндосомы с первичной лизосомой образуется ...
- **39.** Субмембранный опорно-сократительный комплекс цитоплазмы называется ...
 - 40. Белки, образующие цитоскелет, называются ... и ...
- **41.** Опорно-сократительный комплекс клетки представлен: промежуточными филаментами, микротрубочками и ...
 - 42. Микрофиламенты цитоскелета имеют диаметр ... нм.
 - 43. Транспортную систему клетки образуют: ЭПС и ...
 - 44. Субъединицы рибосом образуются в ...
 - 45. В рибосоме имеются ... и ... активные центры.
- **46.** Рибосомы располагаются в цитоплазме на мембранах ЭПС, наружной ядерной мембране, в строме хлоропластов и в ...
 - 47. В прокариотических клетках содержатся органеллы, называемые ...
- **48.** У прокариот содержатся рибосомы, имеющие коэффициент седиментации ... S.
- **49.** Большая субъединица рибосом эукариот содержит 40–50 молекул белков и ... молекулы рРНК.
- **50.** Малая субъединица рибосом эукариот содержит 30–40 белковых молекул и ... молекулу (ы) рРНК.
- **51.** Структурно-функциональная единица комплекса Гольджи, образованная стопками плоских замкнутых мембранных полостей, называется
 - 52. В комплексе Гольджи происходит образование органоидов: лизосом и ...
 - 53. Образование пероксисом происходит в
- **54.** Органелла, в которой образуются комплексные соединения (гликопротеины, липопротеины и др.), называется

- **55.** Органеллы растительной клетки, содержащие генетический материал это ...
- **56.** Органелла, синтезирующая белки на экспорт, изолирующая и транспортирующая их, называется ...
- **57.** Органелла, участвующая в заключительных этапах синтеза липидов и некоторых внутриклеточных полисахаридов, называется ...
 - 58. Гидролитические ферменты лизосом синтезируются на
 - 59. Реакции пластического обмена протекают в ... системе клетки.
- **60.** Совокупность реакций биологического синтеза, при которой из поступивших в клетку веществ синтезируются вещества, специфические для данной клетки, называется ...
 - 61. Реакции диссимиляции протекают в ... системе клетки.
 - 62. К катаболической системе клетки относятся микротельца, лизосомы и ...
- **63.** Расщепление лизосомами чужеродных, поступивших путем эндоцитоза веществ, называется ...
 - 64. Разрушение лизосомами собственных структур клетки называется ...
 - 65. Процесс самопереваривания клетки называется ...
- **66.** Комплекс рибосом, объединенных молекулой иРНК и осуществляющих синтез белка это ...
 - 67. Полуавтономной органеллой животной клетки является ...
- **68.** В митохондриях находятся ферменты цикла Кребса, тканевого дыхания и
- **69.** Внутренняя мембрана митохондрий содержит белки-переносчики, компоненты дыхательной цепи и ферменты синтеза ...
- **70.** Интегральные белки в составе наружной мембраны митохондрий, образующие поры и обеспечивающие проницаемость мембран, называются ...
- **71.** Расщепление полимеров до мономеров происходит на ... этапе энергетического обмена.
- **72.** Пировиноградная кислота, образовавшаяся в процессе гликолиза, в результате окислительного декарбоксилирования превращается в ...
- **73.** На кислородном этапе энергетического обмена процесс транспорта электронов обеспечивают ферменты
- **74.** На кристах митохондрий расположены грибовидные тельца, которые называются ...
 - 75. Грибовидные тельца крист митохондрий содержат ферменты
- **76.** Ферментная система, находящаяся в матриксе митохондрий, называется
 - 77. Ферменты окислительного фосфорилирования локализуются в ...
 - 78. Ферменты цикла Кребса находятся в ... митохондрий.
 - 79. Универсальным источником энергии в клетке является ...
- **80.** На бескислородном этапе энергетического обмена в виде тепла рассеивается ... % энергии.
- **81.** На кислородном этапе энергетического обмена в виде тепла рассеивается ... % энергии.
 - 82. Конечным акцептором электронов в дыхательной цепи является ...

- 83. Коэффициент полезного действия бескислородного этапа энергетического обмена составляет ... %.
- **84.** Коэффициент полезного действия кислородного этапа энергетического обмена составляет ... %.
 - 85. Оболочка ядра клетки называется ...
 - 86. Ядерную пластинку образуют преимущественно белки...
- **87.** Белки внутренней ядерной мембраны образуют ..., которая является местом прикрепления хроматина.
- **88.** Пространство между двумя элементарными мембранами ядерной оболочки называется ...
 - 89. Интерфазный хроматин виден в ядре клетки в виде ...
- **90.** Слабо конденсированные участки хроматина, с которых идет считывание информации, называются ...
 - 91. В состав хроматина входят: гистоны и ...
- **92.** В области первичной перетяжки метафазной хромосомы располагается ..., к которому прикрепляются нити веретена деления.
- 93. Информацию о структуре рРНК и белков рибосом несут гены, расположенные в области
- **94.** Участок молекулы ДНК в области вторичной перетяжки спутничных хромосом называется
 - 95. Соединению хромосом концевыми участками препятствуют ...
- **96.** Классификация хромосом, в основе которой лежат методы их дифференциального окрашивания, называется ...
- **97.** Классификация хромосом, которая учитывает размеры, форму хромосом и положение центромеры, называется ...
 - 98. Денверская классификация хромосом была предложена в ... году.
- **99.** Отличие одной пары хромосом от другой размерами, строением, набором генов, расположением центромеры это правило ...
- **100.** Отношение (в процентах) длины короткого плеча к длине всей хромосомы это
- **101.** Хромосомы среднего размера с центромерным индексом 27–35, согласно Денверской классификации, относятся к группе ...
- **102.** Y-хромосома по Денверской классификации хромосом человека относится к группе ...
- **103.** Хромосомы группы D (по Денверской классификации) это ... пары хромосом.
 - 104. Хромосомы, имеющие вторичную перетяжку, называются ...
- **105.** X-хромосома, согласно Денверской классификации, относится к группе ...
- **106.** Сделайте запись локализации гена, если он находится в первой полосе третьего района длинного плеча 1-й хромосомы ...
- **107.** Сделайте запись локализации гена, если он находится в первой полосе второго района длинного плеча 17-й хромосомы ...
- **108.** Сделайте запись локализации гена, если он находится в первой полосе четвертого района короткого плеча 6 хромосомы ...

- 109. В яйцеклетке человека содержится ... аутосом(ы).
- 110. Количество аутосом в сперматозоиде человека составляет ...
- 111. В соматической клетке человека содержится ... половые хромосом(ы)
- 112. Многонитчатые (гигантские) хромосомы называются ...
- 113. Только в овоцитах млекопитающих встречаются хромосомы типа ...
- 114. Генетический материал бактерий представлен нуклеоидом и ...
- 115. Устойчивость бактерий к антибиотикам обеспечивают ...
- 116. Молекула ДНК прокариот связана с ... белками.
- 117. Функцию мембранных органелл у прокариот выполняют ...
- **118.** Для прокариотических клеток характерно бесполое размножение делением ...
- **119.** Совокупность последовательных и взаимосвязанных процессов, происходящих в клетке в период подготовки ее к делению и в период деления, называется
 - 120. Период между двумя митотическими делениями называется ...
 - 121. Важная роль в регуляции митотического цикла принадлежит белкам ...
- **122.** Разновидность митоза, при котором происходит многократное удвоение числа хроматид без их расхождения, называется ...
 - **123.** Содержание генетического материала в G₁ период интерфазы ...
 - **124.** Содержание генетического материала в конце S периода интерфазы ...
 - **125.** Содержание генетического материала в G₂ период интерфазы ...
 - **126.** В G₂ период интерфазы в клетках синтезируются белки ...
 - 127. Содержание генетического материала в метафазу митоза ...
- **128.** Содержание генетического материала на одном из полюсов клетки в анафазу митоза ...
- **129.** Фаза непрямого деления клетки, в ходе которой происходит цитокинез, называется ...
 - 130. Восстановление ядрышка происходит в фазу митоза, называемую ...
- **131.** Разновидность митоза, приводящая к образованию полиплоидных клеток, называется ...
- **132.** Мейотическое деление, в результате которого клетка из диплоидной становится гаплоидной, называется ...
 - 133. Период между двумя делениями мейоза называется ...
 - 134. Второе деление мейоза называется ...
- **135.** Содержание генетического материала в клетке на стадии диплотены профазы мейоза I ...
- **136.** Содержание генетического материала в клетке на стадии диакинеза профазы мейоза I ...
 - 137. Содержание генетического материала в клетке на стадии интеркинеза ...
- **138.** Содержание генетического материала в клетке на стадии лептотены профазы мейоза I ...
- **139.** Содержание генетического материала в клетке на стадии пахитены мейоза I ...
- **140.** Попарное соединение гомологичных хромосом в профазе мейоза I называется ...

- 141. Конъюгация гомологичных хромосом начинается на стадии ...
- 142. Конъюгирующие гомологичные хромосомы образуют ...
- **143.** Обмен участками хроматид бивалента во время конъюгации в профазе мейоза I называется ...
- **144.** На стадии диплотены профазы мейоза I биваленты связаны между собой только в участках, называемых ...
- **145.** Стадия профазы мейоза I, в которой происходит образование хиазм и кроссинговер, называется ...
 - 146. Содержание генетического материала в клетке в метафазу мейоза І ...
 - 147. В метафазе мейоза I в экваториальной плоскости располагаются ...
- **148.** Содержание генетического материала в анафазу мейоза I (на каждом полюсе клетки) ...
 - **149.** Содержание генетического материала в клетке в профазу мейоза II ...
 - **150.** Содержание генетического материала в клетке в метафазу мейоза II ...
- **151.** Содержание генетического материала в анафазу мейоза II (на каждом полюсе клетки) ...
- **152.** Содержание генетического материала в телофазу мейоза II (в каждой дочерней клетке) ...
 - 153. Клетка, содержащая вирус в состоянии профага, называется ...
 - 154. Литические вирусы по типу взаимодействия с клеткой являются ...
 - 155. Белковая оболочка вирусов называется ...

ОРГАНИЗАЦИЯ НАСЛЕДСТВЕННОГО МАТЕРИАЛА

- **156.** Нуклеосомные белки-гистоны H_{2A}, H₃, H₄ и ...
- **157.** Участок молекулы ДНК, не контактирующий с гистоновым октамером, называется ... ДНК.
- **158.** Непосредственное участие в упаковке молекулы ДНК принимают белки гистоновые и ...
 - 159. Отрезок молекулы ДНК вместе с белковым октамером образует ...
- **160.** На первом уровне упаковки генетического материала длина молекулы ДНК уменьшается в ... раз.
- **161.** Соленоидный уровень упаковки генетического материала обнаруживается под электронным микроскопом в ... и ... хромосомах.
 - 162. Третий уровень упаковки ДНК возникает в ... митоза.
- **163.** Уменьшение длины ДНК в 10–20 раз при упаковке происходит на супернуклеосомном и на ... уровнях.
- **164.** В результате всех уровней упаковки молекула ДНП укорачивается в ... раз.
- **165.** Уровни структурно-функциональной организации наследственного материала эукариот: генный, хромосомный и ...
 - 166. В состав АТФ и РНК входит азотистое основание...
- **167.** В состав нуклеотида ДНК входят: остаток фосфорной кислоты, дезоксирибоза и
 - **168.** Пиримидиновые основания ДНК ... и ...
 - **169.** Пуриновые основания ДНК ... и ...

- **170.** Явление комплементарности азотистых оснований в молекуле ДНК открыл ...
- **171.** Закономерности нуклеотидного состава ДНК, основанные на комплементарности, формулируются как правила ...
 - 172. Пиримидиновые основания информационной РНК ... и ...
- **173.** Нуклеотиды в цепочке молекулы ДНК связываются ковалентными ... связями.
 - 174. Минимальной структурной субъединицей гена является
 - 175. У прокариот синтез некоторых ядов кодируют...
 - 176. 56 % в геноме человека составляют ... последовательности нуклеотидов.
- **177.** Мобильные генетические элементы, способные встраиваться в хромосому и перемещаться вдоль нее, называются ...
- **178.** Способность одного штамма бактерий встраивать в свою ДНК участки молекулы ДНК другого штамма и приобретать при этом его свойства называется ...
- **179.** Свойство бактериофагов переносить генетическую информацию от одних бактерий к другим называется ...
- **180.** Опыты с вирусом табачной мозаики, доказывающие роль нуклеиновых кислот в передаче наследственной информации, провел
- **181.** Явление, при котором резко возрастает число генов, кодирующих рРНК, называется ...
 - 182. Аутосинтетическая функция молекулы ДНК это ее ...
 - 183. Участок, в котором происходит репликация это
 - 184. Точка начала репликации определяется ...
- **185.** Фермент, осуществляющий расщепление водородных связей между нуклеотидами двух цепочек ДНК при репликации, называется ...
- **186.** Короткие одноцепочечные участки ДНК, которые синтезируются на отстающей цепи материнской молекулы при ее репликации это
- **187.** ДНК-полимераза может передвигаться вдоль матричных цепей от ... конца к ... концу.
- **188.** Система записи генетической информации в виде определенной последовательности нуклеотидов в молекуле ДНК (иРНК) называется
- **189.** Свойство генетического кода, благодаря которому одинаковые кодоны кодируют одну и ту же аминокислоту у всех живых существ это ...
- **190.** Свойство генетического кода кодировать одну аминокислоту несколькими разными триплетами называется ... или ...
- **191.** Явление соответствия порядка нуклеотидов в молекуле ДНК порядку аминокислот в молекуле белка называется ...
- **192.** Направление считывания генетической информации от 5'- к 3'-концу является свойством генетического кода, которое называется ...
- **193.** При программировании синтеза белка ген выступает как целостная единица и называется ...
 - 194. Основной фермент, обеспечивающий транскрипцию, называется ...
 - **195.** Процесс узнавания тРНК своей аминокислоты это ...
 - 196. Триплет тРНК, комплементарный кодону иРНК, называется ...

- **197.** В процессе рекогниции аминокислота присоединяется к ...-концу активного центра тРНК, представленного триплетом ...
- **198.** Процесс перевода кодовой последовательности нуклеотидов иРНК в первичную структуру белка называется ...
 - 199. Начальный этап трансляции называется ...
- **200.** Во время инициации при трансляции в пептидильном центре рибосомы находится триплет иРНК ...
- **201.** Процесс, который начинается образованием первой пептидной связи и заканчивается присоединением последней аминокислоты к молекуле полипептида, называется ...
 - 202. Некоторые антибиотики являются ... биосинтеза белка.
 - 203. Инсулин является ... биосинтеза белка.
- **204.** Свойство гена иметь разную степень фенотипического проявления называется ...
- **205.** Свойство гена кодировать синтез определенного полипептида или РНК называется ...
 - 206. Свойство гена отвечать за проявление нескольких признаков это ...
 - 207. Способность гена мутировать называется ...
 - 208. Степень фенотипического проявления гена это ...

ЭКСПРЕССИЯ ГЕНОВ У ПРОКАРИОТ И ЭУКАРИОТ

- 209. Единица транскрипции у прокариот называется ...
- 210. Единица транскрипции у эукариот называется ...
- 211. Неинформативная зона транскриптона заканчивается ...
- **212.** Неинформативная часть транскриптона состоит из инициатора, генов операторов и ...
 - 213. Неинформативные участки структурных генов эукариот это ...
 - 214. Запасную информацию, обеспечивающую изменчивость, содержат ...
 - 215. Информативные участки структурных генов эукариот это ...
 - 216. Информацию о белках гистонах и ферментах несут ... гены.
 - 217. Гены, которые регулируют работу структурных генов, называются ...
 - 218. Гены-регуляторы несут информацию для синтеза белков ...
- **219.** Во время «экспрессии» структурных генов, гены-операторы освобождаются от ...
 - 220. Информативная зона транскриптона заканчивается ...
- **221.** Вещество, которое расщепляется под действием ферментов, закодированных в данном опероне это ...
- **222.** Вещества, индуцирующие синтез ферментов, которые их расщепляют, называются ...
- **223.** Разрывает водородные связи между двумя цепочками ДНК в транскриптоне фермент ...
- **224.** Ферментативное разрушение неинформативной части про-иРНК это ...
- **225.** Совокупность реакций «сшивания» отдельных информативных фрагментов про-иРНК с образованием зрелой иРНК это ...

- **226.** Изменение активности структурных генов обеспечивается разновидностью функциональных генов, называемых ...
 - 227. Усиливают действие структурных генов функциональные гены ...
 - 228. В 1975 г. Р. Дульбеко, Г. Тимин и Д. Балтимор описали явление
- **229.** Фермент, обеспечивающий передачу генетической информации с иРНК на ДНК, называется ...
 - 230. Передача генетической информации от иРНК к ДНК называется
- **231.** Автономные генетические элементы, расположенные в цитоплазме бактериальной клетки это ...
- **232.** Отсутствие количественного менделевского расщепления характерно для ... наследственности.
 - **233.** Пестролистность у «ночной красавицы» обусловлена мутациями ... генов.
 - 234. Митохондриальная наследственность была открыта ...
 - 235. Гены цитохромов в входят в состав генома ...
 - 236. Гены, кодирующие дыхательные ферменты, находятся в ...
 - 237. Болезнь Лебера обусловлена мутациями генов ...
- **238.** Наследственность, обусловленная попаданием в цитоплазму клеток участков чужеродной ДНК, называется ...

Генная инженерия

- **239.** В генной инженерии для выделения нужных генов используют ферменты ...
 - 240. Впервые синтезирован химическим путем ген
- **241.** В основе синтеза сложных генов с помощью процессов обратной транскрипции лежит метод
 - 242. Ген соматотропина получают ... способом.
- **243.** В генной инженерии векторными молекулами могут быть: плазмиды бактерий, фаги, вирусы, липосомы, фазмиды, космиды и
- **244.** Гибридные векторы, способные развиваться и как фаг, и как плазмида, называются ...
- **245.** Плазмиды, содержащие соѕ-участок (липкие концы) ДНК фага λ, называются
- **246.** В космидных векторах можно клонировать фрагменты ДНК размером ... тыс. п.н.
- **247.** Основным вектором для клонирования генов животных является геном вируса ...
- **248.** Рестриктаза Есо R I при разрезе узнаваемого участка уступом образует в ДНК ... концы.
- **249.** Рестриктаза Hind II при разрезе узнаваемого участка посередине образует в ДНК ... концы.
 - 250. Размножение клеток с рекомбинантной ДНК называется ...
- **251.** Молекула инсулина свиньи отличается от молекулы инсулина человека ... аминокислотой.
- **252.** Первым «генно-инженерным» белком, разрешенным к использованию в медицине, был ...

- 253. Преимуществом генно-инженерного инсулина является меньшая ...
- **254.** Основной промышленный «генно-инженерный» продуцент пенициллина
- **255.** Успешно испытано и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных ...
- **256.** Соматотропин, синтезированный в генетически сконструированных клетках E. coli, содержит на N-конце полипептидной цепи дополнительный остаток...
- **257.** Направленное разрушение (выключение) определенного гена с помощью гомологичной рекомбинации ...

ОНТОГЕНЕТИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОГО

Закономерности наследования

- 258. Признаки, имеющие разные качественные состояния, называются ...
- 259. Биологическое явление, нарушающее сцепление генов, называется ...
- **260.** Бомбейский феномен является примером взаимодействия генов, которое называется
- **261.** Взаимодействие неаллельных генов, расположенных в близлежащих локусах одной хромосомы, называется
- **262.** Если дигетерозиготный организм образует только 2 типа гамет, то наблюдается ... сцепление генов.
- **263.** Взаимодействие генов, при котором один неаллельный ген подавляет действие другого неаллельного гена, называется ...
- **264.** Если между генами, расположенными в одной паре гомологичных хромосом происходит кроссинговер, то наблюдается ... сцепление генов.
 - 265. Расстояние между генами в морганидах равно % ...
- **266.** Расщепление по фенотипу 9:7 при скрещивании дигетерозигот является результатом ... межаллельного взаимодействия генов.
- **267.** Для проявления II и III законов Менделя пенетрантность гена должна составлять ... %
- **268.** Появление пурпурной окраски лепестков у душистого горошка при скрещивании растений с белыми цветками является примером ...
- **269.** При сцепленном наследовании максимальная величина кроссинговера составляет ... %.
- **270.** Результатом независимого комбинирования генов двух аллельных пар при анализирующем скрещивании является расщепление в потомстве I поколения по фенотипу, равное ...
- **271.** Разновидность межаллельного взаимодействия генов, при котором степень проявления признака зависит от количества доминантных генов в генотипе, называется ... полимерией.
- **272.** Аллели, представленные в популяции более чем двумя состояниями, называются ...
- **273.** Активность разных аллелей одной пары у гетерозиготного организма является примером

- **274.** Явление, при котором в генофонде популяции ген представлен несколькими аллельными состояниями, называется
- **275.** Синтез специфического белка интерферона у человека обусловлен взаимодействием генов разных хромосом, которое называется ...
- **276.** Отношение числа особей популяции, имеющих признак, к числу особей, имеющих ген, является численным выражением ...
- **277.** Свойство гена детерминировать развитие нескольких признаков называется ...
 - 278. Расстояние между генами прямо пропорционально проценту ...
 - 279. Синдром Марфана является примером ... действия генов.
- **280.** Явление взаимодействия продуктов генной активности, при котором доминантный ген в гетерозиготном состоянии проявляет себя сильнее, относится к взаимодействию аллельных генов, называемому ...
- **281.** Четвертая группа крови по системе AB0 является примером ... взаимодействия генов.
- **282.** Условия, ограничивающие проявление законов Менделя: взаимодействие генов, кроме полного доминирования, летальные и полулетальные гены, неравная вероятность образования гамет и зигот разных типов, неполная пенетрантность гена и гена.
- **283.** Условия, ограничивающие проявление законов Менделя: взаимодействие генов, кроме полного доминирования, летальные и полулетальные гены, неравная вероятность образования гамет и зигот разных типов, плейотропное действие генов и неполная ... гена.
- **284.** Расщепление по фенотипу, равное 9:6:1 при скрещивании дигетерозигот, соответствует ... межаллельному взаимодействию генов.

Биология и генетика пола

- **285.** В норме в ядрах соматических клеток женского организма содержится ... глыбок(ка) полового хроматина.
- **286.** Наличие в ядрах нервных клеток самок млекопитающих глыбок полового хроматина было установлено М. Барром и ...
- **287.** Организмы, соматические клетки которых содержат различный набор половых хромосом, называются ...
- **288.** Явление, при котором в разных соматических клетках человека наблюдается различное содержание половых хромосом, называется ...
- **289.** Обнаружение в ядрах соматических клеток женского организма двух глыбок полового хроматина говорит о синдроме ...
- **290.** Фенотипические признаки женского организма, низкое расположение ушных раковин, крыловидная кожная складка шеи характерны для синдрома ...
- **291.** Мужчины с женским типом телосложения, гинекомастией и нарушением процесса сперматогенеза страдают синдромом ...
- **292.** Явление фенотипического проявления у мужчин одиночного рецессивного гена, находящегося в негомологичном участке X хромосомы, называется ...
- **293.** Признаки, детерминируемые генами аутосом, экспрессивность и пенентрантность которых зависит от пола, называются полом.

- **294.** Явление, при котором половое возбуждение и удовлетворение достигается при переодевании в одежду противоположного пола, называется ...
- **295.** Хромосомные болезни пола у человека возникают при нарушении процесса ...
- **296.** Признаки, детерминируемые генами, расположенными в негомологичном участке Y-хромосомы, называются ...
 - 297. В момент оплодотворения у человека определяется ... пол.
 - 298. При оплодотворении на 100 женских зигот образуется ... мужских.
- **299.** Пол, образующий разные типы гамет по половым хромосомам, называется ...
- **300.** Нормальный рост волос и облысение у человека являются признаками ... полом.
- **301.** Мозаицизм по половым хромосомам у человека развивается при нарушении процесса ...
 - 302. Моносомия по 23 паре хромосом это синдром ...
- **303.** Кариотип человека с синдромом Шерешевского—Тернера можно записать ...
- **304.** Закладка внутренних половых органов человека начинается на ... неделе внутриутробного развития.
- **305.** Дифференцировка внутренних половых органов человека начинается на ... неделе внутриутробного развития.
 - 306. Трисомия по половым хромосомам у мужчин называется синдром ...
 - 307. Соотношение полов в период рождения называется ...
- **308.** Стойкое несоответствие полового самосознания человека его истинному генетическому и гонадному полу называется ...
- **309.** Синдром Морриса у человека развивается при отсутствии белкарецептора, чувствительного к ...
 - 310. Трисомия по половым хромосомам у женщин называется синдром ...

Изменчивость

- **311.** Синдром Дауна является разновидностью геномной мутации, называемой ...
 - 312. Нити веретена деления разрушают ... мутагены.
- **313.** Замена азотистых оснований их аналогами происходит при действии ... мутагенов.
 - 314. Впервые индуцированные мутации были получены ... и ...
- **315.** Явление, при котором ненаследственная изменчивость копирует наследственную, называется ...
- **316.** Ферменты, способные в процессе репарации вырезать поврежденный участок молекулы ДНК, называются ...
- **317.** Ферменты, способные в процессе репарации узнавать поврежденный участок молекулы ДНК, называются ...
- **318.** Трансгенация, при которой одно пуриновое основание заменяется на другое пуриновое, называется ...

- **319.** Транслокация, при которой участки одной хромосомы переносятся на другую хромосому, называется ...
 - 320. Альбинизм обусловлен ... генной мутацией.
- **321.** Аберрация, при которой происходит выпадение среднего участка хромосомы, называется ...
- **322.** Аберрация, при которой происходит отрыв участка хромосомы и поворот его на 180°, называется ...
- **323.** Кольцевые хромосомы появляются в результате ... терминальных участков хромосом.
- **324.** Мутации структурных генов, приводящие к изменению смысла кодонов и образованию других белков, называются ... мутациями.
- **325.** Мутации структурных генов, приводящие к образованию «бессмысленных» кодонов, называются ...
- **326.** Нарушение чередования фаз репрессии и индукции в регуляции работы генов происходит при мутации ... генов.
- **327.** Нерасхождение хромосом при митозе или мейозе является причиной ... мутаций.
- **328.** Появление в составе структурного гена последовательностей АТТ, АТЦ, АЦТ приводит к ... мутации.
- **329.** Причиной развития синдрома «кошачьего крика» у человека является частичная ...
- **330.** Разновидности хромосомных мутаций, без видимых изменений в строении хромосом, затрудняющие их конъюгацию, называются ...
- **331.** Разновидность анеуплоидии, при которой в кариотипе находится только одна хромосома из пары гомологичных хромосом, называется ...
- **332.** Разновидность геномной мутации, при которой соматические клетки содержат одинарный набор хромосом, называется ...
- **333.** Разновидность транслокаций, приводящих к соединению акроцентрических хромосом центромерными районами, называется
- **334.** Заболевание, обусловленное нарушением механизмов репарации и характеризующееся недостаточностью функционирования костного мозга, приводящее к снижению содержания форменных элементов крови и гиперпигментации, называется
- **335.** Заболевание, обусловленное нарушением механизмов репарации и характеризующееся ороговением эпидермиса, поражением глаз, развитием злокачественных опухолей, называется
- **336.** Результатом мутаций функциональных генов является изменение ... белка.

МЕТОДЫ ИЗУЧЕНИЯ ГЕНЕТИКИ ЧЕЛОВЕКА

- **337.** Человек, с которого начинается медико-генетическое обследование семьи и составление родословной, называется ...
 - 338. Биопсия ворсин хориона проводится на ... неделях беременности.
 - 339. Формула Хольцингера позволяет определить признака.

- **340.** Прогнозирование изменений генетической структуры популяций человека можно осуществить с помощью метода
- **341.** Установить порядок нуклеотидов в молекуле ДНК и обнаружить патологический ген позволяет метод ... нуклеиновых кислот.
- **342.** Тип наследования, при котором отец передает свой признак всем дочерям, но ни одному из сыновей, называется
 - 343. Степень сходства близнецов по изучаемому признаку называется ...
- **344.** Соматическая клетка, содержащая два ядра двух разных клеток, называется ...
 - **345.** При резус-несовместимости матери и плода уровень α-фетопротеина ...
- **346.** При синдроме Дауна в крови беременной отмечается ... уровня α -фетопротеина.
 - 347. Прямым неинвазивным методом пренатальной диагностики является ...
 - 348. Серповидно-клеточная анемия наследуется по ... типу.
- **349.** При сцепленном с X-хромосомой рецессивном типе наследования вероятность рождения здорового мальчика у больной матери составляет ... %
- **350.** При сцепленном с X-хромосомой рецессивном типе наследования вероятность рождения больного мальчика у больного отца составляет ... %.
 - 351. При внутриутробной гибели плода уровень α-фетопротеина ...
- **352.** При аутосомно-рецессивном типе наследования вероятность рождения здорового ребенка у больных родителей составляет ... %
- **353.** При аутосомно-доминантном типе наследования больной ребенок рождается у здоровых родителей с вероятностью ... %
- **354.** Метод генетики человека, позволяющий выявить роль наследственности и среды в формировании признаков, называется ...
- **355.** Метод генетики, позволяющий выявлять геномные и хромосомные мутации, называется ...
- **356.** Каждой беременной женщине обязательно проводится ... прямой неинвазивный метод пренатальной диагностики.
 - 357. Для полидактилии характерен ... тип наследования.
 - 358. Для фенилкетонурии характерен ... тип наследования.
- **359.** Группа прямых методов пренатальной диагностики, сопровождающихся повреждением целостности тканей, называется ...
- **360.** Гетерозиготных носителей патологического гена позволяют выявлять биохимические ... тесты.
 - 361. Высоким считается генетический риск, если он более ...
- **362.** Возраст матери свыше 37 лет, наличие в анамнезе спонтанных абортов, мертворождений, детей с врожденными пороками развития, наличие в семье точно установленного наследственного заболевания, наличие структурных перестроек хромосом у одного из родителей являются показаниями для проведения методов пренатальной диагностики.
 - 363. Гемофилия наследуется по ... типу.
- **364.** Вероятность рождения больного ребенка у гетерозиготных родителей при аутосомно-доминантном типе наследования (полное доминирование, пенетрантность гена 75 %) составляет ... %.

- **365.** Вероятность рождения больного ребенка у гетерозиготных родителей при аутосомно-доминантном типе наследования (полное доминирование, пенетрантность гена 25 %) составляет ... %.
- **366.** Вероятность рождения больных девочек при X-сцепленном доминантном типе наследования у гетерозиготной матери и здорового отца (пенетрантность гена 100 %) составляет ... %.
- **367.** Вероятность рождения больных мальчиков при X-сцепленном доминантном типе наследования у гетерозиготной матери и здорового отца (пенетрантность гена 100 %) составляет ... %.
- **368.** Вероятность рождения больных детей при X-сцепленном доминантном типе наследования у гетерозиготной матери и здорового отца (пенетрантность гена 40 %) составляет ... %.
- **369.** Вероятность рождения больных мальчиков у здоровой гетерозиготной матери и больного отца при X-сцепленном рецессивном типе наследования составляет ... %
- **370.** Y-половой хроматин определяется при окрашивании клеток буккального эпителия ...
 - 371. Главный ладонный угол в норме не должен превышать ...

НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ ЧЕЛОВЕКА

- **372.** Повышение концентрации меди в крови при болезни Вильсона–Коновалова вызвано мутацией гена, ответственного за синтез белка ..., который осуществляет ее транспорт.
- **373.** Серповидно-клеточная анемия развивается вследствие мутации, приводящей к замещению в 6-м положении β-цепи глутаминовой кислоты на ...
 - 374. Болезни обмена веществ называются ...
- **375.** В результате мутации гена, ответственного за синтез фермента, катализирующего расщепление сфинголипидов, развивается болезнь ...
- **376.** Повышение уровня мочевой кислоты и ее солей в организме при недостатке фермента, катализирующего присоединение пуриновых оснований к нуклеотидам, является признаком синдрома ...
- **377.** Наследственная недостаточность фермента тирозиназы приводит к развитию ...
 - 378. Недостаток церулоплазмина является причиной развития болезни ...
- **379.** Генные болезни, обусловленные нарушением обмена липидов плазмы крови вследствие дефектов ферментов или клеточных рецепторов, называются ...
- **380.** Мутации, связанные с нарушением плоидности, изменениями числа хромосом или нарушением их структуры, вызывают развитие ... болезней.
 - 381. Результатом трисомии по 13 хромосоме является синдром ...
 - 382. Результатом трисомии по 18 паре аутосом является синдром ...
 - 383. Результатом трисомии по 21 паре аутосом является синдром ...
 - 384. Синдром Патау развивается вследствие ... мутации.

МЕДИКО-ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ

- **385.** Заместительная терапия является примером ... лечения наследственных заболеваний.
- **386.** Диетотерапия является примером ... лечения наследственных заболеваний.
- **387.** Назначение обезболивающих препаратов является примером ... лечения наследственных заболеваний.
- **388.** Метаболическая ингибиция является примером ... лечения наследственных заболеваний.
- **389.** Удаление 6-го пальца является примером ... лечения наследственных заболеваний.
- **390.** Генная терапия является примером ... лечения наследственных заболеваний.

Размножение животных и человека

- **391.** Обмен генетической информацией между особями одного вида называется ...
- **392.** Процессы, обеспечивающие встречу яйцеклетки и сперматозоида, называются ...
 - 393. Слияние гамет с образованием зиготы называется ...
- **394.** Слияние женского и мужского пронуклеусов при оплодотворении называется ...
 - 395. Половое размножение без оплодотворения называется ...
- **396.** Развитие организма на основе генетической информации только мужских гамет называется ...
- **397.** Яйцеклетки, содержащие много желтка, который расположен на одном из полюсов, называются
- **398.** Яйцеклетки, содержащие мало желтка, который распределен в цитоплазме относительно равномерно, называются ...
 - 399. Полное равномерное дробление характерно для ... яйцеклеток.
 - 400. Поверхностное дробление характерно для ... яйцеклеток.
 - 401. В период размножения при гаметогенезе клетки делятся ...
 - 402. В период созревания при гаметогенезе клетки делятся ...
- **403.** Вынашивание ребенка для семьи другой женщиной называется ... материнством.
 - 404. Получение генетических копий организма называется ...
- **405.** Индивидуальное развитие организма от момента оплодотворения яйцеклетки и до смерти называется ...
- **406.** Бесполое размножение зародыша, возникшего путем полового размножения, называется ...
- **407.** Гамоны, способствующие агглютинации сперматозоидов на оболочке яйцеклетки, называются ...
 - 408. Сперматозоиды обладают способностью к оплодотворению в течение ...

ОСНОВЫ ОНТОГЕНЕЗА

- **409.** Митотическое деление зиготы и бластомеров на начальном этапе эмбриогенеза называется ...
- **410.** Период эмбрионального развития человека с начала четвертой недели и до конца восьмой после оплодотворения называется ...
- **411.** Из светлых бластомеров, окружающих зародыш, у млекопитающих и человека образуется ...
- **412.** Темные бластомеры, располагающиеся на внутренней стороне трофобласта, из которых развивается зародыш, называются ...
 - 413. Однослойный зародыш называется ...
- **414.** Способ гаструляции, при котором отдельные клетки бластодермы перемещаются внутрь бластоцеля и, размножаясь, образуют второй слой клеток, называется ...
- **415.** Организмы, у которых бластопор превращается в анальное отверстие, а рот образуется на противоположном конце тела, называются ...
 - 416. Нервная система и эпидермис кожи развиваются из ...
- **417.** Разные виды соединительной, мышечной и эпителиальной тканей развиваются из ...
 - 418. Половые железы и органы выделения развиваются из ...
 - 419. Связь зародыша с окружающей средой обеспечивают ... органы.
- **420.** Амнион, хорион, аллантоис, желточный мешок и плацента это ... органы хордовых животных.
- **421.** Недетерминированные клетки эмбриона, способные дать начало любому типу клеток или целому организму, называются ...
- **422.** Первопричиной дифференцировки клеток в процессе эмбриогенеза является цитоплазмы яйцеклеток.
- **423.** Влияние одной группы клеток эмбриона на соседние путем выделения определенных веществ называется
- **424.** Постепенное уменьшение интенсивности обменных процессов у зародыша от головного к хвостовому отделу называется ... физиологической активности.
- **425.** Периоды наибольшей чувствительности эмбриона и плода к действию неблагоприятных факторов среды называются ...
 - 426. Для тимуса и селезенки характерен ... тип роста.
- **427.** Для яичек, яичников, предстательной железы, маточных труб характерен ... тип роста.
 - 428. Особое значение в регуляции роста человека имеет гормон гипофиза ...
- **429.** Ускорение физического и физиологического развития детей и подростков, ускорение полового созревания и увеличение роста называется ...
- **430.** Одной из главных причин акселерации является повышение ... молодого поколения вследствие смешанных браков.
- **431.** Стойкие, генетически обусловленные особенности морфологии, физиологии и поведения человека составляют его ...

- **432.** К неврозам, язвенной болезни, туберкулезу склонны люди ... конституционного типа.
- **433.** К атеросклерозу, диабету и ожирению склонны люди ... конституционного типа.
- **434.** Особенности развития, течения, лечения и предупреждения заболеваний людей старческого возраста изучает наука ...
 - 435. Наука, изучающая здоровый образ жизни, называется ...
- **436.** Состояние организма, при котором наблюдается остановка сердца и дыхания, потеря сознания, но не нарушен метаболизм клеток, называется ... смертью.
- **437.** Добровольный уход из жизни при помощи медицинского работника безнадежно больного человека называется ...
- **438.** Способ гаструляции, при котором происходит расслоение клеток бластодермы на два слоя, называется ...
 - 439. Образование мезодермы у человека осуществляется ... способом.
- **440.** В образовании плаценты принимают участие провизорные органы ... и ...
 - 441. Для птиц характерен ... тип дробления зиготы.

ГОМЕОСТАЗ И ХРОНОБИОЛОГИЯ

- **442.** Термин «гомеостаз» в 1929 г. предложил ...
- **443.** Относительное динамическое постоянство внутренней среды организма, а также устойчивость структур и основных физиологических функций называется ...
 - 444. Положительная обратная связь ... действие входных переменных.
 - 445. Отрицательная обратная связь ... действие входных переменных.
 - 446. Стабильность живых организмов повышает ... обратная связь.
- **447.** Реакции матричного синтеза, репарация ДНК, экспрессия генов это механизмы гомеостаза на ... уровне организации живого вещества.
- **448.** Примером гомеостаза на популяционно-видовом уровне является закон ...
- **449.** Наука, изучающая ритмические изменения показателей гомеостаза (биоритмы), называется ...
 - **450.** Работа сердца, дыхательные движения это биоритмы ... частоты.
 - 451. Генетический водитель суточного ритма локализован в ... хромосоме.
 - **452.** Теоретически женщин «жаворонков» насчитывается ... процентов.
 - **453.** Теоретически женщин «голубей» насчитывается ... процентов.
 - **454.** Теоретически мужчин «голубей» насчитывается ... процентов.
 - **455.** Теоретически мужчин «сов» насчитывается ... процентов.
 - 456. Цикл физиологической активности человека длится ... дня.
 - 457. Цикл эмоциональной активности человека длится ...дней.
 - 458. Цикл интеллектуальной активности человека длится ... дня.
- **459.** Реакция организмов на продолжительность длины светового дня называется ...

РЕГЕНЕРАЦИЯ И ТРАНСПЛАНТАЦИЯ

- **460.** Восстановление утраченных или поврежденных органов и тканей называется ...
 - 461. Восстановление целого организма из его части называется
 - **462.** Термин регенерация предложил в 1712 г. . . .
- **463.** Способ репаративной регенерации, заключающийся в отрастании органа от ампутационной поверхности, называется ...
- **464.** Способ репаративной регенерации, заключающийся в перестройке части организма без усиленной митотической активности клеток раневой поверхности, называется ...
- **465.** В зависимости от родства донора и реципиента различают виды трансплантации: аутотрансплантация, изотрансплантация, аллотрансплантация и ...
 - 466. Пересадка собственных тканей и органов называется ...
- **467.** Пересадка органов и тканей от генетически идентичных организмов называется ...
 - 468. Пересадка органов и тканей от организма того же вида называется ...
- **469.** Отсутствие или ослабление ответа на данный антиген при сохранении реактивности организма ко всем другим антигенам называется
- **470.** Главный комплекс гистосовместимости у человека находится в ... хромосоме.

КОМПЛЕКСНЫЕ ЗАДАНИЯ

РОЛЬ БИОЛОГИИ В СИСТЕМЕ МЕДИЦИНСКОГО ОБРАЗОВАНИЯ

1. Отнесите понятие или к фундаментальным свойствам живого, или к основным признакам живого:

А) Фундаментальные	1. Дискретность и целостность	
свойства живого	2. Самообновление	
	3. Наследственность	
Б) Основные признаки	4. Рост	
живого	5. Саморегуляция	
	6. Самовоспроизведение	

2. Установите соответствие между признаком живого и его характеристикой:

А) Раздражимость	1. Прогрессивное изменение массы и размеров тела	
Б) Гомеостаз	2. Способность отвечать на воздействие факторов	
	окружающей среды	
В) Развитие	3. Приобретение новых признаков и особенностей ин-	
	дивидуального развития под действием факторов среды	
Г) Рост	4. Качественные изменения структуры организма со-	
	гласно генетической программе	
Д) Изменчивость	5. Способность поддерживать постоянство состава	
	внутренней среды	

3. Установите соответствие между термином и его определением:

А) Обмен веществ	1. Совокупность частей живой системы, которые ра-	
	ботают согласованно	
Б) Самообновление	2. Способность поддерживать свою структуру неиз-	
	менной в течении некоторого времени	
В) Саморегуляция	3. Способность поддерживать относительное посто-	
	янство внутренней среды на основе механизмов об-	
	ратной связи	
Г) Целостность	4. Способность размножаться, воспроизводить себе	
и дискретность	подобных	
Д) Самовоспроизведение	5. Единство процессов ассимиляции и диссимиляции	

4. Установите соответствие между уровнем организации живой материи и его элементарной единицей:

А) Молекулярно-генетический	1. Особь
Б) Биогеоценотический	2. Макромолекула
В) Организменный	3. Популяция
Г) Клеточный	4. Биогеоценоз
Д) Популяционно-видовой	5. Клетка

5. Установите соответствие между уровнем организации живой материи и характерным для него элементарным явлением:

А) Молекулярно-генетический	1. Изменение генофонда
Б) Биогеоценотический	2. Осуществление реакций метаболизма
В) Организменный	3. Реализация генетической информации
Г) Клеточный	4. Круговорот веществ и энергии
Д) Популяционно-видовой	5. Изменения в процессе онтогенеза

6. Установите соответствие между методом биологии и его описанием:

А) Экспериментальный	1. Сбор материала и описание фактов
Б) Исторический	2. Изучение сходства и различия организмов и их ча-
	стей путем сопоставления
В) Описательный	3. Выявление закономерностей появления и развития
	живых организмов
Г) Сравнительный	4. Изучение явлений путем постановки опытов в точ-
	но учитываемых условиях

7. Установите соответствие между методом цитологии и его определением:

А) Электронная	1. Выделение структур клетки с помощью центрифуги
микроскопия	
Б) Дифференциальное	2. Выращивание отдельных клеток на питательных
центрифугирование	средах в стерильных условиях
В) Рентгеноструктурный	3. Изучение химического состава клеток, протекаю-
анализ	щих в них реакций
Г) Культура клеток	4. Исследование ультраструктур клетки при прохож-
	дении через них пучка электронов
Д) Авторадиография	5. Исследование пространственного расположения
	атомов в веществах клетки

8. Установите соответствие между методом цитологии и его определением:

А) Световая микроскопия	1. Изучение процессов жизнедеятельности клетки	
	(деления)	
Б) Цито- и гистохимия	2. Пересадка структур из одной клетки в другую	
В) Кино- и фотосъемка	3. Получение объемного изображения объекта	
Г) Сканирующее микро-	4. Исследование компонентов клетки при прохожде-	
скопирование	нии света через объект	
Д) Микрургия	5. Определение локализации и механизмов биохими-	
	ческих процессов в цитоплазме с помощью красите-	
	лей	

9. Установите соответствие между термином и его определением:

А) Револьверное	1. Система линз, образующих увеличенное изображение	
устройство	объекта, вмонтированная в револьверное устройство	
Б) Разрешающая	2. Элемент оптической системы, обращенный к наблюдате-	
способность глаза	лю и предназначенный для рассмотрения изображения	

В) Кремальера	3. Наименьшее расстояние между двумя точками или лини-
	ями, видимыми раздельно
Г) Окуляр	4. Вращающийся механизм смены объективов
Д) Конденсор	5. Макрометрический винт микроскопа
Е) Объектив	6. Система линз, собирающая световые лучи в пучок

10. Соотнесите основные части светового микроскопа с их элементами:

А) Механическая	1. Окуляр
	2. Конденсор
	3. Объектив
Б) Осветительная	4. Штатив
	5. Зеркало
	6. Револьверное устройство
В) Оптическая	7. Глазная и полевая линзы
	8. Кремальера
	9. Электрический осветитель

- 11. Установите последовательность работы с микроскопом на малом увеличении: 1) глядя в окуляр, вращают макрометрический винт «на себя» до получения четкого изображения объекта; 2) микроскоп устанавливают колонкой к себе, а зеркало поворачивают плоской стороной к искусственному источнику света; 3) глядя в окуляр и вращая зеркало, добиваются равномерного освещения поля зрения; 4) помещают микропрепарат на предметный столик; 5) макрометрическим винтом устанавливают объективы на 2–3 см от поверхности предметного столика; 6) перемещают конденсор в среднее положение и открывают диафрагму; 7) глядя со стороны опускают объектив на расстояние 0,5 см от препарата; 8) объектив (8×) фиксируют напротив отверстия в предметном столике; 9) изучают объект.
- **12.** Установите последовательность работы с микроскопом на большом увеличении: 1) добиваются большей четкости изображения при помощи микрометрического винта; 2) изучают нужный участок препарата; 3) объектив (40×) фиксируют напротив микропрепарата; 4) перемещают конденсор в верхнее положение; 5) получают четкое изображение объекта на малом увеличении; 6) исследуемый участок препарата центрируют.

13. Установите соответствие между таксономическим рангом и его наименованием в систематическом положении Человека разумного:

А) Царство	1. Приматы
Б) Подцарство	2. Гоминиды
В) Тип	3. Млекопитающие
Г) Класс	4. Животные
Д) Отряд	5. Человек
Е) Семейство	6. Хордовые
Ж) Род	7. Многоклеточные

14. Установите соответствие между способом классификации и примерами биологических наук:

А) По объекту изучения	1. Молекулярная биология	
	2. Зоология	
	3. Генетика	
	4. Микробиология	
Б) По изучаемым свойствам	5. Цитология	
	6. Ботаника	
	7. Микология	
	8. Экология	
В) По уровню организации	9. Биохимия	
живой материи	10. Гистология	
	11. Физиология	
	12. Анатомия и морфология	

15. Установите соответствие между отраслью медицины и разделом(ами) биологии, на которых она базируется:

А) Акушерство	1. Генетика
Б) Патологическая анатомия	2. Вирусология, бактериология, экология
В) Патологическая физиология	3. Эмбриология
Г) Медицинская генетика	4. Физиология, биохимия
Д) Эпидемиология	5. Анатомия, гистология

16. Установите соответствие между биологическими науками и объектами их изучения:

А) Эмбриология	1. Изучает происхождение человека и его рас	
Б) Микробиология	2. Изучает внешнее строение (форму, структуру) организма,	
	таксона или его частей, а также внутреннее строение живо-	
	го организма	
В) Антропология	3. Изучает строение, функции и химический состав клеток	
Г) Эволюционное	4. Изучает закономерности эмбрионального развития орга-	
учение	низма	
Д) Цитология	5. Изучает общие закономерности исторического развития	
	органического мира	
Е) Морфология	6. Изучает строение, жизнедеятельность и экологию микро-	
	организмов	

17. Установите соответствие между биологическими науками и объектами их изучения:

А) Гигиена	1. Изучает биологические, социальные и психологические аспекты старения человека, его причины и способы борьбы	
	с ним	
Б) Анатомия	2. Изучает закономерности влияния факторов окружающей	
	среды на здоровье человека	

В) Геронтология	3. Изучает закономерности наследственности и изменчивости
Г) Физиология	4. Изучает взаимодействие живых организмов и их сообществ
	между собой и с окружающей средой
Д) Генетика	5. Изучает строение организма в целом, внутреннюю форму
	и структуру органов, входящих в его состав
Е) Экология	6. Изучает жизнедеятельность здорового организма и его ча-
	стей — систем, органов, тканей, клеток

18. Установите соответствие между междисциплинарными разделами биологии и объектами их изучения:

А) Бионика	1. Изучает применение в технических устройствах и системах	
,	принципов организации, свойств, функций и структур живой	
	природы	
Б) Молекуляр-	2. На основе моделей изучает механические свойства живых	
ная биология	тканей, отдельных органов, или организма в целом, а также	
	происходящие в них механические явления	
В) Биохимия	3. Изучает возможности использования живых организмов	
	для решения технологических задач, а также возможности со-	
	здания живых организмов с необходимыми свойствами мето-	
	дами генной инженерии	
Г) Биофизика	4. Изучает механизмы хранения, передачи и реализации гене-	
	тической информации, строение и функции белков и нуклеи-	
	новых кислот	
Д) Биомеханика	5. Изучает особенности действия физических законов на био-	
	логическом уровне организации вещества и энергии	
Е) Биотехноло-	6. Изучает химический состав живых клеток и организмов,	
гия	а также химические процессы, лежащие в основе их жизнеде-	
	ятельности	

19. Установите соответствие между междисциплинарной областью медицины и биологии и объектами их изучения:

А) Эволюцион-	1. Изучает физиологические отличия между полами человека	
ная медицина	и их влияние на различия в течении болезни	
Б) Фармакоге-	2. Изучает биологическую сущность болезней на основе эво-	
номика	люционной теории	
В) Биомедицин-	3. Изучает влияние факторов окружающей среды на здоровье	
ская инженерия	человека	
Г) Гендерная	4. Исследует влияние генетической вариации каждого челове-	
медицина	ка в его реакции на лекарственное средство	
Д) Экологиче-	5. Применение генно-инженерных методов в медицинской	
ская медицина	практике	

20. Установите соответствие между областью медицины и используемыми практическими достижениями биологии:

А) Диагностика заболеваний	1. Использование генно-инженерных вакцин	
Б) Иммунология	2. Адресная доставка моноклональными антите-	
	лами радиоактивных соединений	
В) Трансплантология	3. Использование стволовых клеток	
Г) Терапия наследственных	4. Применение векторных молекул для адресной	
заболеваний	доставки лекарств	
Д) Терапия онкологических	5. Применение методов: ПЦР, Саузерн-блотт ги-	
заболеваний	бридизации	

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ И КЛЕТОЧНЫЙ УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО

Цитологические основы наследственности

- **21.** Укажите последовательность перемещения вещества, поступающего в клетку: 1) плазмолемма (рецепторный эндоцитоз); 2) фаголизосома; 3) ЭПС; 4) эндосома; 5) цитозоль.
- **22.** Укажите последовательность перемещения и метаболического преобразования глюкозы в клетке: 1) облегченная диффузия; 2) гликолиз; 3) дегидрирование и декарбоксилирование ацетил-КоА; 4) H₂O в матриксе митохондрии; 5) ПВК цитозоля.
- **23.** Укажите последовательность процессов подготовительного и бескислородного этапов энергообмена в клетке: 1) гидролиз полисахаридов; 2) образование фаголизосомы; 3) гликолиз; 4) эндоцитоз; 5) образование пировиноградной кислоты.
- **24.** Укажите последовательность процессов аэробного этапа энергетического обмена: 1) окислительное фосфорилирование АДФ; 2) прохождение протонов через каналы АТФ-сом с высвобождением энергии; 3) поступление ацетил-КоА в матрикс митохондрий; 4) создание электрохимической разности потенциалов на внутренней мембране митохондрии; 5) дегидрирование и декарбоксилирование уксусной кислоты в цикле Кребса.
- **25.** Укажите последовательность этапов преобразования вещества в катаболической системе клетки: 1) глюкоза; 2) пировиноградная кислота; 3) гликоген (крахмал); 4) ацетил-КоА; 5) H₂O; 6) CO₂.
- **26.** Укажите последовательность внутриклеточного метаболизма белка, начиная с момента его поступления в клетку: 1) поступление аминокислот на рибосомы гранулярной ЭПС; 2) образование гликопротеинов в комплексе Гольджи; 3) эндоцитоз; 4) синтез полипептидов; 5) расщепление белков ферментами лизосом.

27. Распределите признаки, характерные для про- и эукариотических клеток:

А) Прокариоты	1. Амитоз
	2. Муреин
	3. Гистоны
	4. Бинарное деление
	5. Гетероцисты
	6. Ядро
Б) Эукариоты	7. Комплекс Гольджи
	8. Нуклеоид
	9. Рибосомы 80S
	10. Мезосомы
	11. Митохондрии
	12. Хемосинтез

28. Соотнесите представителей и форму жизни:

	A TOTAL CONTRACTOR OF THE PROPERTY OF THE PROP	
А) Неклеточные формы	1. Грибы	
жизни	2. Бактерии	
	3. Бактериофаги	
Б) Прокариоты	4. Микоплазмы	
	5. Вирусы	
	6. Водоросли	
	7. Протисты	
В) Эукариоты	8. Вироиды	
	9. Цианобактерии	

29. Распределите структуры, входящие в состав оболочки или цитоплазмы эукариотической клетки:

А) Оболочка	1. Органеллы	
	2. Цитозоль	
	3. Гликокаликс	
	4. Клеточная стенка	
Б) Цитоплазма	5. Трофические включения	
	6. Плазмолемма	
	7. Подмембранный опорно-сократительный комплекс	
	8. Цитоскелет	

30. Соотнесите структуру клетки и белок, из которого она образована:

А) Промежуточные филаменты клеток эпителия	1. Десмин
Б) Микрофиламенты	2. Тубулин
В) Промежуточные филаменты ядра	3. Кератин
Г) Микротрубочки	4. Ламин
Д) Промежуточные филаменты мышечных клеток	5. Актин

31. Соотнесите структуру клетки и ее диаметр:

А) Промежуточные филаменты	1. 25 нм	
Б) Микрофиламенты	2. 1–2 нм	
В) Микротрабекулы	3. 150 нм	
Г) Микротрубочки	4. 10 нм	
Д) Центриоли	5. 6–8 нм	

32. Соотнесите вещество и вариант его транспорта через мембрану:

А) Na ⁺ и аминокислоты	1. Антипорт
Б) HCO ₃ ⁻ и Cl ⁻	2. Симпорт
В) Бензол	3. Облегченная диффузия
Г) Вода	4. Осмос
Д) Глюкоза	5. Диффузия

33. Установите соответствие между видом трансмембранного переноса и его характеристикой:

А) Фагоцитоз	1. Происходит по градиенту концентрации, без использова-
	ния энергии
Б) Активный	2. Сквозной перенос веществ через цитоплазму клетки
транспорт	
В) Облегченная	3. Происходит изменение архитектоники мембраны и за-
диффузия	хват макромолекул, используется АТФ
Г) Пассивный	4. Происходит против градиента концентрации, с затратой
транспорт	$AT\Phi$
Д) Диацитоз	5. Происходит с участием пермеаз, без затрат энергии

34. Распределите структуры в соответствии с отсутствием или наличием мембраны:

А) Немембранные	1. Лизосомы
	2. Митохондрии
	3. Полисомы
	4. Центросома
Б) Мембранные	5. ЭПС
	6. Рибосомы
	7. Комплекс Гольджи
	8. Жгутики из флагеллина

35. Соотнесите структурный элемент и органеллу клетки:

А) Кристы	1. Комплекс Гольджи
Б) Диктиосома	2. Митохондрия
В) Гидролитические ферменты	3. Центриоли
Г) Микротрубочки	4. Рибосома
Д) Субъединицы	5. Лизосомы

36. Соотнесите органеллы клетки и их функцию:

А) Рибосомы	1. Обеспечение клетки энергией в виде АТФ
Б) Митохондрии	2. Биосинтез белка
В) Клеточный центр	3. Гидролиз поступивших в клетку веществ
Г) Лизосомы	4. Участие в образовании веретена деления
Д) Пероксисомы	5. Окисление аминокислот с образованием перекиси
	водорода

37. Распределите приведенные характеристики соответственно органеллам:

А) Комплекс Гольджи	1. Аутофагия и автолиз
Б) Глиоксисомы	2. Клеточное дыхание
В) Лизосомы	3. Депонирование ионов Ca ²⁺
Г) Митохондрии	4. Гидролиз жирных кислот до ацетил-КоА
Д) ЭПС	5. Образование гликопротеинов и липопротеинов

38. Установите соответствие между группами ферментов и их локализацией в клетке:

А) Окислительного фосфорилирования	1. Кристы
Б) Гликолиза	2. Цитозоль
В) Гидролитические	3. Матрикс
Г) Тканевого дыхания	4. АТФ-сомы
Д) Цикла Кребса	5. Лизосомы

39. Распределите органеллы катаболической и анаболической систем:

А) Анаболическая	1. Лизосомы
	2. Митохондрии
	3. Агранулярная ЭПС
	4. Пероксисомы
Б) Катаболическая	5. Комплекс Гольджи
	6. Гранулярная ЭПС
	7. Глиоксисомы
	8. Рибосомы

40. Установите соответствие между функциями мембраны и их описанием:

А) Защитная	1. Обеспечивает гомеостаз
Б) Регуляторная	2. Создает компартменты в цитоплазме
В) Рецепторная	3. Входит в состав плазмалеммы и органелл
Г) Разграничительная	4. Предохраняет клетку от воздействия факторов среды
Д) Структурная	5. «Узнает» определенные вещества
Е) Контактная	6. Содержит специфичные ферменты
Ж) Каталитическая	7. Обеспечивает взаимодействие с окружающими клет-
	ками

ОРГАНИЗАЦИЯ ПОТОКА ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ

- **41.** Укажите последовательность периодов (фаз) митотического цикла, начиная с G₂-периода: 1) постмитотический период; 2) постсинтетический период; 3) синтетический период; 4) профаза; 5) метафаза; 6) телофаза; 7) анафаза.
- **42.** Укажите последовательность процессов, происходящих при митозе:
 1) расхождение хроматид к полюсам клетки; 2) деконденсация хромосом и образование кариолеммы; 3) демонтаж кариолеммы; 4) конденсация хроматина; 5) расположение хромосом на экваторе клетки; 6) формирование ахроматинового веретена деления.
- **43.** Укажите последовательность процессов, происходящих в профазе мейоза I: 1) образование бивалентов; 2) сближение гомологичных хромосом; 3) демонтаж кариолеммы; 4) начало конденсации хроматина; 5) образование хиазм; 6) формирование ахроматинового веретена деления.
- **44.** Укажите последовательность процессов редукционного деления клетки: 1) расхождение хромосом к полюсам клетки; 2) образование хиазм и возникновение сил отталкивания в биваленте; 3) конъюгация гомологичных хромосом и кроссинговер; 4) расположение бивалентов на экваторе клетки; 5) конденсация и сближение гомологичных хромосом.
- **45.** Укажите последовательность процессов эквационного деления клетки:
 1) прикрепление нитей ахроматинового веретена к кинетохорам; 2) расположение хромосом на экваторе клетки; 3) образование кариолеммы и цитокинез; 4) расхождение хроматид к полюсам клетки; 5) демонтаж кариолеммы и формирование ахроматинового веретена.
- **46.** Укажите последовательность периодов клеточного цикла паренхимной клетки печени (гепатоцита), начиная с момента ее появления: 1) подготовка к репликации; 2) митоз; 3) дифференцировка и выполнение специфических функций (G₀); 4) синтетический (S) период; 5) образование клетки при делении материнской; 6) постсинтетический (G₂) период.
- 47. Укажите последовательность изменения генетического материала в гаметогониях, начиная с G_1 периода: 1) $1n_{biv}4chr4c$; 2) 2n2chr4c; 3) 1n1chr1c; 4) 2n1chr2c; 5) 1n2chr2c.

48. Соотнесите структурный компонент хромосомы и его характеристику:

А) Теломеры	1. Концевые гетерохроматиновые участки плеч хромосом
Б) Кинетохор	2. Участок хромосомы, отделяемый вторичной перетяжкой
В) Центромера	3. Область гетерохроматина, удерживающая хроматиды вме-
	сте
Г) Спутник	4. Место прикрепления микротрубочек веретена деления
Д) Вторичная	5. Ядрышковый организатор
перетяжка	

49. Составьте верные пары утверждений:

А) Идиограмма	1. Отношение длины короткого плеча к длине хро-
	мосомы в %
Б) Аутосомы	2. Генетический материал интерфазы
В) Хроматин	3. Пары хромосом одинаковые у мужского и жен-
	ского полов
Г) Гетерохромосомы	4. Систематизированный кариотип
Д) Центромерный индекс	5. Половые хромосомы

50. Соотнесите вид клеточной гибели и ее характеристики:

А) Некроз	1. Нарушается проницаемость плазмолеммы, вся клетка разрушается
	2. Отмирание клеток и тканей, вызванное действием повреждаю-
	щих факторов
	3. Запрограммированная гибель клеток
Б) Апоптоз	4. Гибнущие группы клеток атакуются лейкоцитами, развивается
	воспалительная реакция
	5. Клетка распадается на отдельные фрагменты, которые поглоща-
	ются макрофагами или соседними клетками
	6. Нет воспалительной реакции на месте гибели клеток

51. Соотнесите название групп и пары хромосом согласно Денверской классификации:

А) Группа С	1. Хромосомы 1–3 пары
Б) Группа F	2. Хромосомы 6–12 пары, Х-хромосома
В) Группа D	3. Хромосомы 13–15 пары
Г) Группа А	4. Хромосомы 19–20 пары
Д) Группа G	5. Хромосомы 21–22 пары, Ү-хромосома

52. Соотнесите методы окрашивания и типы сегментов хромосом, с помощью которых их выявляют согласно Парижской классификации:

А) G-окрашивание	1. Анализ теломер хромосом и районов ядрышковых орга-
	низаторов
Б) Т-окрашивание	2. Выявляет светлые и темные сегменты хромосом
В) С-окрашивание	3. Маркируются G-отрицательные участки хроматина
Г) R-окрашивание	4. Выявляет центромерные районы хромосом
Д) Q-окрашивание	5. Выявляет области гетерохроматина

53. Соотнесите название метода бэндинга хромосом и его суть:

А) G-окрашивание	1. Обработка акрихин-ипритом
Б) Т-окрашивание	2. Обработка фосфатным буфером при 90 °С и красителем
	Гимзы
В) С-окрашивание	3. Обработка азотнокислым серебром
Г) R-окрашивание	4. Обработка трипсином и красителем Гимзы
Д) Q-окрашивание	5. Обработка гидроокисью бария при 60 °C и красителем
	Гимзы

54. Соотнесите точку рестрикции соответствующего периода митотического цикла и объект проверки:

А) Период G ₁	1. Удвоение центросом
	2. Состояние кинетохорных областей
	3. Количество нуклеотидов А, Т, Г, Ц
Б) Период G2	4. Сборка веретена деления
	5. Наличие крупных повреждений ДНК
	6. Завершенность репликации ДНК
D) Marrachana	7. Размер клетки и благоприятность условий среды
В) Метафаза	8. Прикрепление хромосом к веретену деления

55. Соотнесите комплекс циклин – циклинзависимая киназа (циклин – Cdk) с периодом митотического цикла:

A) Циклин A-Cdk	1. Начало G ₁ , инициирует митотический цикл, способству-
	ет прохождению точки рестрикции
Б) Циклин B-Cdk	2. Вторая половина G ₁ , регулирует переход в S период
B) Циклин D-Cdk	3. S период, регулирует переход к G ₂
Г) Циклин E-Cdk	4. Вводит клетку в митоз, максимальная концентрация
	в метафазе

56. Составьте верные пары: фаза клеточного цикла – набор генетической информации:

А) Метафаза I	1. 2(1n1chr1c)
Б) Профаза митоза	2. 1n2chr2c
В) Анафаза II	3. 1n _{biv} 4chr4c
Г) Анафаза І	4. 2(1n2chr2c)
Д) Интеркинез	5. 2n2chr4c

57. Соотнесите фазу мейоза и типичное для нее явление:

А) Метафаза II	1. Образование бивалентов
Б) Профаза II	2. К полюсам клетки отходят хроматиды
В) Анафаза II	3. На экваторе клетки располагаются тетрады
Г) Анафаза І	4. Цитокинез и образование клеток, содержащих 1n1chr1c
Д) Пахитена	5. К полюсам клетки отходят хромосомы
Е) Метафаза І	6. Разрушается кариолемма, хромосомы спирализованы
Ж) Телофаза II	7. На экваторе клетки располагаются хромосомы

58. Соотнесите стадию профазы мейоза II и характерный процесс:

А) Зиготена	1. Образование хиазм
Б) Лептотена	2. Начало конъюгации хромосом и формирования бивалентов
В) Диакинез	3. Стадия тонких нитей, спирализация хроматина
Г) Диплотена	4. Биваленты сформированы; кроссинговер
Д) Пахитена	5. Начало движения тетрад к экватору клетки

59. Соотнесите тип клеток и характерный для них способ деления:

А) Амитоз	1. Гаметогонии	
	2. Бластомеры	
	3. Опухолевые	
Б) Митоз	4. Большинство соматических	
	5. Гепатоциты	
	6. Клетки роговицы глаза	

60. Соотнесите способ деления и его результат:

А) Эндомитоз	1. Многократное удвоение хроматид без расхождения
Б) Амитоз	2. Образование стволовой и детерминированной клеток
В) Политения	3. Удвоение хромосом без деления ядра и цитокинеза
Г) Асимметричное	4. Образование гамет
Д) Мейоз	5. Прямое деление
Е) Простое бинарное	6. Увеличение количества прокариотических клеток
деление	

ОРГАНИЗАЦИЯ НАСЛЕДСТВЕННОГО МАТЕРИАЛА

- **61.** Установите последовательность процессов, происходящих при упаковке генетического материала: 1) формирование метафазной хромосомы; 2) конденсация нуклеосомной нити с помощью гистона H1; 3) образование нуклеосом; 4) сворачивание ДНП в петли, связанные с SAR-белками; 5) образование октамера из гистонов.
- **62.** Укажите последовательность событий при репликации: 1) на одной материнской цепи синтезируется лидирующая цепь; 2) синтезированные фрагменты ДНК сшиваются ферментом лигазой; 3) геликаза разрывает водородные связи между комплементарными нуклеотидами цепей ДНК; 4) в точках огі образуются РНК-праймеры и присоединяются реплисомы; 5) синтезируется цепь ДНК из фрагментов Оказаки; 6) топоизомераза надрезает одну из цепей ДНК, и молекула начинает раскручиваться.
- **63.** Укажите последовательность работы ферментов при репликации: 1) ДНК-полимераза; 2) геликаза; 3) лигаза; 4) топоизомераза; 5) праймаза.
- **64.** Укажите последовательность стадий биосинтеза белка: 1) элонгация; 2) рекогниция МЕТ-тРНК; 3) инициация; 4) фолдинг и процессинг белка; 5) терминация.
- **65.** Укажите последовательность процессов на стадии терминации трансляции: 1) П-центр рибосомы занят полипептидил-тРНК, в А-центре терминирующий триплет иРНК; 2) отделение иРНК от рибосомы; 3) диссоциация рибосомы на две субъединицы; 4) отделение полипептида и удаление тРНК из рибосомы; 5) присоединение к А-центру специального белка (release factor).
- 66. Укажите последовательность процессов в рибосоме на стадии инициации полипентидной цепи: 1) П-центр занят комплексом дипентидил-тРНК, А-центр свободен; 2) удаление из П-центра свободной тРНК за счёт перемещения рибосомы к следующему триплету; 3) в А-центре дипентидил-тРНК,

- а в П-центре свободная тРНК; 4) П-центр занят инициирующей МЕТ-тРНК, в А-центр поступает аминоацил-тРНК; 5) комплементарное взаимодействие «кодон-антикодон» в А-центре и формирование пептидной связи.
- **67.** Укажите последовательность событий в процессе присоединения аминокислоты (АК) к полипептидной цепи: 1) формирование комплементарной связи «кодон-антикодон»; 2) рекогниция АК; 3) формирование пептидной связи; 4) поступление комплекса аминоацил-тРНК в А-центр; 5) транспорт аминокислоты к рибосоме.
- **68.** Укажите последовательность событий в процессе реализации генетической информации эукариотической клеткой: 1) формирование преинициаторного комплекса (факторы транскрипции и РНК-полимераза II); 2) трансляция; 3) «созревание» иРНК; 4) выход матричной РНК в цитоплазму; 5) образование про-иРНК.

69. Соотнесите вид нуклеиновой кислоты эукариот и соответствующие ей характеристики:

A A	
А) ДНК	1. В состав нуклеотидов входит тимин
	2. Нуклеотиды содержат рибозу
	3. Локализуется в ядрышке, гиалоплазме, рибосомах, мито-
	хондриях и пластидах
	4. Число пуриновых оснований равно числу пиримидиновых
	5. Одна полинуклеотидная цепь
Б) РНК	6. Локализуется в ядре, митохондриях и пластидах
	7. Состоит из двух полинуклеотидных цепей
	8. В состав нуклеотидов входит урацил
	9. Не реплицируется, лабильна
	10. Нуклеотиды содержат дезоксирибозу

70. Соотнесите уровни упаковки ДНК и их характеристики:

А) Нуклеосомный	1. Наблюдается в профазе	
	2. ДНК делает 1,8 оборота вокруг октамера из 4 гистонов	
	3. Образуются петельные домены диаметром до 700 нм, свя-	
	занные с SAR-белками	
	4. Содержит участки линкерной ДНК	
Б) Хроматидный	5. ДНК укорачивается в 10–20 раз	
	6. Петли ДНК содержат 40-80 тыс. пар нуклеотидов	
	7. Существует во время всего митотического цикла	
	8. ДНК укорачивается в 5–7 раз	

71. Соотнесите уровни упаковки ДНК с их особенностями:

А) Супернуклео-	1. Переход на этот уровень связан с фосфорилированием-
сомный	дефосфорилированием гистона Н1
	2. Наблюдается в метафазе
	3. Образуются диски ДНП, уложенные в стопки диаметром
	700–900 нм
	4. Виток спирали ДНП содержит 6–10 нуклеосом

Б) Хромосомный	5. Формируется нуклеосомное волокно диаметром 30 нм
	6. Диски ДНП образуют участки гетеро- и эухроматина
	7. Общий итог укорочения ДНК — 10 000 раз
	8. ДНК укорачивается в 10–20 раз

72. Установите соответствие между уровнем организации наследственного материала и явлением, которое он допускает:

А) Генный	1. Дискретное наследование признаков	
	2. Кроссинговер	
	3. Межаллельное взаимодействие генов	
Б) Хромосомный	4. Хромосомные мутации	
	5. Мутации генов	
	6. Геномные мутации	
	7. Сцепление генов	
В) Геномный	8. Внутриаллельное взаимодействие генов	
	9. Независимое наследование признаков	

73. Установите соответствие между видом РНК и ее характеристикой:

А) иРНК	1. Участвует в вырезании экзонов про-иРНК
Б) тРНК	2. Содержит информацию об интронах
В) рРНК	3. Имеет акцепторный стебель
Г) гя-иРНК	4. Состоит из 40S и 50S субъединиц
Д) мяРНК	5. Образуется в результате процессинга

74. Установите соответствие между видом РНК и ее характеристикой:

А) гя-иРНК	1. Моноцистронна, проходит через ядерные поры
Б) рРНК	2. Образуется в результате рекогниции
В) аминоацил-	3. Гены этой РНК находятся в геноме человека в виде пяти
тРНК	кластеров в спутничных хромосомах
Г) микроРНК	4. Основные небелковые регуляторы работы генов
Д) иРНК	5. Образуется при транскрипции структурного гена

75. Установите соответствие между видом нуклеиновой кислоты и ее функцией:

А) иРНК	1. Является местом прикрепления РНК-полимераз
Б) тРНК	2. Является первичным транскриптом
В) рРНК	3. Участвует в активации аминокислот
Г) гя-иРНК	4. С нее считывается информация в направлении 5′→3′
Д) ДНК	5. Обеспечивает расшифровку генетического кода на рибосоме

76. Установите соответствие между свойством гена и его характеристикой:

А) Плейотропия	1. Состоит из субъединиц
Б) Дискретность	2. Имеет разную степень фенотипического проявления
В) Экспрессивность	3. Может иметь частоту фенотипического проявления ме-
	нее 100 %

Г) Целостность	4. Программируя синтез полипептида, действует как неде-
	лимая единица
Д) Лабильность	5. Мутирует редко
Е) Стабильность	6. Способен мутировать
Ж) Пенетрантность	7. Отвечает за несколько признаков
3) Специфичность	8. Детерминирует синтез определенной РНК

77. Соотнесите свойство генетического кода и его характеристику:

А) Вырожденность	1. Одинаковый кодон кодирует одну и ту же амино-
	кислоту у всех живых организмов
Б) Неперекрываемость	2. Считывание информации с ДНК в направлении
	3′→5′
В) Универсальность	3. Одну аминокислоту кодируют несколько кодонов
Г) Триплетность	4. Один нуклеотид не входит в состав рядом распо-
	ложенных кодонов
Д) Однонаправленность	5. Одну аминокислоту кодируют три рядом распо-
	ложенных нуклеотида

78. Соотнесите процесс и направление передачи генетической информации:

А) Трансляция	1. ДНК → иРНК
Б) Обратная транскрипция	2. иРНК → белок
В) Репликация	3. ДНК → ДНК
Г) Транскрипция	4. иРНК → ДНК
Д) Отсутствует	5. белок → иРНК

79. Соотнесите характер влияния на процесс трансляции и примеры веществ:

А) Активаторы	1. Антибиотики (рифампицины, оливомицин)
	2. Анаболические стероиды
	3. Противоопухолевые препараты (винбластин, винкристин)
Б) Ингибиторы	4. Модифицированные азотистые основания
	5. Инсулин
	6. Предшественники нуклеотидов (инозин, оротат калия)

80. Соотнесите функции гена и их характеристики:

А) Аутосинтетическая	1. Передача генетической информации от ДНК к белку
	2. Репликация
	3. Транскрипция
Б) Гетеросинтетическая	4. Хранение генетической информации
	5. Передача генетической информации от ДНК к ДНК
	6. Трансляция

ЭКСПРЕССИЯ ГЕНОВ У ПРО- И ЭУКАРИОТ

- 81. Установите последовательность событий в процессе индукции оперона:
 1) аллостерическое взаимодействие белка-репрессора с индуктором; 2) расщепление последней молекулы индуктора и освобождение белка-репрессора; 3) присоединение РНК-полимеразы к промотору; 4) взаимодействие белкарепрессора с геном-оператором: 5) поступление в клетку индуктора: 6) син
 - репрессора с геном-оператором; 5) поступление в клетку индуктора; 6) синтез иРНК, содержащей информацию о ферментах, участвующих в метаболизме индуктора.
- 82. Установите последовательность событий в процессе репрессии оперона, начиная с момента включения в работу гена-оператора: 1) ко-репрессор соединяется с белком-репрессором и блокирует ген-оператор, оперон не работает; 2) белок-репрессор не взаимодействует с геном-оператором, оперон работает; 3) синтез белка-репрессора соответственно информации гена-регулятора; 4) в клетку извне поступает ко-репрессор; 5) синтез иРНК, содержащей информацию о ферментах, участвующих в синтезе ко-репрессора в клетке.
- 83. Установите последовательность процессов, происходящих при созревании гя-иРНК: 1) сближение соседних экзонов; 2) полиаденилирование (присоединение к 3 концу гя-иРНК 20–250 адениловых нуклеотидов); 3) отщепление интронов и образование моноцистронной иРНК; 4) взаимодействие сплайсосом с концами соответствующих интронов и образование петлеобразных структур; 5) сборка сплайсосом; 6) «кэпирование» гя-иРНК (присоединение 5 концу трифосфометилгуанозина);
- **84.** Установите последовательность событий, происходящих в процессе экспрессии структурного гена эукариот: 1) взаимодействие факторов транскрипции с промотором; 2) транскрипция структурного гена и созревание моно-иРНК; 3) образование преинициаторного комплекса (факторы транскрипции и РНК-полимераза II); 4) транспорт моно-иРНК в цитоплазму; 5) взаимодействие энхансера с преинициаторным комплексом и ускорение транскрипции; 6) биосинтез белка.
- 85. Установите последовательность событий в процессе переноса ретротранспозона в «целевой» сайт хромосомы, начиная с момента транскрипции РНК: 1) обратная транскрипция, проходящая локально в «целевой» области ДНК; 2) транспортировка рибонуклеопротеина в ядро; 3) синтез РНК, которая содержит информацию о переносимой последовательности нуклеотидов и ферментах для обратной транскрипции; 4) транспорт РНК в цитоплазму; 5) образование рибонуклеопротеинового комплекса, содержащего ферменты и РНК.

86. Определите, к какому типу ДНК относятся последовательности, приведенные в правой колонке:

А) Гены	1. Теломеры
и регуляторные	2. Интроны
последовательности	3. Транспозоны
	4. Экзоны
	5. Диспергированные повторы
Б) Внегенная ДНК	6. Гены тРНК и рРНК
	7. Сателлиты
	8. Псевдогены
	9. Спейсеры
	10. Тандемные повторы

87. Соотнесите термин и его определение:

А) Экзон	1. Неинформативные участки структурных генов
Б) Интрон	2. Участки ДНК, встречающиеся в геноме один раз
В) Псевдогены	3. Участки ДНК, разделяющие структурные гены
Г) Спейсеры	4. Информативные участки структурных генов
Д) Уникальные	5. Последовательности нуклеотидов сходные с извест-
последовательности	ным геном, но не кодирующие белки

88. Установите соответствие между последовательностью ДНК и ее характеристикой:

А) Теломеры	1. Многократно повторяющиеся фрагменты ДНК, сле-
	дующие друг за другом
Б) Гены рРНК	2. Последовательности на плечах хромосом, повторя-
	ющиеся до 2500 раз
В) Транспозоны	3. Многократно повторяющиеся фрагменты ДНК, раз-
	деленные между собой
Г) Тандемные повторы	4. Расположены в 5 хромосомах человека в количестве
4	280 копий
Д) Диспергированные	5. Последовательности ДНК, способные перемещаться
повторы	в пределах генома

89. Соотнесите вид и характеристики повторяющихся последовательностей ДНК генома человека:

А) Тандемные повторы	1. Псевдогены
	2. Сателлиты (повтор от 100 п.н.)
	3. Транспозоны
	4. Микросателлиты (повтор от 1–4 п.н.)
Б) Диспергированные	5. Гены тРНК
повторы	6. Минисателлиты (повтор от 9-64 п.н.)
	7. Гены рРНК
	8. Ретротранспозоны

90. Распределите гены генома человека на 2 группы:

А) Структурные	1. Интенсификаторы
	2. Кодируют первичную структуру ферментов
	3. Кодируют первичную структуру рибосомальных белков
	4. Кодируют первичную структуру белков-репрессоров
Б) Функциональные	5 Модификаторы
	6. Кодируют структуру тРНК и рРНК
	7. Кодируют структуру гистонов
	8. Ингибиторы

91. Установите соответствие между видом и действием функциональных генов:

А) Супрессоры	1. Определяют время наступления активности других
(ингибиторы)	генов
Б) Регуляторы	2. Повышают активность других генов
В) Модификаторы	3. Снижают активность других генов
Г) Интенсификаторы	4. Изменяют характер активности других генов

92. Укажите соответствие между структурным элементом оперона и его функцией:

А) Промотор	1. Последовательность нуклеотидов, к которой присо-
	единяется белок-репрессор
Б) Оператор	2. Последовательность нуклеотидов, с которой начинает-
	ся транскрипция
В) Терминатор	3. Место первичного прикрепления РНК-полимеразы
Г) Инициатор	4. Фрагмент ДНК, содержащий информацию о фермен-
	тах, участвующих в метаболизме индуктора
Д) Структурный ген	5. Последовательность нуклеотидов, отсоединяющих
	РНК-полимеразу от ДНК

93. Укажите соответствие между структурным элементом и его ролью в экспрессии генов эукариот:

А) Промотор	1. Усиливает транскрипцию структурного гена
Б) Сайленсор	2. Последовательности нуклеотидов (например, ТАТА-
	бокс), узнаваемые факторами транскрипции
В) Преинициатор-	3. Замедляет транскрипцию структурного гена
ный комплекс	
Г) Регуляторные	4. Комплекс факторов транскрипции и РНК-полимеразы II
последовательности	
Д) Терминатор	5. Последовательность ДНК, содержащая информатив-
транскрипции	ные (экзоны) и неинформативные (интроны) участки
Е) Структурный ген	6. Место прикрепления преинициаторного комплекса
Ж) Энхансер	7. Последовательность ДНК, насыщенная ГА-повтора-
	ми, служащая сигналом для остановки транскрипции

94. Укажите соответствие между видом ДНК-полимеразы эукариот и ее функцией:

А) ДНК-полимераза α	1. Репликация и репарация ДНК митохондрий
Б) ДНК-полимераза β	2. Участвует в репликации лидирующей нити ДНК,
	а также в эксцизионной репарации ДНК
В) ДНК-полимераза ү	3. В точке огі и перед фрагментами Оказакки синтезиру-
	ет РНК-праймер, а затем реплицирует ДНК
Г) ДНК-полимераза δ	4. Участвует в репарации ядерной ДНК
Д) ДНК-полимераза є	5. Основная полимераза эукариот, обладает 3'-5'-экзо-
	нуклеазным действием, является высокопроизводитель-
	ной

95. Укажите соответствие между видом РНК-полимеразы и ее функциями:

А) РНК-полимераза I	1. Транскрибирует тРНК, 5S рРНК и одну из малых
	ядерных РНК
Б) РНК-полимераза II	2. Транскрибирует все виды РНК митохондрий
В) РНК-полимераза III	3. Транскрибирует гетерогенные ядерные РНК и боль-
	шинство малых ядерных РНК
Г) РНК-полимераза IV	4. Транскрибирует все типы рРНК, кроме 5S рРНК

96. Установите особенности регуляции транскрипции, характерные для про- или эукариот:

А) Прокариоты	1. Регуляция экспрессии генов не связана с химическими
	превращениями гистонов
	2. Транскрипция и трансляция происходят последовательно
	3. Первичный транскрипт состоит из интронов и экзонов
	4. Отсутствуют механизмы сплайсинга и процессинга
Б) Эукариоты	5. Первичный транскрипт всегда состоит только из инфор-
	мативных частей
	6. В транскрипции различных РНК участвуют три типа
	РНК-полимераз
	7. Возможен альтернативный сплайсинг про-иРНК
	8. Транскрипция и трансляция происходят одновременно

97. Соотнесите вид цитоплазматической наследственности и его пример:

А) Митохондриальная	1. Право- или левозакрученная раковина у мало-
	го прудовика
Б) Мужская стерильность	2. Устойчивость бактерий к антибиотикам
В) Пластидная	3. Дыхательная недостаточность у дрожжей
Г) Материнский эффект	4. Пестролистность львиного зева
цитоплазмы	
Д) Псевдоцитоплазматическая	5. Кукуруза, свекла

98. Выберите характеристики, соответствующие ядерному или митохондриальному геномам:

А) Ядерный геном	1. Размер 16,6 тысяч пар нуклеотидов
	2. ДНК, кодирующая белки ~ 1,1 %
	3. Менделевское наследование
	4. Несколько тысяч копий кольцевой ДНК в клетке
Б) Митохондриаль-	5. Наследование по материнской линии
ный геном	6. 23 или 24 различных ДНК молекул; все линейные
	7. ДНК, кодирующая белки 66 %
	8. Размер 3,1 миллиарда пар нуклеотидов

99. Выберите характеристики, соответствующие ядерному или митохондриальному геномам:

А) Ядерный геном	1. В основном ДНК свободна от белков
	2. Гены транскрибируются независимо
	3. 60 кодонов для аминокислот и 4 стоп-кодона
	4. Содержит гистоны
Б) Митохондриаль-	5. Интроны отсутствуют
ный геном	6. Структурные гены состоят из экзонов и интронов
	7. 61 кодон для аминокислот и 3 стоп-кодона
	8. Гены транскрибируются одновременно с обеих цепей

100. Укажите соответствие митохондриального синдрома его основным диагностическим признакам:

A) Синдром MERRF	1. Подострая некротизирующая энцефалопатия
Б) Синдром MELAS	2. Миоклональная эпилепсия в сочетании с необычно
	красными («рваными») мышечными волокнами
B) Синдром LHON	3. Нейропатия, атаксия и пигментный ретинит
Г) Синдром Лея	4. Энцефаломиопатия, молочнокислый ацидоз, инсуль-
	топодобные эпизоды
Д) Синдром NARP	5. Наследственная атрофия зрительных нервов Лебера

ГЕННАЯ ИНЖЕНЕРИЯ

- **101.** Укажите последовательность этапов методов генной инженерии: 1) конструирование векторной молекулы ДНК in vitro; 2) селекция клонов клеток, содержащих молекулы гибридной ДНК; 3) введение рекомбинантных ДНК в клетку-реципиент; 4) получение генетического материала; 5) анализ фрагментов ДНК.
- **102.** Установите последовательность этапов метода ферментативного синтеза сложных генов: 1) синтез цепи ДНК на матрице иРНК с помощью ревертазы; 2) расщепление цепи иРНК рибонуклеазой или раствором NaOH; 3) добавление праймера oligo T; 4) синтез комплементарной цепи ДНК; 5) выделение иРНК; 6) гибридизация праймера с 3'концевой последовательностью РНК polyA.

- **103.** Установите последовательность этапов амплификации генов с использованием полимеразной цепной реакции: 1) гибридизация цепей ДНК с праймерами при 50–55 °C; 2) получение образца ДНК; 3) полимеризация цепей ДНК при 72 °C с помощью Таq-полимеразы; 4) денатурация при 90–95 °C; 5) многократное повторение цикла.
- 104. Укажите последовательность стадий метода Саузерн-блот гибридизации:
 1) получение авторадиограммы и ее анализ; 2) электрофорез фрагментов ДНК;
 3) гибридизация на нитроцеллюлозной мембране ДНК-зонда с комплементарным фрагментом ДНК; 4) отпечатка электрофоретического спектра ДНК на нитроцеллюлозной мембране; 5) обработка образца ДНК рестриктазами.
- 105. Укажите последовательность этапов секвенирования методом Сэнгера: 1) разделение по величине фрагментов из 4 смесей с помощью электрофореза; 2) приготовление 4 буферных смесей, содержащих фрагмент секвенируемой ДНК, нуклеотиды А, Т, Г, Ц и один из дидезоксинуклеотидов (ддА, ддТ, ддГ или ддЦ); 3) запись последовательности нуклеотидов секвенируемого фрагмента ДНК; 4) гибридизация однонитевого фрагмента ДНК с праймером; 5) синтез в каждой из 4 смесей набора фрагментов ДНК разной длины с терминирующим дидезоксинуклеотидом на конце; 6) добавление в каждую смесь ДНК-полимеразы.
- 106. Укажите последовательность этапов секвенирования методом Максама—Гилберта: 1) запись последовательности нуклеотидов секвенируемого фрагмента ДНК; 2) разделение фрагментов меченой ДНК по длине с помощью электрофореза; 3) присоединение на одном из концов цепей ДНК радиоактивной ³²Р или флуоресцентной метки; 4) добавление к каждой порции ДНК пиперидина, образующего разрыв цепи ДНК на месте поврежденного азотистого основания; 5) разделение меченой ДНК на четыре порции и обработка каждой реагентом, разрушающим одно из оснований.
- **107.** Укажите последовательность стадий метода получения рекомбинантной ДНК: 1) вшивание гена в ДНК плазмиды; 2) отбор колоний бактерий, содержащих рекомбинантную ДНК; 3) получение образца ДНК определенного организма; 4) введение рекомбинантной плазмиды в бактериальную клетку; 5) вырезание из молекулы ДНК фрагмента с нужным геном и липкими концами; 6) получение продукта генной активности (БАВ).
- 108. Укажите последовательность генной терапии опухолевых заболеваний:

 1) отбор фибробластов с геном интерлейкина и их культивирование; 2) введение вакцины в опухоль; 3) культивирование образца фибробластов на питательной среде; 4) внедрение гена, отвечающего за синтез интерлейкина в ДНК фибробластов; 5) формирование вакцины из рекомбинантных фибробластов.
- 109. Установите соответствие между ферментом, используемым в генной инженерии, и его функцией:

А) Рибонуклеаза	1. Присоединение нуклеотидов друг к другу с образова-
	нием дочерней цепи ДНК

Б) Ревертаза	2. Соединение двух фрагментов ДНК с образованием но-
	вой фосфодиэфирной связи
В) Рестриктаза	3. Катализ синтеза ДНК на матрице РНК
Г) Taq-полимераза	4. Расщепление иРНК при обратной транскрипции
Д) Лигаза	5. Расщепление ДНК внутри палиндромного участка
	узнавания

110. Соотнесите термин и соответствующее ему определение:

А) Секвенирование	1. Многократная репликация фрагмента ДНК
Б) ДНК-зонд	2. Олигонуклеотид, комплементарный 3 концевой после-
	довательности ДНК
В) Амплификация	3. Расшифровка нуклеотидной последовательности ДНК
Г) Праймер	4. Проявленная фотопленка с местами затемнения, соот-
	ветствующими локализации радиоактивных частиц
Д) Авторадиограмма	5. Определенная радиоактивномеченая последователь-
	ность нуклеотидов, используемая для идентификации
	фрагментов молекулы ДНК, имеющих комплементарные
	последовательности

111. Укажите соответствие метода его описанию:

А) Метод Сэнгера	1. Гибридизация на нитроцеллюлозной мембране ДНК-
	зонда с комплементарным фрагментом ДНК
Б) ПЦР	2. Выявление в геноме человека фракций минисателлит-
	ной ДНК
В) Ферментативный	3. Расшифровка нуклеотидной последовательности фраг-
синтез	мента ДНК с использованием дидезоксинуклеотидов
Г) Саузерн-блот	4. Синтез генов с помощью ревертазы
гибридизация	
Д) Генная дактило-	5. Амплификация (размножение) фрагментов ДНК
скопия	

112. Соотнесите термин и соответствующее ему определение:

А) Вектор	1. Двуцепочечные концевые фрагменты ДНК, разрезан-
	ные симметрично к центру узнавания
Б) «Липкие концы»	2. Палиндромные последовательности нуклеотидов, спе-
	цифичные для каждого вида рестриктаз
В) «Тупые концы»	3. Ген, сообщающий бактериальной клетке свойство, ко-
	торое можно тестировать (устойчивость к антибиотикам,
	солям тяжелых металлов)
Г) Сайты рестрикции	4. Молекула нуклеиновой кислоты, используемая для
	внедрения генетического материала в клетку
Д) Маркерный ген	5. Одноцепочечные концевые фрагменты ДНК, разрезан-
	ные асимметрично к центру узнавания

113. Укажите соответствие между видом вектора и его характеристикой:

А) Челночные	1. Плазмиды, в которые встроены cos-сайты ДНК фага λ. Ем-
векторы	кость 33–39 тыс. п.н.
Б) Космиды	2. Гибриды между фагом и плазмидой. Могут в разных условиях
	развиваться как фаги и как плазмиды. Емкость 15–25 тыс. п.н.
В) Плазмиды	3. ДНК-содержащие бактериофаги. Емкость 15–25 тыс. п.н.
Г) Фазмиды	4. Способны реплицироваться в клетках разных биологических
	видов (например, животных и бактерий)
Д) Фаговые	5. Небольшие кольцевые ДНК бактерий. Емкость до 10 тыс. п.н.
векторы	

114. Укажите соответствие между видами векторов и областью их использования:

А) Клонирующие	1. Секвенирование и мутирование генов
Б) Специализированные	2. Синтез иРНК и белков
В) Интегративные	3. Амплификация генов или любых фрагментов ДНК
Г) Экспрессирующие	4. Встраивание чужеродной ДНК в геном клетки или
	вируса

115. Установите соответствие между свойствами клетки, обусловленными плазмидами, а также требования к плазмидным векторам с их характеристиками:

А) Свойства клетки,	1. Продукция факторов патогенности
обусловленные	2. Наличие точки начала репликации (ori)
плазмидами	3. Наличие «удобных» сайтов рестрикции
	4. Образование колицинов
	5. Расщепление сложных органических веществ
Б) Требования	6. Автономная репликация в клетке
к плазмидам как	7. Синтез антибиотических веществ
векторам	8. Образование ферментов рестрикции
()	9. Многократное копирование
	10. Наличие маркерных генов

116. Установите соответствие между плазмидой и признаками, которые она сообщает бактериальной клетке:

A) R-плазмиды	1. Образование токсинов и вирулентность	
Б) F-плазмиды	2. Синтез антибактериальных веществ — бактериоцинов, вы-	
	зывающих гибель близкородственных штаммов бактерий	
B) Hly-плазмиды	3. Устойчивость к лекарственным препаратам (антибиоти-	
	кам, сульфаниламидам)	
Г) Col-плазмиды	4. Способность к конъюгации	
Д) Плазмиды	5. Способность вызывать болезни растений	
биодеградации		
Е) Ті-плазмиды	6. Обеспечение процессов биодеградации природных (угле-	
	воды) и неприродных (толуол, нафталин) соединений	

117. Укажите соответствие между методом введения рекомбинантных ДНК в клетку-реципиент и его характеристикой:

А) Трансдукция	1. Специальным устройством «обстреливают» клетки ча-	
	стицами из металлов, на которые нанесена ДНК	
Б) Конъюгация	2. Образование с помощью импульсного электрического	
	тока временных пор в клеточных оболочках, через которые	
	проходит ДНК	
В) Компетентность	3. Передача ДНК при участии бактериофагов	
Г) Трансформация	4. Переход ДНК при межклеточном контакте через плазми-	
	ду F+	
Д) Электропорация	5. Формирование белков и ферментов, обеспечивающих ад-	
	сорбцию ДНК из окружающей среды, на оболочке клетки	
Е) Молекулярная	6. Использование для внедрения ДНК в клетки растений	
пушка	и животных пузырьков воды с оболочками из фосфолипидов	
Ж) Упаковка	7. Передача ДНК через плазмиды	
в липосомы		

118. Установите соответствие между стадией метода получения биологически активных веществ и ее характеристикой:

1		
А) Скрининг	1. Выделение из бактериальных клеток продукта активно-	
	сти рекомбинантной ДНК	
Б) Рестрикция	2. Введение в бактериальную клетку рекомбинантной	
	плазмиды	
В) Трансформация	3. Отбор колоний бактерий, содержащих рекомбинантные	
	плазмиды	
Г) Лигирование	4. Вырезание рестриктазой из ДНК фрагмента с нужным	
	геном и липкими концами	
Д) Получение БАВ	5. Вшивание гена в ДНК плазмиды с помощью лигазы	

119. Установите соответствие между вирусом, применяемым в генотерапии и адресным использованием:

А) Аденовирусы	1. Фибробласты, миобласты, гепатоциты, стволовые клетки	
Б) Герпесвирусы	2. Клетки слизистой оболочки дыхательных путей	
В) Аденоассоции-	3. Нейроны	
рованные вирусы		
Г) Ретровирусы	4. Специфический участок 19 хромосомы	

120. Применительно к понятию подберите соответствующее определение:

А) Генотерапия	1. РНК, обладающие каталитическим действием и содержа-
in situ	щие антисмысловые участки, присоединяются к иРНК и раз-
	резают их
Б) Антисмысло-	2. Вектор со «здоровой» ДНК вводится локально в больные
вые нуклеотиды	ткани
В) Стволовые	3. Фрагменты РНК, комплементарные иРНК или участку ДНК,
клетки	используемые в генотерапии для подавления экспрессии гена

Г) Генотерапия	4. Клетки извлекаются из организма, подвергаются лечению,
in vivo	а затем возвращаются в организм
Д) Генотерапия	5. Не- или мало дифференцированные клетки, способные
ex vivo	продуцировать коммитированные клетки-предшественницы
Е) Рибозимы	6. Вектор с неповрежденным геном инъецируется в кровоток

121. Установите соответствие между методами обнаружения генетически модифицированных объектов (ГМО) в продуктах питания, их особенностями и примерами:

А) Химические	1. Позволяют определить чужеродные соединения (трансген-	
	ную ДНК, белки, высокомолекулярные жирные кислоты, ви-	
	тамины, гормоны), синтезируемые в клетках ГМО	
	2. Определение конкретных специфических чужеродных бел-	
	ков, экспрессирующихся в ГМО	
	3. Выявление рекомбинантной ДНК в продукте	
Б) Иммуноло-	4. Позволяют выявить генетическую модификацию в продук-	
гические	тах, которые не содержат ДНК и белка (например, в рафиниро-	
	ванном соевом масле, полученном из трансгенной сои)	
	5. Определение рекомбинантного белка ограничено уровнем	
	его содержания в продукте	
	6. Возможность выявления регуляторных элементов	
В) ПЦР	7. Любая часть организма может быть использована для выяв-	
	ления ГМО	
	8. Неприемлем для анализа пищевых продуктов, при производ-	
	стве которых сырье подвергается глубокой технологической	
	переработке (высокая температура, кислая среда, фермента-	
	тивная обработка)	

122. Соотнесите характеристику и примеры маркерных генов, используемых для идентификации и отбора ГМО *in vitro*:

А) Селек-	1. Кодируют нейтральные для клеток и легко детектируемые белки	
тивные	2. Ген β-глюкуронидазы	
	3. Отвечают за устойчивость к антибиотикам (ампицилину, кана-	
	мицину, тетрациклину и др.)	
Б) Репор-	4. Отвечают за устойчивость к солям тяжёлых металлов	
терные	5. Ген люциферазы	
	6. Отвечают за устойчивость к гербицидам (у растений)	

123. Установите соответствие между видом генно-модифицированного организма и вариантом модификации его генома:

А) ТРАНС-генные организмы	1. В геном введены собственные гены, но с дру-
	гими регуляторными участками
Б) ЦИС-генные организмы	2. Содержат вставку чужеродной ДНК
В) ИНТРА-генные организмы	3. Содержат гены того же или родственного вида

124. Выберите трансгенных животных, созданных для экспрессии в их молоке рекомбинантных белков человека: 1) овца; 2) собака; 3) лошадь; 4) коза; 5) мышь; 6) корова; 7) кролик; 8) свинья.

ОНТОГЕНЕТИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОГО Закономерности наследования

125. Установите соответствие между понятием и его характеристикой:

А) Первый закон Менделя	1. Скрещивание особей по двум парам альтерна-
	тивных признаков
Б) Дигибридное скрещивание	2. Единообразие гибридов первого поколения
В) Второй закон Менделя	3. Независимое комбинирование признаков
Г) Гипотеза чистоты гамет	4. У гибридного организма гены не гибридизи-
	руются
Д) Третий закон Менделя	5. Расщепление признаков у гибридов

126. Установите соответствие между понятием и его характеристикой:

А) Гомозиготный организм	1. Расположены в одинаковых локусах гомоло-
	гичных хромосом
Б) Анализирующее скрещива-	2. Скрещивание исследуемого организма с ре-
ние	цессивной гомозиготой
В) Аллельные гены	3. Скрещивание потомков с одним из родителей
Г) Реципрокное скрещивание	4. Два последовательных скрещивания, при ко-
	торых поочередно рецессивной гомозиготой яв-
	ляется материнский или отцовский организм
Д) Возвратное скрещивание	5. Содержит одинаковые аллельные гены

127. Установите соответствие между понятием и его характеристикой:

А) Гибридизация	1. Организм, содержащий разные аллельные
	гены
Б) Альтернативные признаки	2. Скрещивание особей, отличающихся по
()	генотипу
В) Гетерозиготный организм	3. Гибридизация особей, анализируемых по
	одной паре альтернативных признаков
Г) Чистая линия	4. Гомозиготные организмы
Д) Моногибридное скрещивание	5. Взаимоисключающие друг друга

128. Выберите виды аллельного и неаллельного взаимодействия генов:

А) Взаимодействие аллельных	1. Аллельное исключение
генов	2. Полимерия
	3. Комплементарность
	4. Эпистаз
Б) Взаимодействие неаллельных	5. Неполное доминирование
генов	6. Кодоминирование
	7. Сверхдоминирование
	8. Эффект положения

129. Установите соответствие между понятием и его характеристикой:

А) Аллельное исключение	1. Гены одной аллельной пары равнозначны
	и не подавляют действия друг друга
Б) Неполное доминирование	2. У гетерозигот доминантный ген действует
	сильнее, чем у доминантных гомозигот
В) Кодоминирование	3. Аллельные гены представлены в популяции
	более чем двумя аллельными состояниями
Г) Сверхдоминирование	4. Гетерозиготы имеют промежуточное наследо-
	вание признака
Д) Множественный аллелизм	5. У гетерозигот в одних клетках активна одна
	аллель гена, а в других — другая

130. Установите соответствие между понятием и примером:

А) Аллельное исключение	1. Цветки душистого горошка могут быть белы-
	ми, красными и розовыми
Б) Неполное доминирование	2. IY(AB) группа крови человека
В) Кодоминирование	3. Гетерозиготные мухи более жизнеспособны,
_	чем гомозиготные
Г) Сверхдоминирование	4. Окраска шерсти в популяции кроликов обу-
	словлена более чем двумя аллельными генами
Д) Множественный аллелизм	5. Женский мозаицизм по половым хромосомам

131. Установите соответствие между понятием и его характеристикой:

А) Эффект	1. Признак развивается при наличии в генотипе двух до-
положения	минантных неаллельных генов
Б) Кумулятивная	2. Доминантный (рецессивный) ген одной аллельной пары
полимерия	подавляет действие доминантного (рецессивного) гена
	другой аллельной пары
В) Эпистаз	3. Взаимное влияние неаллельных генов, обусловленное
	местом положения генов в одной хромосоме
Г) Комплементар-	4. Чем больше в генотипе доминантных неаллельных ге-
ность	нов, отвечающих за проявление одного признака, тем
	сильнее он выражен
Д) Плейотропия	5. Один ген влияет на проявление нескольких признаков

132. Установите соответствие между видом взаимодействия генов и его характеристикой:

А) Эффект положения	1. У гетерозигот доминантный ген действует сильнее,
	чем у доминантных гомозигот
Б) Кумулятивная поли-	2. В F ₂ расщепление по генотипу и фенотипу 1:2:1
мерия	
В) Комплементарность	3. Чем больше в генотипе доминантных неаллельных
	генов, отвечающих за проявление признака, тем силь-
	нее он выражен

Г) Сверхдоминирование	4. Изменение проявления гена при изменении его по-
	ложения в хромосоме
Д) Неполное доминиро-	5. Для пары неаллельных генов, отвечающих за один
вание	признак, в F ₂ расщепление по фенотипу 9:3:3:1

133. Соотнесите вид взаимодействия генов и его пример:

А) Полное доминирование	1. «Бомбейский феномен»
Б) Аллельное исключение	2. Наследование группы крови по MN системе
В) Плейотропия	3. Полидактилия и пятипалость
Г) Кодоминирование	4. Инактивация одной из Х-хромосом у женского
	организма
Д) Рецессивный эпистаз	5. Синдром Марфана

134. Установите соответствие между видом взаимодействия генов и вариантом расщепления признаков у потомков:

А) Эпистаз	1. Для пары неаллельных генов, отвечающих за
	один признак, в F ₂ расщепление по фенотипу 9:7
Б) Неполное	2. Для пары доминантных неаллельных генов в F ₂
доминирование	расщепление по фенотипу 13:3
В) Комплементарность	3. Для пары неаллельных генов, отвечающих за
	один признак, в F ₂ расщепление по фенотипу 15:1
Г) Полное доминирование	4. В F ₂ расщепление по генотипу и фенотипу 1:2:1
Д) Полимерия	5. В F ₂ расщепление по генотипу 1:2:1, по феноти-
некумулятивная	пу 3:1

135. Установите соответствие между видом взаимодействия генов и его характеристикой:

А) Эпистаз	1. Чем больше доминантных генов, тем сильнее выражен при-
доминантный	знак
Б) Полимерия	2. Для пары неаллельных генов, отвечающих за один признак,
некумулятивная	в F ₂ расщепление по фенотипу 9:3:4
В) Комплемен-	3. Доминантный ген одной аллельной пары подавляет дей-
тарность	ствие доминантного гена другой аллельной пары
Г) Полимерия	4. Рецессивный неаллельный ген в гомозиготном состоянии
кумулятивная	обладает подавляющим действием на другой неаллельный ген
Д) Криптомерия	5. Степень проявления признака не зависит от количества до-
	минантных аллелей, обусловливающих данный признак

136. Установите соответствие между понятием и его характеристикой:

А) Гаметы кроссоверные	1. Гены, локализованные в одной хромосоме, все-
	гда наследуются вместе
Б) Рекомбинанты	2. Имеет место перекомбинация генов, локализо-
	ванных в одной хромосоме
В) Сцепление генов полное	3. Гаметы, в которых хроматиды не претерпели
	кроссинговер

Г) Гаметы некроссоверные	4. Организмы, которые образуются из зигот, сфор-
	мированных кроссоверными гаметами
Д) Сцепление генов непол-	5. Гаметы, в которых хроматиды претерпели крос-
ное	синговер

Биология и генетика пола

137. Установите соответствие между понятием и его характеристикой:

А) Гомогаметный пол	1. Морфофизиологические детерминанты
Б) Гетерогаметный пол	2. Инактивированная Х-хромосома
В) Тельце Барра	3. Пол, имеющий одинаковые половые хромосомы
Г) Физикальные де-	4. Пол, имеющий разные половые хромосомы
терминанты пола	
Д) Гемизиготность	5. У гетерогаметного пола в половых хромосомах часть
	генов в единственном аллельном состоянии

138. Установите соответствие между видом нарушения и его характеристикой:

А) Ложный	1. Возбуждение и удовлетворение достигается при пе-
гермафродитизм	реодевании в одежду противоположного пола
Б) Гомосексуализм	2. Стойкое несоответствие полового самосознания че-
	ловека его истинному генетическому и гонадному полу
В) Трансвестизм	3. Выбор полового партнера того же пола
Г) Транссексуализм	4. Организм продуцирует полноценные мужские и
	женские половые клетки
Д) Истинный	5. Несоответствие первичных и вторичных половых
гермафродитизм	признаков

139. Установите соответствие между понятием и его характеристикой:

А) Синдром Морриса	1. «Маскарад» — стремление к переодеванию в одежду
4	противоположного пола
Б) Гетеросексуализм	2. Женский фенотип при генотипе ХҮ
В) Трансвестизм	3. Выбор полового партнера другого пола
Г) Ложный гермафро-	4. В разных клетках организма содержится не одинако-
дитизм	вое число половых хромосом
Д) Гинандроморфизм	5. Несоответствие первичных и вторичных половых
	признаков

140. Установите соответствие между половой детерминантой и ее характеристикой:

А) Гаметный пол	1. Определяется в момент оплодотворения сочета-
	нием половых хромосом
Б) Генетический пол	2. Выделение мужских или женских половых гор-
_	монов
В) Гормональный пол	3. Образование яйцеклеток или сперматозоидов
Г) Гонадный пол	4. Формирование женского или мужского фенотипа
Д) Морфологический пол	5. Закладка яичников или яичек

141. Установите соответствие между признаками пола и их характеристикой:

А) Голандрические	1. Их гены расположены в аутосомах обоих полов, но
	проявляют свое действие только у особей одного пола
Б) Контролируемые	2. Их гены расположены в негомологичном участке
полом	Х-хромосомы
В) Сцепленные с полом	3. Их гены расположены в негомологичном участке
	Ү-хромосомы
Г) Вторичные половые	4. Их гены расположены в аутосомах обоих полов,
признаки	степень и частота проявления признака зависит от пола
Д) Ограниченные полом	5. Развиваются под действием половых гормонов

142. Установите соответствие между признаками пола и примером:

А) Голандрические	1. Яйценосность у кур, молочность коров
Б) Контролируемые полом	2. Гемофилия, дальтонизм
В) Сцепленные с полом	3. Ихтиоз, перепонки между пальцами
Г) Вторичные половые	4. Нормальный рост волос и облысение у человека
признаки	
Д) Ограниченные полом	5. Степень развития молочных желез, тембр голоса

143. Выберите варианты физикальных и социально-психологических детерминант:

А) Физикальные	1. Гонадный пол
детерминанты	2. Пол воспитания
	3. Генетический пол
	4. Гаметный пол
Б) Социально-	5. Половое самосознание
психологические	6. Гормональный пол
детерминанты	7. Морфологический пол
	8. Выбор полового партнера

144. Установите правильную последовательность детерминант, включающихся в формирование пола у человека: 1) гражданский пол; 2) морфологический пол; 3) генетический пол; 4) гормональный пол; 5) гаметный пол; 6) гонадный пол.

Изменчивость

145. Соотнесите понятие и его характеристику:

А) Генокопия	1. Ненаследственное изменение фенотипа, копирующее
	известную мутацию
Б) Модификацион-	2. Изменение генотипа под действием факторов окружаю-
ная изменчивость	щей среды
В) Фенокопия	3. Изменение фенотипа без изменения структуры генотипа
Г) Комбинативная	4. Одинаковое фенотипическое проявление мутаций раз-
изменчивость	ных генов
Д) Мутационная	5. Появление новых признаков вследствие новых сочета-
изменчивость	ний генов

146. Соотнесите понятие и его характеристику:

А) Гетерозис	1. Ненаследственное изменение фенотипа, копирующее из-
	вестную мутацию
Б) Мутагены	2. Устойчивое изменение генетического материала под
	действием факторов внешней среды
В) Фенокопия	3. Факторы, вызывающие мутации
Г) Норма реакции	4. Повышенная жизнеспособность организмов, гетерози-
	готных по большинству генов
Д) Мутация	5. Границы модификационной изменчивости

147. Выберите свойства, соответствующие указанным видам изменчивости:

А) Модификации	1. Не наследуются	
	2. Неопределенны	
	3. Групповые	
	4. Возникают внезапно	
	5. Не адаптивны	
Б) Мутации	6. Могут возникать повторно	
	7. Приспособительный характер	
	8. Являются материалом для естественного отбора	
	9. Обратимы	
	10. Предсказуемы	

148. Соотнесите виды мутагенов и их примеры:

А) Физические мутагены	1. Интерферон, антиоксиданты
Б) Химические мутагены	2. Микоплазмы, вирусы
В) Биологические мутагены	3. Ультрафиолетовое излучение
Г) Супермутагены	4. Иприт, колхицин
Д) Антимутагены	5. Пищевые консерванты, антибиотики

149. Установите соответствие между видами мутагенных факторов и нарушениями, которые они вызывают:

А) Гамма-излучение	1. Подавление синтеза азотистых оснований
Б) Меркаптопурин	2. Внедрение чужеродной ДНК в ДНК клетки
В) Формальдегид	3. Образование Т-Т сшивок
Г) УФЛ	4. Радиолиз воды
Д) Вирусы	5. Алкилирование нуклеотидов

150. Установите соответствие между видами мутагенных факторов и нарушениями, которые они вызывают:

А) Вирус кори, вирус краснухи	1. Дезаминирование азотистых оснований
Б) Перекиси, азотистая кислота,	2. Внедрение чужеродной ДНК в ДНК
марганец	клетки
В) Диметилсульфат, формальдегид	3. Образование Т-Т сшивок
Г) УФЛ	4. Разрушение митотического аппарата
Д) Ионизирующее излучение	5. Алкилирование нуклеотидов

151. Установите соответствие между видами мутагенных факторов и нарушениями, которые они вызывают:

А) Гельминты	1. Дезаминирование азотистых оснований	
Б) Марганец	2. Выделяют токсины, которые действуют как	
	химические мутагены	
В) Иприт	3. Разрыв нитей веретена деления	
Г) Колхицин	4. Образование свободных радикалов	
Д) Рентгеновские лучи	5. Алкилирование нуклеотидов	

152. Установите соответствие между видами мутагенных факторов и нарушениями, которые они вызывают:

А) Вирусы	1. Подавление синтеза азотистых оснований
Б) Кофеин	2. Образование свободных радикалов
В) Диметилсульфат	3. Образование Т-Т сшивок
Г) Рентгеновские лучи	4. Трансдукция чужеродной ДНК
Д) УФЛ	5. Алкилирование нуклеотидов

153. Установите соответствие между видами мутагенных факторов и нарушениями, которые они вызывают:

А) Аминоурацил	1. Дезаминирование азотистых оснований
Б) Фенол	2. Внедрение чужеродной ДНК в ДНК клетки
В) Аналоги азотистых	3. Ингибиция синтеза предшественников нукле-
оснований	иновых кислот
Г) Перекиси	4. Изменение структуры ДНК
Д) ВИЧ	5. Алкилирование нуклеотидов

154. Найдите соответствие между видами мутаций и их характеристиками:

А) Дупликация	1. Обмен сегментами между негомологичными
	хромосомами
Б) Делеция	2. Нехватка участка хромосомы
В) Транзиция	3. Удвоение фрагмента хромосомы
Г) Реципрокная транслокация	4. Увеличение числа хромосом кратное n
Д) Полиплоидия	5. Замена пуринового основания на пуриновое

155. Найдите соответствие между формами изменчивости и их характеристиками:

А) Нулисомия	1. Перенос сегмента одной хромосомы на него-
	мологичную
Б) Нереципрокная	2. Одинаковое фенотипическое проявление му-
транслокация	таций разных генов
В) Трансверсия	3. Удвоение фрагмента хромосомы
Г) Генокопия	4. Замена А-Т
Д) Дупликация	5. Отсутствие пары гомологичных хромосом

156. Найдите соответствие между формами изменчивости и их характеристиками:

А) Дефишенси	1. Замена А-Г
Б) Фенокопия	2. «Сдвиг рамки считывания»
В) Рекомбинация	3. Хромосомная мутация
Г) Транзиция	4. Ненаследственное изменение фенотипа,
	копирующее известную мутацию под влия-
	нием факторов среды
Д) Выпадение нуклеотида	5. Результат кроссинговера

157. Найдите соответствие между формами изменчивости и их характеристиками:

А) Миссенс-мутация	1. Две акроцентрические хромосомы соеди-
	няются центромерными районами
Б) Изохромосома	2. Одинаковое фенотипическое проявление
	мутаций разных генов
В) Транзиция	3. Образуется во время деления при попе-
	речном расщеплении области центромеры
Г) Робертсоновская транслокация	4. Изменение смысла кодонов
Д) Генокопия	5. Замена Т-Ц

158. Найдите соответствие между формами изменчивости и их характеристиками:

А) Реципрокная транслокация	1. Адаптивное изменение фенотипа
Б) Модификация	2. Генная мутация
В) Нонсенс-мутация	3. Хромосомная мутация
Г) Делеция участка хромосомы	4. Обмен сегментами между негомологич-
	ными хромосомами
Д) Трансгенация	5. Образование кодонов УАА, УАГ, УГА

159. Найдите соответствие между видами мутаций и их характеристикой:

А) Соматические мутации	1. Не влияют на процессы жизнедеятельности	
Б) Гаметические мутации	2. Происходят в соматических клетках	
В) Нейтральные мутации	3. Возникают при воздействии направленных	
	мутагенных факторов	
Г) Индуцированные мутации	4. Возникают при воздействии естественных	
	мутагенных факторов	
Д) Спонтанные мутации	5. Происходят в половых клетках	

160. Найдите соответствие между видами мутаций и их примером:

А) Соматические мутации	1. Веснушки
Б) Гаметические мутации	2. Белая прядь волос
В) Нейтральные мутации	3. Изменения цвета тела у мух дрозофил
Г) Индуцированные мутации	4. Ахондроплазия
Д) Спонтанные мутации	5. Гемофилия

161. Найдите соответствие между видом мутации и ее примером:

А) Трисомия	1. Синдром Лежена
Б) Моносомия	2. Серповидноклеточная анемия
В) Делеция	3. Синдром трисомии по короткому плечу 9-й хромосомы
Г) Трансверсия	4. Синдром Шерешевского-Тернера
Д) Дупликация	5. Синдром Дауна

162. Найдите соответствие между видом мутации и ее примером:

А) Делеция	1. Синдром трисомии по короткому плечу 9-й	
	хромосомы	
Б) Дупликация	2. Кольцевые хромосомы	
В) «Сдвиг рамки считывания»	3. Синдром Шерешевского-Тернера	
Г) Дефишенси	4. Синдром Лежена	
Д) Моносомия	5. Фенилкетонурия	

163. Найдите соответствие между концепцией канцерогенеза и ее характеристикой:

А) Онкогенеза	1. Перемещение протоонкогена с одного места
(инсерционная активация)	на другое
Б) Эпигеномная	2. Активация вирусов
В) Вирусогенетическая	3. Повреждение функциональных генов
Г) Мутационная	4. Активация протоонкогена вирусными генами
Д) Онкогенеза (активация при	5. Геномные или хромосомные мутации
транслокации)	

164. Найдите соответствие между концепцией канцерогенеза и ее характеристикой:

А) Эпигеномная	1. Перемещение протоонкогена с одного места
	на другое
Б) Онкогенеза	2. Активация вирусов
(инсерционная активация)	
В) Вирусогенетическая	3. Повреждение функциональных генов
Г) Онкогенеза (активация при	4. Активация протоонкогена вирусными генами
амплификации)	
Д) Онкогенеза (активация при	5. Размножение копий протоонкогена
транслокации)	_

165. Составьте верные пары утверждений: фермент – функция:

А) Экзонуклеаза	1. Разрушает Т-Т димеры	
Б) Лигаза	2. Сшивает концы ресинтезированного участка ДНК	
В) Эндонуклеаза	3. Осуществляет обратную транскрипцию	
Г) Ревертаза	4. «Узнает» поврежденный участок	
Д) Фотолиаза	5. Вырезает поврежденный участок	

166. Установите соответствие между понятием и его характеристикой:

А) Геномная реком-	1. Перемещение нуклеотидов ДНК в пределах одной
бинация	хромосомы
Б) Межхромосомная	2. Появление новых признаков вследствие новых сочета-
рекомбинация	ний генов
В) Внутрихромосом-	3. Независимое расхождение хромосом и хроматид
ная рекомбинация	в анафазу мейоза I и II
Г) Рекомбинация пу-	4. Перекомбинация генетического материала при опло-
тем транспозиции	дотворении
Д) Комбинативная	5. Обмен участками гомологичных хромосом при крос-
изменчивость	синговере

167. Выберите симптомы, соответствующие указанным болезням:

А) Анемия Фанкони	1. Недостаточность функций костного мозга	
	2. При действии солнечного света появляются веснушки	
	3. Гиперпигментация	
	4. Расширение капилляров	
Б) Пигментная	5. Ороговение эпидермиса	
ксеродерма	6. Снижение содержания всех клеток крови	
	7. Поражение глаз	
	8. Развитие злокачественных опухолей кожи	

168. Укажите последовательность стадий темновой репарации: 1) экзонуклеаза вырезает поврежденный участок; 2) эндонуклеаза узнает поврежденный участок; 3) лигаза сшивает концы ресинтезируемого участка ДНК; 4) ДНК-полимераза синтезирует фрагмент ДНК; 5) разрыв нити ДНК.

МЕТОДЫ ИЗУЧЕНИЯ ГЕНЕТИКИ ЧЕЛОВЕКА

169. Соотнесите метод генетики человека и его классификационную группу:

А) Основные методы	1. Определение α-фетопротеина
Б) Экспресс-методы	2. Тест Гатри
В) Методы пренатальной диагностики	3. Гибридизация соматических клеток
(непрямые)	
Г) Методы пренатальной диагностики	4. Биопсия ворсин хориона
(прямые неинвазивные)	
Д) Методы пренатальной диагностики	5. УЗИ
(прямые инвазивные)	

170. Соотнесите группы методов генетики человека и их характеристики:

А) Основные методы	1. Быстрые предварительные методы
Б) Экспресс-методы	2. Группа методов, позволяющих уста-
	новить окончательный диагноз
В) Методы пренатальной диагностики	3. Обследование плода без хирургиче-
(непрямые)	ского вмешательства

Г) Методы пренатальной диагностики	4. Обследование плода с нарушением	
(прямые неинвазивные)	целостности тканей	
Д) Методы пренатальной диагностики	5. Обследование беременной женщинь	
(прямые инвазивные)	A	

171. Соотнесите метод генетики человека и его классификационную группу:

А) Выявление полового хроматина	1. Основные методы	
Б) Определение α-фетопротеина	2. Экспресс-методы	
В) Спектральное кариотипирование	3. Методы пренатальной диагностики	
	(непрямые)	
Г) УЗИ	4. Методы пренатальной диагностики	
	(прямые неинвазивные)	
Д) Амниоцентез	5. Методы пренатальной диагностики	
	(прямые инвазивные)	

172. Соотнесите понятие и его характеристику:

А) Родословная	1. Человек, с которого начинается построение родословной
Б) Пробанд	2. Совокупность сведений о больном и его заболевании, по-
	лученных путем опроса самого больного и (или) знающих его
	лиц
В) Синкарион	3. Генетическая карта, на которой обозначены все родствен-
	ники пробанда
Г) Анамнез	4. Клетка, содержащая два ядра разных клеток
Д) Гетерокарион	5. Гибридная клетка, содержащая хромосомы обоих особей

173. Соотнесите понятие и его характеристику:

А) Дискордантность	1. Близнецы развиваются из одной оплодотво	
'	ренной яйцеклетки	
Б) Коэффициент наследования	2. Сходство близнецов по изучаемому признаку	
В) Монозиготные близнецы	3. Различие близнецов по изучаемому признаку	
Г) Конкордантность	4. Оценивает роль наследственности и среды	
	в развитии признака	
Д) Дизиготные близнецы	5. Близнецы развиваются из двух и более неза-	
	висимо оплодотворенных яйцеклеток	

174. Соотнесите метод исследования и задачу, которую он решает:

А) Выявление полового	1. Оценить роль наследственности и среды		
хроматина	в формировании признака индивидуума		
Б) Близнецовый	2. Определить генетический пол индивида		
В) Клонирование соматиче-	3. Выявить геномные и хромосомные мутации		
ских клеток			
Г) Клинико-генеалогический	4. Изучить роль генотипа и среды в формирова-		
	нии признака клетки		
Д) Цитогенетический	5. Установить тип наследования		

175. Соотнесите метод исследования и задачу, которую он решает:

А) Биохимические нагру-	1. Диагностировать маркерные хромосомы, межх-	
зочные тесты	ромосомные и геномные мутации	
Б) Клонирование соматиче-	2. Определить вероятность рождения ребенка	
ских клеток	с наследственной патологией	
В) SKY-анализ	3. Выявить гетерозиготных носителей патологиче-	
	ских генов	
Г) Клинико-	4. Установить частоту генов и генотипов в попу-	
генеалогический	ляциях людей	
Д) Популяционно-	5. Изучить на клеточном уровне роль генотипа и	
статистический	среды в проявлении признака	

176. Соотнесите метод исследования и его возможности:

В) Фетоскопия	1. Получить изображение плода и его оболочек
Б) Ультрасоно-	2. Обследовать большие контингенты людей для выявления
графия	наследственной патологии
В) Биопсия	3. Выявить некоторые наследственные нарушения обмена
ворсин хориона	аминокислот у новорожденных при массовых обследованиях
Г) Экспресс-	4. Осмотреть плод, пуповину, плаценту, произвести биопсию
методы	и взятие крови плода
Д) Тест Гатри	5. На ранних этапах развития плода выявить все виды мутаций

177. Соотнесите метод исследования и его возможности:

А) Молекулярно-	1. Исследовать пуповинную кровь для выявления		
генетические	генных и хромосомных болезней плода		
Б) Определение полового	2. Отбор клеток с заранее заданными свойствами		
хроматина			
В) Метод селекции клеток	3. Выявить геномные и хромосомные мутации		
Г) Амниоцентез	4. Определение половой принадлежности индивида		
Д) Кордоцентез	5. Анализировать фрагменты ДНК, изолировать		
	гены и выявлять в них нарушения структуры		

178. Соотнесите метод исследования и его возможности:

А) Клинико-	1. Изучить клетки плода для выявления пороков	
генеалогический	развития	
Б) Выявление Х-хроматина	2. Получение единообразной клеточной линии	
В) Близнецовый	3. Установить тип наследования	
Г) Плацентоцентез	4. Определить количество телец Барра	
Д) Клонирование клеток	5. Определить зиготность близнецов	

179. Соотнесите метод исследования и его возможности:

А) Определение α-фетопротеина	1. Предварительная диагностика наслед-	
	ственных болезней обмена веществ	
Б) Биохимические и иммуноло-	2. Определение половой принадлежности	
гические экспресс-методы		
В) Амниоцентез	3. Изолировать и клонировать гены	

Г) Клонирование ДНК	4. Предположить наличие открытых дефектов	
	нервной трубки	
Д) Выявление Ү-хроматина	5. Изучить состав околоплодной жидкости	
	для выявления пороков развития плода	

180. Соотнесите оптимальность применения метода пренатальной диагностики и сроков беременности:

А) Амниоцентез	1. 12-20 неделя	
Б) Биопсия ворсин хориона	2. 15-17 неделя	
В) Кордоцентез	3. 12-22 неделя	
Г) Плацентоцентез	4. 22-25 неделя	
Д) УЗИ	5. 8–12 неделя	

181. Соотнесите тип наследования признаков и его характеристику:

А) Голандрический	1. Признак встречается в каждом поколении,
	и у мужчин, и у женщин
Б) Аутосомно-доминантный	2. Большая вероятность проявления признака
	при родственном браке
В) Аутосомно-рецессивный	3. У больного отца все дочери больны
Г) Х-сцепленный доминантный	4. Признак встречается не в каждом поколе-
	нии, преимущественно у мужчин
Д) Х-сцепленный рецессивный	5. Проявляется только у мужчин

182. Соотнесите тип наследования и пример заболевания:

А) Голандрический	1. Дальтонизм и гемофилия
Б) Аутосомно-доминантный	2. Серповидноклеточная анемия, альбинизм
В) Аутосомно-рецессивный	3. Ихтиоз, синдактилия
Г) Х-сцепленный доминантный	4. Полидактилия
Д) Х-сцепленный рецессивный	5. Рахит, который не лечится витамином Д

183. Установите соответствие между реагентом и его характеристикой:

А) Фитогемаглютинин	1. Разрушает нити веретена деления
Б) Акрихин-иприт	2. Повышает частоту гибридизации клеток
В) Ацеторсеин	3. Выявляет Ү-хроматин
Г) Колхицин	4. Выявляет Х-хроматин
Д) Вирус парагриппа Сендай	5. Стимулирует митоз

184. Укажите последовательность этапов цитогенетического метода: 1) стимуляция митоза ФГА; 2) культивирование лимфоцитов; 3) окрашивание хромосом; 4) изучение кариотипа под микроскопом, построение и анализ идиограммы; 5) добавление колхицина; 6) обработка клеток гипотоническим раствором.

185. Укажите последовательность этапов получения гибридной клетки:

1) образование настоящей гибридной клетки; 2) выращивание в культуре клеток двух разных линий; 3) митоз синкариона; 4) введение в клеточную культуру агента, повышающего частоту объединения клеток разных линий; 5) образование гетерокариона.

- **186.** Укажите последовательность этапов метода гибридизации нуклеиновых кислот: 1) фрагменты ДНК разгоняют в агарозном геле; 2) ДНК денатурируют и получают одноцепочечные фрагменты; 3) разрезают ДНК с помощью рестриктаз; 4) добавляют зонд ДНК; 5) к нитроцеллюлозной пленке прикладывают рентгеновскую пленку; 6) фрагменты ДНК переносят на нитроцеллюлозную пленку.
- **187.** Укажите последовательность этапов построения родословной: 1) установление типа наследования семейного заболевания; 2) сбор анамнеза у пробанда; 3) составление заключения врачом-генетиком; 4) графическое изображение родословной с использованием условных обозначений, предложенных А.Юстом; 5) установление зиготности членов семьи.
- **188.** Укажите последовательность этапов близнецового метода: 1) диагностика зиготности близнецов; 2) вычисление коэффициента наследования; 3) определение степени конкордантности близнецов по изучаемому признаку; 4) составление выборки близнецов; 5) анализ результатов, полученных с использованием формулы Хольцингера.
- 189. Укажите последовательность действий при диагностике фенилкетонурии у новорожденного: 1) культуру бактерий Bacillus subtilis ATCC 6051 выращивают на минимальной питательной среде с бетатиенилаланином антиметаболитом фенилаланина, который тормозит рост бактерий; 2) помещают бумажный диск на агаровую культуру бактерий; 3) тормозящее влияние химического ингибитора снимается при содержании фенилаланина в крови, превышающем нормальные значения (0,8–2,0 мг%), и бактерии В. subtillis ATCC 6051 начинают активно расти; 4) сравнивают диаметры зоны бактериального роста в контрольных и опытных пробах; 5) выполняют забор крови из пятки новорожденного на диск фильтровальной бумаги; 6) при концентрации фенилаланина свыше 4 мг% у ребенка повторно берут кровь и определяют в ней содержание фенилаланина количественными методами. Ответ запишите цифрами, начиная с цифры 1. Используйте все предложенные варианты.

НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ ЧЕЛОВЕКА

190. Соотнесите группу наследственных болезней и пример заболевания:

А) Болезни генные	1. Синдром Леша-Нихана
	2. Синдром Клайнфельтера
_(/)	3. Болезнь Лебера
Б) Болезни хромосомные	4. Синдром MELAS
	5. Болезнь Вильсона-Коновалова
	6. Синдром Эдвардса
В) Болезни митохондриаль-	7. Гиперлипопротеинемия
ные	8. Синдром Шерешевского-Тернера

191. Соотнесите наследственные заболевания и мутации, приводящие к их возникновению:

А) Генные	1. Гемофилия	
	2. Галактоземия	
	3. Синдром Лежена	
Б) Хромосомные	4. Синдром Дауна	
	5. Альбинизм	
	6. Синдром трисомии X	
В) Геномные	7. Синдром 9р+	
	8. Синдром Патау	

192. Соотнесите заболевание и его причину:

А) Фенилкетонурия	1. Неактивен фермент галактозо-1-фосфатури-
	дил-трансфераза
Б) Галактоземия	2. Дефицит церуллоплазмина
В) Альбинизм	3. Неактивен фермент гипоксантин-фосфорибо-
	зил-трансфераза
Г) Синдром Леша–Нихана	4. Неактивен фермент фенилаланингидроксилаза
Д) Болезнь Вильсона-	5. Инактивируется тирозиназа
Коновалова	

193. Соотнесите заболевание и его характеристику:

А) Гемофилия	1. Замена аминокислоты в β-цепи гемоглобина
Б) Галактоземия	2. Нарушение обмена липидов
В) Гиперлипопротеинемия	3. Накопление галактозы в крови
Г) Синдром Леша–Нихана	4. Дефицит VIII фактора свертывания крови
Д) Серповидно-клеточная анемия	5. Нарушение пуринового обмена

194. Соотнесите заболевание и его характеристику:

А) Альбинизм	1. Серповидная форма эритроцитов
Б) Серповидно-клеточная анемия	2. Нарушение транспорта меди
В) Болезнь Вильсона-Коновалова	3. Увеличение печени и селезенки
Г) Галактоземия	4. Накопление в крови фенилпировиноград-
	ной кислоты
Д) Фенилкетонурия	5. Нарушение синтеза меланина

195. Соотнесите заболевание и его симптомы:

А) Галактоземия	1. Молочно-белый цвет кожи
Б) Липопротеинемии	2. Накопление галактитола в хрусталике
В) Болезнь Вильсона-Коновалова	3. Повышенный уровень холестерина
Г) Альбинизм	4. «Мышиный запах»
Д) Фенилкетонурия	5. Цирроз печени

196. Соотнесите заболевание и его причину:

А) Алкаптонурия	1. Нарушение транспорта ионов хлора и натрия
Б) Мукополисахаридозы	2. Нарушение обмена липидов плазмы крови
В) Гиперлипопротеинемия	3. Нарушение структуры молекулы гемоглобина
Г) Гемоглобинопатии	4. Дефект катаболизма гликозаминогликанов
Д) Муковисцидоз	5. Нарушение обмена тирозина

197. Соотнесите заболевание и его характеристику:

А) Алкаптонурия	1. Гиперсекреция слизи
Б) Мукополисахаридозы	2. Поражается белое и серое вещество головного мозга
В) Сфинголипидозы	3. Изменение формы эритроцитов
Г) Гемоглобинопатии	4. Поражение опорно-двигательного аппарата
Д) Муковисцидоз	5. Желтый цвет кожи

198. Соотнесите заболевание и индекс полосы дефектного гена:

А) Гемофилия А	1. 7q31.2
Б) Болезнь Вильсона-Коновалова	2. Xq26-27.2
В) Синдром Леша-Нихана	3. 13q14.3
Г) Альбинизм	4. Xq28
Д) Муковисцидоз	5. 11q14-q21

199. Соотнесите тип наследования и примеры заболеваний:

А) Аутосомно-рецессивный	1. Гемофилия
	2. Альбинизм
	3. Синдром Леша-Нихана
	4. Болезнь Вильсона-Коновалова
Б) Х-сцепленный рецессивный	5. Галактоземия
	6. Фенилкетонурия
	7. Миодистрофия Дюшенна
	8. Серповидно-клеточная анемия

200. Установите соответствие между заболеванием и его характеристикой:

А) Синдром Клайнфельтера	1. Формирование женского фенотипа при генотипе XY
Б) Синдром Шерешевского-Тернера	2. Позднее развитие речи, дисменорея
В) Синдром трисомии Х	3. Стопа-качалка
Г) Синдром Морриса	4. Крыловидные складки на шее
Д) Синдром Эдвардса	5. Евнухоидное телосложение

201. Установите соответствие между заболеванием и его причиной:

А) Синдром Клайнфельтера	1. Кариотип 45, ХО
Б) Синдром Шерешевского-	2. Отсутствие белка-рецептора, обеспечивающе-
Тернера	го чувствительность клеток к тестостерону
В) Синдром трисомии Х	3. Трисомия по 13 паре хромосом
Г) Синдром Морриса	4. Кариотип 47, XXX
Д) Синдром Патау	5. Кариотип 47, ХХҮ

202. Установите соответствие между заболеванием и его причиной:

А) Синдром Дауна	1. Кариотип 47, XX или XY, 18+
Б) Синдром Патау	2. Кариотип 47, XX или XY, 21+
В) Синдром Эдвардса	3. Кариотип 47, XX или XY, 13+
Г) Синдром Лежена	4. Кариотип 47, XXY
Д) Синдром Клайнфельтера	5. Кариотип 46, XX или XY, 5р-

203. Установите соответствие между заболеванием и его характеристикой:

А) Болезнь Лебера	1. Недоразвитие ногтей и фаланг пальцев
Б) Синдром MELAS	2. Атрофия зрительного нерва
В) Синдром Эдвардса	3. Митохондриальная энцефаломиопатия
Г) Синдром Лежена	4. Стопа-качалка
Д) Синдром 9р+	5. Недоразвитие хрящей гортани

204. Установите соответствие между заболеванием и его фенотипом:

Б) Синдром Патау	1. Светлые пятна на радужке
Б) Синдром Дауна	2. Расщелины верхней губы и неба, полидактилия
В) Синдром Эдвардса	3. Лунообразное лицо
Г) Синдром Лежена	4. Формирование женского фенотипа при генотипе XY
Д) Синдром Морриса	5. Стопа-качалка

205. Выберите критерии, соответствующие определенной группе болезней:

А) Моногенные болез-	1. Детерминируются одним мутантным геном
ни с наследственной	2. Генетические закономерности не соответствуют
предрасположенно-	законам Менделя
СТЬЮ	3. Патологические реакции на пищевые добавки
	4. Наследуются по аутосомно-рецессивному или
	Х-сцепленному рецессивному типу
	5. Детерминируются несколькими генами
Б) Полигенные болез-	6. Расщепление в потомстве не всегда соответствует
ни с наследственной	законам Менделя
предрасположенно-	7. Гипертоническая болезнь, шизофрения
СТЬЮ	8. Повторный риск появления заболевания в семье
	зависит от пола организма, тяжести болезни, частоты
	заболевания
	9. Проявляются у лиц, которые подвергаются действию
	специфического внешнего фактора

МЕДИКО-ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ

206. Соотнесите понятие и его характеристику:

А) Медико-генетическое	1. Разъяснение в доступной форме имеющей место
консультирование (МГК)	ситуации в семье, с указанием ее последствий (осно-
	вано на точных расчетах вероятности рождения
	больного ребенка в данной семье) и возможных ва-
	риантов для принятия решений

Б) Наследственная	2. Нормализация фенотипа без устранения дефекта
отягощенность семьи	генотипа
В) «Нормокопирование»	3. Вероятность (%) проявления аномалии у пробанда
	или его родственников
Г) Совет генетика-	4. Раздел профилактической медицины по предупре-
консультанта	ждению рождения детей с наследственными заболе-
	ваниями
Д) Генетический риск	5. Наличие неблагоприятных генотипов у ближайших
	родственников пробанда

207. Соотнесите понятие и его характеристику:

А) Ретроспективное консультирование	1. Генетический риск 3-5 %
Б) Генетический риск повышен в сред-	2. Консультация семьи, в которой ро-
ней степени	дился ребенок с наследственным или
	врожденным заболеванием
В) Генетический риск низкий	3. Генетический риск до 20 %
Г) Генетический риск высокий	4. Консультация семейной пары на
	этапе планирования беременности
Д) Проспективное консультирование	5. Генетический риск выше 20 %

208. Соотнесите этап МГК и его характеристику:

А) Клинический диагноз	1. Вероятность проявления наследственной па-
	тологии у пробанда или его родственников
Б) Определение степени	2. Определение наследственной патологии с при-
генетического риска	менением современных методов диагностики
В) Оценка тяжести медицин-	3. Планирование деторождения в семьях с высо-
ских и социальных последствий	ким риском тяжелой наследственной патологии
Г) Перспектива применения	4. Изучение числа и структуры хромосом
и эффективность методов	
пренатальной диагностики	
Д) Генетический диагноз	5. Соответствие степени генетического риска
	степени тяжести заболевания

209. Выберите соответствующие подходы для каждого этапа профилактики наследственной патологии:

А) Первичная	1. Выбор оптимального репродуктивного возраста
(до беремен-	2. Выявление тяжелых наследственных заболеваний на ранних
ности)	сроках (пренатальная диагностика) с последующим прерывани-
	ем беременности по согласию родителей
	3. Жесткий контроль содержания мутагенов и тератогенов
	в окружающей среде
Б) Вторичная	4. Прерывание беременности по согласию родителей в случае
(во время бе-	высокой вероятности заболевания плода
ременности)	5. Отказ от родственных браков
	6. Предотвращение развития наследственного заболевания (ле-
	чебные мероприятия)

В) Третичная	7. Отказ от естественного деторождения в случаях высокого
(после рожде-	риска наследственной патологии; использование методов экс-
ния ребенка)	тракорпорального оплодотворения
	8. Коррекция проявления патологических генотипов
	9. Мониторинг генетических процессов в популяциях человека

210. Соотнесите принцип лечения наследственной патологии и возможность их использования при лечении определенных заболеваний:

А) Этиологическое	1. При лечении наследственно обусловленных опухолей
лечение	
Б) Лекарственное	2. Применение веществ, взамен отсутствующим или
лечение	имеющимся, но не обеспечивающим выполнение соот-
	ветствующих функций у пациента
В) Коррекция обмена	3. При муковисцидозе — вещества, разжижающие слизь
Г) Физиотерапия	4. Методы генной терапии при моногенных наслед-
	ственных заболеваниях
Д) Рентгенорадиоло-	5. При болезнях опорно-двигательного аппарата
гическое лечение	
Е) Заместительная	6. Исключение из пищи неметаболируемого вещества
терапия	

211. Соотнесите принцип лечения наследственной патологии и его характеристики:

А) Лекарственная терапия	1. Назначение гормонов, ферментов
Б) Заместительная терапия	2. Применение анальгетиков при болях
В) Хирургическое лечение	3. Лекарственное снижение синтеза накаплива-
	емого вещества
Г) Коррекция обмена	4. Удаление «лишних» элементов тела, транс-
1	плантация ткани, органа
Д) Метаболическая ингибиция	5. Диетотерапия

212. Соотнесите наследственное заболевание и применяемый способ его коррекции:

А) Галактоземия	1. Подавление чрезмерно активных метаболических путей
Б) Болезнь Виль-	2. Использование альтернативных метаболических путей
сона-Коновалова	
В) Подагра	3. Восполнение дефицита продукта реакции
Г) Гемофилия А	4. Ограничение потребления субстрата

213. Соотнесите наследственное заболевание и механизм его коррекции:

А) Галактоземия	1. Применение аллопуринола, подавляющего активность ксан-
	тиноксидазы, что уменьшает образование молочной кислоты
Б) Болезнь Виль-	2. Применение пеницилламина, образующего комплекс
сона-Коновалова	с медью, способствующий ее выведению из организма
В) Подагра	3. Введение недостающего VIII фактора свертывания крови
Г) Гемофилия А	4. Исключение употребления молочных продуктов для предот-
	вращения накопления галактозы и галактозо-1-фосфата в тканях

- **214.** Укажите последовательность этапов медико-генетического консультирования: 1) прогноз, заключение; 2) оценка тяжести медицинских и социальных последствий; 3) первичный клинический диагноз; 4) определение степени генетического риска; 5) перспективность применения и эффективность методов пренатальной диагностики.
- 215. Выберите из предложенных положения, характеризующие задачи медико-генетического консультирования: 1) диагностика генетически обусловленных заболеваний; 2) санитарно-просветительная работа; 3) консультирование больных и их родственников по мере обращаемости; 4) проведение пренатальной диагностики; 5) проведение экспресс диагностики; 6) выявление, наблюдение за лицами с генетическими заболеваниями; 7) пропаганда медико-генетических знаний среди населения; 8) оказание платных родов. Ответ запишите цифрами в порядке возрастания.
- **216.** Выберите из предложенных показания для проведения медико-генетического консультирования: 1) возраст беременной более 35 лет; 2) аутбридинг; 3) наличие в анамнезе детей с врожденными пороками развития, хромосомными болезнями, умственной отсталостью; 4) инбридинг; 5) отягощенный акушерско-гинекологический анамнез; 6) полидактилия у родственников; 7) химиотерапия во время беременности. Ответ запишите цифрами в порядке возрастания.

Размножение животных и человека

217. Установите соответствие между уровнем организации живой материи и видом размножения:

А) Молекулярно-генетический	1. Половое и бесполое
Б) Субклеточный	2. Репликация ДНК
В) Клеточный	3. Удвоение митохондрий, пластид
Г) Организменный	4. Митоз, амитоз

218. Подберите соответствующие характеристики для каждого способа размножения:

А) Вегетатив-	1. Обеспечивает быстрое расселение вида	
ное	2. Образование новых особей из корня, побега, листа	
	3. Наибольшего разнообразия достигает у мхов, хвощей, плау-	
	нов, папоротников и грибов	
	4. Наибольшего разнообразия достигает у цветковых растений	
Б) Спорообра-	5. Основано на способности организмов к регенерации	
зование	6. Размножение с помощью специальных клеток	
	7. Размножение частью материнского организма	
	8. Размножение с помощью одноклеточных образований, со-	
	стоящих из ядра и небольшого количества цитоплазмы с ми-	
	нимальным запасом питательных веществ	

- **219.** Укажите признаки, характерные для полового (I) и бесполого (II) размножения: 1) медленная скорость воспроизведения потомства; 2) приводит к усилению действия движущего отбора; 3) новый организм возникает путем партеногенеза; 4) на материнском организме образуются специализированные клетки споры; 5) в нем участвуют видоизмененные вегетативные побеги; 6) один из способов фрагментация тела.
- **220.** Укажите признаки, характерные для полового (I) и бесполого (II) размножения: 1) приводит к быстрому увеличению численности особей; 2) одним из способов является партеногенез; 3) обычно участвуют две особи; 4) новый организм развивается из зиготы; 5) на материнском организме образуются специализированные клетки споры; 6) участвуют клубни или луковицы.

221. Подберите соответствующие варианты бесполого размножения, характерные для одноклеточных организмов и многоклеточных животных:

.	•
А) Одноклеточные	1. Почкование (выпячивание оболочки клетки)
организмы	2. Стробиляция
	3. Эндодиогения (внутреннее почкование)
	4. Деление надвое
	5. Почкование (вырост на теле материнской особи)
Б) Многоклеточные	6. Фрагментация
животные	7. Полиэмбриония
	8. Шизогония
	9. Спорогония

222. Установите соответствие между вариантом бесполого размножения и организмами, для которых он характерен:

А) Деление надвое	1. Губки, кишечнополостные
Б) Почкование (выпячивание	2. Ресничные черви, кишечнополостные, губки,
оболочки клетки)	некоторые кольчатые черви
В) Шизогония и спорогония	3. Поперечное у инфузорий
Г) Полиэмбриония	4. Споровики
Д) Почкование (выпячивание	5. Дрожжи, бактерии, сосущие инфузории
стенки тела)	
Е) Стробиляция	6. Осы, броненосцы, плоские черви
	7. Бинарное у бактерий
	8. Плоские черви, сцифоидные медузы
Ж) Фрагментация	9. Продольно у жгутиковых

223. Соотнесите вариант процесса, его характеристику и примеры:

А) Половой	1. Обмен или объединение генетической информации без
процесс	увеличения числа особей
	2. Конъюгация
	3. Копуляция
Б) Половое	4. С оплодотворением (гаметическая копуляция)
размножение	5. Без оплодотворения (партеногенез)
	6. Процесс, приводящий к увеличению числа особей

224. Соотнесите термин с его определением:

А) Конъюгация	1. Половые клетки (сперматозоиды, яйцеклетки)
Б) Гаметическая	2. Слияние половых клеток, при котором женские гаметы не-
копуляция	подвижные и более крупные, чем мужские
В) Изогамия	3. Слияние половых клеток, при котором женские и мужские
	гаметы являются подвижными, но женские крупнее мужских
	и менее подвижны
Г) Анизогамия	4. Соединение половых элементов, представляющих собой
	одноядерные самостоятельные гаметы, каждая из которых
	может быть подвижной или неподвижной
Д) Оогамия	5. Слияние половых клеток, при котором гаметы (условно
	женские и условно мужские) являются подвижными, имеют
	одинаковые размеры и строение
Е) Гонады	6. Перенос генетической информации: фрагментов ДНК (бак-
	терии) или частей ядер — микронуклеусов (инфузории)
Ж) Гаметы	7. Половые железы (семенники, яичники)

- 225. В процессе гаметогенеза образуются клетки с гаплоидным и диплоидным набором хромосом. Выберите из предложенных клетки с 1п набором хромосом: 1) сперматоциты І порядка; 2) сперматоциты ІІ порядка; 3) овоциты І порядка; 4) овоциты ІІ порядка; 5) редукционное тельце; 6) овогонии; 7) сперматида; 8) сперматозоид; 9) яйцеклетка; 10) сперматогонии.
- **226.** В процессе гаметогенеза образуются клетки с гаплоидным и диплоидным набором хромосом. Выберите из предложенных клетки с 2n набором хромосом: 1) сперматоциты I порядка; 2) сперматоциты II порядка; 3) овоциты I порядка; 4) овоциты II порядка; 5) редукционное тельце; 6) овогонии; 7) сперматида; 8) сперматозоид; 9) яйцеклетка; 10) сперматогонии.
- 227. В процессе сперматогенеза образуются клетки с гаплоидным и диплоидным набором хромосом. Выберите из предложенных клетки с 1п набором хромосом: 1) сперматоциты І порядка; 2) сперматоциты ІІ порядка; 3) овоциты І порядка; 4) овоциты ІІ порядка; 5) редукционное тельце; 6) овогонии; 7) сперматида; 8) сперматозоид; 9) яйцеклетка; 10) сперматогонии.
- 228. В процессе сперматогенеза образуются клетки с гаплоидным и диплоидным набором хромосом. Выберите из предложенных клетки с 2n набором хромосом: 1) сперматоциты I порядка; 2) сперматоциты II порядка; 3) овоциты I порядка; 4) овоциты II порядка; 5) редукционное тельце; 6) овогонии; 7) сперматида; 8) сперматозоид; 9) яйцеклетка; 10) сперматогонии.
- **229.** В процессе овогенеза образуются клетки с гаплоидным и диплоидным набором хромосом. Выберите из предложенных клетки с 1n набором хромосом: 1) сперматоциты I порядка; 2) сперматоциты II порядка; 3) овоциты I порядка; 4) овоциты II порядка; 5) редукционное тельце; 6) овогонии; 7) сперматида; 8) сперматозоид; 9) яйцеклетка; 10) сперматогонии.
- 230. В процессе овогенеза образуются клетки с гаплоидным и диплоидным набором хромосом. Выберите из предложенных клетки с 2n набором

хромосом: 1) сперматоциты I порядка; 2) сперматоциты II порядка; 3) овоциты I порядка; 4) овоциты II порядка; 5) редукционное тельце; 6) овогонии; 7) сперматида; 8) сперматозоид; 9) яйцеклетка; 10) сперматогонии.

231. Соотнесите тип яйцеклетки с ее характеристикой и примерами:

А) Алецитальные	1. Желтка нет
	2. Желтка мало, равномерно распределен по цитоплазме
Б) Изолецитальные	3. Желтка много, он сконцентрирован на вегетативном
	полюсе
	4. Желтка очень много, имеется зародышевый диск (со-
	держит ядро и цитоплазму)
В) Телолецитальные	5. Желтка достаточно, расположен в центре
умеренно	6. Плоские черви
Г) Телолецитальные	7. Иглокожие, млекопитающие
резко	8. Земноводные
Д) Центролециталь-	9. Рептилии, птицы
ные	10. Насекомые

232. Соотнесите тип оболочки яйцеклетки с ее характеристикой и примерами:

А) Первичная	1. У членистоногих — содержит вещества близкие к кератину
	2. Образуется за счет секретов желез яйцеводов
	3. Образуется фолликулярными клетками
Б) Вторичная	4. Образуется самой яйцеклеткой
	5. Яйцекладущие млекопитающие, хрящевые рыбы, амфибии,
	птицы, пресмыкающиеся
	6. Имеется у всех яйцеклеток
В) Третичная	7. Мембрана клетки
	8. Не имеет клеточного строения
9. У млекопитающих называется блестящей	
	10. Белочная

233. Соотнесите термин с его определением:

Λ \ Γ 1	1 П.,		
А) Гермафродиты	1. Девственное однополое размножение, при котором яй-		
	цеклетки развиваются без оплодотворения		
Б) Раздельнополые	2. Организмы, разные клетки которых содержат разное		
	число половых хромосом (мозаичность)		
В) Гинандроморфы	3. Организмы, в зависимости от производимых половых		
	клеток, являются мужскими или женскими		
Г) Партеногенез	4. Обоеполые организмы, производящие и женские,		
	и мужские гаметы		
Д) Феминизация	5. Развитие у самцов (рыбы, земноводные, птицы, млеко-		
самцов	питающие) женских вторичных половых признаков в ре-		
	зультате нарушения гормонального баланса		
Е) Маскулинизация	6. Развитие у самок (рыбы, земноводные, птицы, млекопи-		
самок	тающие) мужских вторичных половых признаков как след-		
	ствие нарушения гормонального баланса		

234. Соотнесите вариант гермафродитизма, его характеристики и примеры:

А) Истинный	1. Организм, имеющий первичные половые признаки одного	
гермафродитизм	пола, а вторичные — другого	
	2. Сосальщики, Ленточные, некоторые ящерицы и ракооб-	
	разные	
	3. Некоторые кольчатые черви, моллюски, рыбы	
Б) Ложный	4. Организм, производящий два типа гамет	
гермафродитизм	5. Организмы чаще бесплодны	
	6. Может встречаться у млекопитающих	

235. Соотнесите термин и его определение:

А) Осеменение	1. Способность сперматозоидов двигаться в направлении	
	биологически активных веществ, выделяемых яйцеклеткой	
Б) Оплодотворе-	2. Вещества, которые оказывают влияние на движение спер-	
ние	матозоидов	
В) Гамоны	3. Процесс слияния гамет с образованием зиготы	
Г) Хемотаксис	4. Процессы, обеспечивающие встречу мужских и женских	
	гамет	
Д) Реотаксис	5. Приобретение сперматозоидами оплодотворяющей спо-	
	собности	
Е) Капацитация	6. Способность сперматозоидов двигаться против тока жид-	
	кости, выделяемой в половых путях самки	

236. Соотнесите вид гамона и характер его влияний:

	· · ·	
Яйцеклетки вырабатывают:		
А) Гиногамон I	1. Вызывает агглютинацию и элиминацию значительного	
	числа сперматозоидов	
Б) Гиногамон II	2. Усиливает и продлевает подвижность сперматозоидов	
Сперматозоиды вырабатывают:		
В) Андрогамон І	3. Инактивирует агглютинацию	
Г) Андрогамон II	4. Тормозит движение сперматозоидов и предохраняет их от	
	траты энергии	
Д) Андрогамон III	5. Растворяет яйцевые оболочки	
Е) Гиалуронидаза	6. Вызывает разжижение кортикального слоя яйцеклетки	

237. Соотнесите фазу оплодотворения и ее характеристики:

А) Внешняя	1. Растворение фолликулярных клеток	
	2. Повышение вязкости цитоплазмы, усиление поглощения	
	из окружающей среды фосфора, калия, кислорода	
3. Слияние мембран половых клеток		
4. Акросомная реакция		
	5. Завершение мейоза II и усиление обмена веществ	
	6. Образование оболочки оплодотворения	

Б) Внутренняя 7. Изменение мембранного потенциала и содержан	
	8. Образование клетки с диплоидным набором хромосом
	9. Синкариогамия
10. Активация яйцеклетки	
	11. Трансформация ядер в пронуклеусы и удвоение ДНК
	12. Проникновение ядра и центросомы сперматозоида

238. Соотнесите вид вспомогательной репродуктивной технологии человека и ее суть:

1. Вынашивание ребенка женщиной, у которой
беременность наступила в результате оплодотво-
рения ооцитов третьей стороны спермой третьей
стороны (генетических родителей ребенка)
2. Введение сперматозоида внутрь яйцеклетки
с помощью микроманипулятора под контролем
инвертированного микроскопа
3. Яйцеклетку извлекают из яичника женщины,
оплодотворяют <i>in vitro</i> (в пробирке) и через
2-5 дней переносят эмбрион в полость матки для
дальнейшего развития
4. Использование ооцитов суррогатной матери
и семени генетического отца
5. Введение обработанной и сконцентрированной
спермы (мужа или донора) в полость матки с по-
мощью тонкого катетера
6. Перенос в полость матки одного пятидневного
эмбриона (бластоцисты) хорошего качества

239. Подберите правильные утверждения, характеризующие особенности репродукции женского и мужского организма:

А) Женский	1. Способны к репродукции с 13-15 лет	
организм	2. Способны к репродукции с 14–16 лет	
	3. Способность к репродукции сохраняется до 40-45 лет	
	4. Способность к репродукции сохраняется до старости	
	5. За весь репродуктивный период созревает около 400 половых	
	клеток	
	6. За весь репродуктивный период созревает около 500 млрд гамет	
Б) Мужской	7. Образование половых клеток «растянуто» во времени (десяти-	
организм	летия)	
	8. Образование половых клеток происходит за 70-80 суток	
	9. У возрастных представителей увеличен риск рождения детей	
	с хромосомными и геномными мутациями	
	10. У возрастных представителей увеличен риск рождения детей	
	с генными мутациями	

Эмбриональное развитие животных и человека

240. Соотнесите понятие и его определение:

А) Онтогенез	1. Период с момента образования зиготы до рождения или	
	выхода из яйцевых оболочек	
Б) Прогенез	2. Индивидуальное развитие организма от момента образова-	
	ния зиготы и до смерти	
В) Эмбриогенез	3. Период образования и созревания гамет, которые сформи-	
	руют зиготу	
Г) Морфогенез	4. Процесс образования тканей	
Д) Гистогенез	5. Процесс возникновения новых структур и изменения их	
	формы	
Е) Органогенез	6. Процесс, нарушающий нормальный ход эмбриогенеза	
Ж) Тератогенез	7. Процесс формирования органов	

241. Подберите пары синонимов, используя термины из двух столбцов:

А) Непрямой онтогенез	1. Постнатальный
Б) Прямой онтогенез	2. Неличиночный
В) Предэмбриональный период	3. Пренатальный
Г) Эмбриональный период	4. Прогенез (предзиготный период)
Д) Постэмбриональный период	5. Личиночный
Е) Ювенильный период	6. До достижения половой зрелости

242. Установите соответствие между стадией или процессом и их описанием:

А) Метаморфоз	1. Стадия онтогенеза, существенно отличающаяся от взрос-	
	лых форм по строению и форме. Активно питается, растёт,	
	развивается	
Б) Личинка	2. Глубокое преобразование строения организма, в процессе	
	которого личинка превращается во взрослую особь	
В) Куколка	3. Взрослая (дефинитивная) стадия индивидуального развития	
	насекомых	
Г) Имаго	4. Стадия онтогенеза насекомых с полным превращением:	
	большинство личиночных структур разрушается, а органы	
	имаго формируются заново. Не питается, обычно неподвижна	

243. Подберите представителей для соответствующего типа онтогенеза:

А) Непрямой	1. Человек
	2. Рептилии
	3. Членистоногие
	4. Птицы
Б) Прямой	5. Рыбы
	6. Яйцекладущие млекопитающие
	7. Земноводные
	8. Черви

244. Применительно к типу дробления яйца, найдите соответствующих представителей:

А) Полное равномерное	1. Рыбы, птицы
Б) Полное неравномерное	2. Насекомые
В) Неполное дискоидальное	3. Ланцетник, Голотурии
Г) Неполное поверхностное	4. Амфибии
Д) Полное неравномерное асинхронное	5. Человек

245. Подберите термины к их определениям:

А) Зигота	1. Эмбриональная стадия, характеризующаяся образованием за-	
	чатка центральной нервной системы и замыканием ее в нервную	
	трубку, а также интенсивным гистогенезом	
Б) Бластула	2. Многоклеточный зародыш, имеющий двухслойное строение	
В) Морула	3. Многоклеточный зародыш, имеющий однослойное строение	
Г) Гаструла	4. Одноклеточная стадия многоклеточного организма	
Д) Нейрула	5. Шаровидное, лишённое полости скопление плотно прижатых	
	друг к другу бластомеров	
Е) Губы	6. Края бластопора — дорзальный (верхний) и вентральный	
бластопора	(нижний)	

246. Соотнесите представителей и группу, к которой они относятся:

А) Первичноротые	1. Сосальщики
	2. Змеи
	3. Насекомые
	4. Птицы
Б) Вторичноротые	5. Клещи
	6. Млекопитающие, в том числе и человек
	7. Моллюски
	8. Морские лилии

247. Установите соответствие между представителем и характерным(и) для них способом(ами) гаструляции:

А) Инвагинация	1. Ланцетник
	2. Рыбы
Б) Эпиболия	3. Амфибии
	4. Птицы
В) Деламинация	5. Рептилии
	6. Яйцекладущие млекопитающие
Г) Иммиграция	7. Живородящие млекопитающие
	8. Человек

248. Соотнесите представителей и присущий им способ образования мезодермы:

А) Энтероцельный	1. Ленточные
	2. Ящерицы
	3. Ракообразные
	4. Тритоны
Б) Телобластический	5. Пауки
	6. Млекопитающие
	7. Моллюски
	8. Голотурии
В) Не имеют мезодермы	9. Сцифоидные медузы
(2-слойные)	10. Коралловые полипы
	11. Губки

249. Применительно к термину найдите соответствующее определение:

А) Дробление	1. Ряд последовательных митотических делений зиготы, в ре-
	зультате которых образующиеся клетки приобретают всё бо-
	лее мелкие размеры
Б) Бластомеры	2. Клетки развивающегося организма после стадии бластулы
В) Бластоциста	3. Начало органогенеза: процесс формирования нервной трубки
Г) Эмбриональ-	4. Клетки, образующиеся в результате деления зиготы. Их ха-
ные клетки	рактерная особенность — отсутствие роста в период между
	делениями
Д) Нейруляция	5. Зародыш млекопитающих (в том числе человека), имеющий
	пузыревидную форму, состоящий из двух популяций клеток —
	трофобласта и эмбриобласта

- **250.** Выберите из предложенных элементы, характерные для ранней гаструлы: 1) бластодерма; 2) эктодерма; 3) энтодерма; 4) бластоцель; 5) первичная кишка; 6) первичный рот; 7) нервная трубка; 8) дорсальная и вентральная губы бластопора; 9) дерматом; 10) склеротом.
- **251.** Выберите из предложенных элементы, характерные для *поздней гаструлы*: 1) бластодерма; 2) эктодерма; 3) нервная пластинка; 4) бластоцель; 5) кишечная трубка; 6) первичный рот; 7) нервная трубка; 8) хорда; 9) бластопор; 10) мезодерма.

252. Подберите термин к предложенным определениям:

А) Эмбриобласт	1. Наружный слой клеток у зародышей млекопитающих, воз-	
	никающий на стадии бластоцисты; обеспечивает контакт за-	
	родыша с материнским организмом; участвует в имплантации	
	и образовании плаценты	
Б) Трофобласт	2. Совокупность клеток (зародышевый узелок) у зародышей	
	млекопитающих на стадиях морулы и ранней бластоцисты, из	
	которых развиваются зародыш и его оболочки	

В) Зародыш	3. Организм на ранних стадиях своего развития. У человека	
	это организм, находящийся в матке и развивающийся в ней	
	в течение первых восьми недель беременности	
Г) Эмбрион	4. Организм на самых ранних стадиях развития. Развивается за	
	счет запасов питательных веществ в яйце	
Д) Плод	5. Организм, развивающийся внутриутробно с 9-й по 38–39-ю	
	недели	
Е) Провизорные	6. Временные органы, развивающиеся в процессе эмбриогене-	
органы	за вне тела зародыша и обеспечивающие его развитие и связь	
	с окружающей средой	

253. Соотнесите название провизорного органа и его строение:

А) Желточный	1. Вырост пищеварительного тракта (у человека развит слабо)	
мешок		
Б) Амнион	2. Оболочка, наружная поверхность которой покрыта ворсин-	
	ками, внедряющимися в слизистую оболочку матки	
В) Хорион	3. Полость, заполненная жидкостью, которая содержит белки,	
	сахара, минеральные соли, некоторые гормоны и мочевину	
Г) Аллантоис	4. Покрывает желток, пронизан сетью кровеносных капилля-	
	ров, связан с кишечной трубкой зародыша	

254. Установите логическую связь между названием провизорного органа и его функцией:

А) Желточный мешок	1. Участвует в образовании плаценты
Б) Амнион	2. Входит в состав пупочного канатика
В) Хорион	3. Защищает эмбрион от высыхания и механических воздействий
Г) Аллантоис	4. Место образования первичных половых клеток, первый кроветворный орган, обеспечивает питательными веществами развивающийся организм

255. Подберите представителей для соответствующих групп организмов:

А) Анамнии	1. Круглоротые
	2. Рептилии
	3. Рыбы
Б) Амниоты	4. Амфибии
	5. Млекопитающие
	6. Птицы

256. Применительно к этапу эмбрионального развития позвоночных животных подберите соответствующие процессы:

А) Дробление	1. Образование хорды
	2. Образование бластомеров
Б) Гаструляция	3. Формирование пищеварительной трубки
	4. Образование двух зародышевых листков
В) Гисто- и органогенез	5. Формирование полого шаровидного однослойного
	зародыша

257. Соотнесите этап эмбрионального развития позвоночных животных и процессы:

А) Дробление	1. Формирование склеротома
	2. Образование бластопора
Б) Гаструляция	3. Формирование бластоцели
	4. Образование нервной трубки
В) Гисто- и органогенез	5. Формирование однослойного зародыша

258. Установите соответствие между этапом эмбрионального развития позвоночных животных и процессами:

А) Дробление	1. Образование хорды
	2. Формирование бластодермы
Б) Гаструляция	3. Образование первичной кишки
	4. Образование нервной пластинки
В) Гисто- и органогенез	5. Формирование двух зародышевых листков

259. Найдите логическую связь между зародышевым листком и его производными:

А) Мезодерма	1. Легкие
	2. Половые железы
	3. Щитовидная железа
Б) Энтодерма	4. Кровеносные сосуды
	5. Эпителий кишечника
	6. Дерма кожи

260. Подберите для соответствующего зародышевого листка его производные:

А) Эктодерма	1. Эпидермис кожи
	2. Эпителий ротовой полости
	3. Поджелудочная железа
	4. Щитовидная железа
Б) Энтодерма	5. Гипофиз
	6. Эпифиз
	7. Эпителий и железы желудка
	8. Эпителий дыхательной системы

261. Выберите утверждения, характеризующие *герминативный* период эмбриогенеза человека:

А) Сроки	1. 1-я неделя после оплодотворения
	2. 2–3-я недели после оплодотворения
	3. 4–8-я недели
,	4. с 9-й недели до рождения
Б) Стадия развития	1. Зародыш
	2. Эмбрион
	3. Плод

В) Процессы	1. Дробление зиготы
	2. Образование зародышевых листков, закладка осе-
	вых органов
	3. Органогенез
	4. Рост и развитие органов и систем органов
Г) Питание	1. Запасными питательными веществами яйцеклетки
	2. За счет трофобласта
	3. Через плаценту

262. Выберите утверждения, характеризующие *зачатковый* период эмбриогенеза человека:

А) Сроки	1. 1-я неделя после оплодотворения
	2. 2–3-я недели после оплодотворения
	3. 4-8-я недели
	4. с 9-й недели до рождения
Б) Стадия	1. Зародыш
развития	2. Эмбрион
	3. Плод
В) Процессы	1. Дробление зиготы
	2. Образование зародышевых листков, закладка осевых органов
	3. Органогенез
	4. Рост и развитие органов и систем органов
Г) Питание	1. Запасными питательными веществами яйцеклетки
	2. За счет трофобласта
	3. Через плаценту

263. Выберите утверждения, характеризующие *предплодный* период эмбриогенеза человека:

А) Сроки	1. 1-я неделя после оплодотворения
	2. 2–3-я недели после оплодотворения
	3. 4-8-я недели
	4. с 9-й недели до рождения
Б) Стадия	1. Зародыш
развития	2. Эмбрион
	3. Плод
В) Процессы	1. Дробление зиготы
	2. Образование зародышевых листков, закладка осевых органов
	3. Органогенез
	4. Рост и развитие органов и систем органов
Г) Питание	1. Запасными питательными веществами яйцеклетки
	2. За счет трофобласта
	3. Через плаценту

264. Выберите утверждения, характеризующие *плодный* период эмбриогенеза человека:

А) Сроки	1. 1-я неделя после оплодотворения
	2. 2–3-я недели после оплодотворения
	3. 4–8-я недели
	4. с 9-й недели до рождения
Б) Стадия	1. Зародыш
развития	2. Эмбрион
	3. Плод
В) Процессы	1. Дробление зиготы
	2. Образование зародышевых листков, закладка осевых органов
	3. Органогенез
	4. Рост и развитие органов и систем органов
Г) Питание	1. Запасными питательными веществами яйцеклетки
	2. За счет трофобласта
	3. Через плаценту

- **265.** Укажите механизмы, обеспечивающие эмбриогенез: 1) дифференцировка; 2) эмбриональная индукция; 3) позиционная информация клетки; 4) детерминация; 5) градиент физиологической активности; 6) дифференциальная активность генов; 7) морфогенетические поля; 8) морфогенез.
- **266.** Укажите механизмы, обеспечивающие морфогенез: 1) дифференцировка; 2) эмбриональная индукция; 3) позиционная информация клетки; 4) детерминация; 5) градиент физиологической активности; 6) дифференциальная активность генов; 7) морфогенетические поля.
- **267.** Расположите в правильной последовательности этапы дифференцировки в ходе эмбриогенеза: 1) тканевая дифференцировка (различные типы эмбриональных клеток образуют различные ткани); 2) морфогенез (из различных тканей формируются различные органы); 3) химическая разнородность цитоплазмы бластомеров; 4) зачатковая дифференцировка (синтез разных тканеспецифичных белков в эмбриональных клетках); 5) оотипическая сегрегация.

268. Соотнесите понятие и его определение:

А) Дифференциальная	1. Специализация клеток биохимическая, морфологи-
активность генов	ческая, функциональная
Б) Детерминация	2. Процесс возникновения новых структур и изменения
	их формы в ходе онтогенеза
В) Дифференцировка	3. Строго определенный порядок репрессии и дере-
	прессии различных блоков генов в ходе эмбриогенеза
Г) Морфогенез	4. Приобретение клетками способности развиваться
	в определенном направлении при одновременном огра-
	ничении их будущих возможностей развития

269. Установите соответствие между понятием и его определением:

А) Тотипотент-	1. Усиление химической разнородности цитоплазмы яйце-
ность клетки	клетки (перемещение и накопление органелл, питательных
	веществ, иРНК, индукторов и пр.)
Б) Детерминиро-	2. Клетки, у которых «включена» программа развития по
ванные клетки	определенному пути
В) Оотипическая	3. Этап эмбрионального развития, на котором клетки отно-
сегрегация	сительно тотипотентны и зависимы от индукторов соседних
	клеток
Г) Зависимая	4. Этап развития, на котором эмбриональные клетки диффе-
дифференцировка	ренцируются по намеченному плану
Д) Независимая	5. Способность клетки в процессе реализации заключенной в
дифференцировка	ней генетической информации дать начало целому организму

270. Подберите соответствующие характеристики для процессов эмбриогенеза:

А) Миграция кле-	1. Взаимодействия, при которых «регулирующая» и «регу-
ток	лируемая» клетки расположены на расстоянии (иногда на
	весьма значительном) друг от друга; для данного вида регу-
	ляции необходим материальный (индукторы, гормоны, ци-
	токины, факторы роста и т. д.) или иной (гравитационное,
	электрическое поле) агент передачи сигнала
Б) Сортировка	2. Способность клеток в ходе эмбриогенеза активно «узна-
клеток	вать» друг друга: образовывать скопления и пласты только с
	определенными клетками (в зависимости от их свойств —
	степени подвижности, особенности мембран и пр.)
В) Дистантные	3. Вид взаимодействия клеток, обеспечиваемый белками ад-
взаимодействия	гезии и способностью клеток регулировать их количество и
клеток	активность в плазмолемме, что позволяет клеткам избира-
	тельно взаимодействовать с клетками определённых типов
Г) Контактные	4. Программируемая гибель клетки, проявляющаяся в
взаимодействия	уменьшении ее размера, конденсации и фрагментации хро-
клеток	матина, уплотнении цитоплазматической мембраны без вы-
	хода содержимого клетки в окружающую среду
Д) Апоптоз	5. Генетически детерминированые, находящиеся под влия-
	нием окружающих клеток и тканей клеточные перемещения
	(амебоидное движение и др.)

271. Соотнесите механизм морфогенеза и его характеристику:

А) Эмбриональная	1. Дистантные взаимодействия клеток электрической		
индукция	или гравитационной природы		
Б) Градиент физиоло-	2. Контроль морфогенеза семейством гомеозисных ге-		
гической активности нов, определяющих в клетке память об ее положени			
В) Морфогенетические	е 3. Влияние группы клеток эмбриона на соседние клетки		
(биологические) поля			

Г) Позиционная	4. Прежде чем появляются качественные отличия между		
информация клетки	различными частями тела, они отличаются уровнем		
	физиологической активности: участки с наивысшей ак-		
	тивностью доминируют над другими, оказывают влия-		
	ние на дифференциацию соседних участков		

272. Выберите верные утверждения, характеризующие имплантацию как критический период эмбриогенеза человека:

А) Сроки	1. 1-я неделя после оплодотворения		
	2. 2-я неделя после оплодотворения		
	3. 38–40-я недели развития		
Б) Изменение	1. Выход из маточной трубы в матку; внедрение бластоцисты		
условий су-	в слизистую оболочку матки		
ществования	2. Формирование новой среды обитания — амниотической обо-		
	лочки		
	3. Выход развивающегося организма в воздушную среду		
В) Изменение	1. Переход с питания запасными питательными веществами		
способа	яйцеклетки на питание за счет клеток трофобласта		
питания	2. Переход на плацентарное питание и дыхание		
	3. Переход на самостоятельное активное питание молоком матери		

273. Выберите верные утверждения, характеризующие плацентацию как критический период эмбриогенеза человека:

А) Сроки	1. 1-я неделя после оплодотворения		
	2. 2-я неделя после оплодотворения		
	3. 38–40-я недели развития		
Б) Изменение	1. Выход из маточной трубы в матку; внедрение бластоцисты		
условий су-	в слизистую оболочку матки		
ществования	2. Формирование новой среды обитания — амниотической обо-		
	лочки		
	3. Выход развивающегося организма в воздушную среду		
В) Изменение	1. Переход с питания запасными питательными веществами		
способа	яйцеклетки на питание за счет клеток трофобласта		
питания	2. Переход на плацентарное питание и дыхание		
	3. Переход на самостоятельное активное питание молоком матери		

274. Выберите верные утверждения, характеризующие *роды* как критический период эмбриогенеза человека:

А) Сроки	1. 1-я неделя после оплодотворения	
	2. 2-я неделя после оплодотворения	
	3. 38–40-я недели развития	
Б) Изменение	1. Выход из маточной трубы в матку; внедрение бластоцисты	
условий су-	в слизистую оболочку матки	
ществования	2. Формирование новой среды обитания — амниотической обо-	
	лочки	
	3. Выход развивающегося организма в воздушную среду	

В) Изменение	1. Переход с питания запасными питательными веществами		
способа	яйцеклетки на питание за счет клеток трофобласта		
питания	2. Переход на плацентарное питание и дыхание		
	3. Переход на самостоятельное активное питание молоком матери		

275. Подберите верные пары утверждений «тератогенный фактор – пример»:

А) Неполноценное	1. Вирусы (кори, краснухи, ветряной оспы, гриппа, эпиде-		
питание	мического паротита и др.); токсические продукты про-		
	стейших (малярийного плазмодия, токсоплазмы); бледной		
	спирохеты (возбудителя сифилиса), туберкулезной палочки		
Б) Условия труда	2. Хлоридин, талидомид, антибиотики (дисульфирам, тет-		
	рациклин, стрептоцид, левомицетин), половые гормоны		
В) Инфекционные и	3. Дефицит цинка, марганца и фолатов; авитаминоз А, D		
инвазионные агенты	иС		
Г) Лекарственные	4. Альфа-, бета-лучи; гамма-, рентгеновское излучение		
препараты	и УФ-лучи		
Д) Вредные	5. Работа в горячих цехах, на химических предприятиях,		
привычки	с радиоактивными изотопами		
Е) Различные виды	6. Алкоголь, никотин и наркотики		
излучений			

ПОСТЭМБРИОНАЛЬНОЕ РАЗВИТИЕ ЖИВОТНЫХ И ЧЕЛОВЕКА

276. Соотнесите период постнатального онтогенеза и его характеристику:

А) Ювениль-	1. Прогрессивная стадия: продолжается органогенез, увеличива-		
ный	ются размеры тела в условиях прямого воздействия окружающей		
	среды; окончательно формируются видовые и индивидуальные		
	особенности организма; происходит физическое и физиологиче-		
	ское развитие организма, становление личности		
Б) Пубертат-	2. Регрессивная стадия: уменьшение интенсивности обмена ве-		
ный	ществ, ослабление физиологических, биохимических и морфоло-		
	гических функций, что приводит к естественной смерти особи		
В) Старость	3. Стабильная стадия: организм функционирует как устойчивая		
	система, способная поддерживать постоянство своего внутрен-		
	него состава в изменяющихся условиях внешней среды; осу-		
	ществляется размножение, от чего зависит увеличение численно-		
	сти вида		

277. Соотнесите критический период постнатального онтогенеза и его характеристику:

А) Новорож-	1. Начало полового созревания; интенсивность роста увеличива-	
денности	ется; происходит гормональная перестройка	
Б) Полового	2. Сложный период адаптации к новым условиям существования;	
созревания	происходит перестройка всех процессов жизнедеятельности (пи-	
	тания, дыхания, выделения, кровообращения и др.)	

В) Полового	3. Происходят изменения, определяющие начало процессов ста-	
увядания	рения, и включаются механизмы, обеспечивающие перестройку	
	организма и его адаптацию	

278. Соотнесите тип роста организма и примеры представителей:

А) Определенный	1. Растения	
	2. Моллюски	
	3. Ракообразные	
	4. Насекомые	
	5. Рыбы	
Б) Неопределенный	6. Амфибии	
	7. Рептилии	
	8. Птицы	
	9. Млекопитающие	
	10. Человек	

279. Соотнесите тип роста органов и тканей и их примеры:

А) Общий	1. Печень
	2. Головной мозг
	3. Селезенка
Б) Головной	4. Фаллопиевы трубы
	5. Предстательная железа
	6. Миндалины
В) Лимфоидный	7. Глаза
	8. Скелет
	9. Тимус
Г) Репродуктивный	10. Спинной мозг
	11. Яичники
	12. Мышцы

280. Соотнесите термин и его определение:

А) Постнатальный	1. Сроки, на протяжении которых совершаются опреде-
онтогенез	ленные морфологические и функциональные сдвиги в от-
	дельных тканях, органах и в целом организме
Б) Возрастные	2. Развитие организма после рождения или выхода из яй-
периоды	цевых оболочек, завершающееся смертью
В) Рост	3. Ускорение физического и физиологического развития
	детей и подростков
Г) Акселерация	4. Увеличение размеров и массы тела обеспечивается уве-
	личением количества и размеров клеток и неклеточного
	вещества, повышением уровня обменных процессов
Д) Конституция	5. Внешний вид человека, его телосложение, конституция,
	осанка в определенный промежуток времени
Е) Габитус	6. Генетически обусловленные морфологические, физио-
	логические и психические особенности индивида

281. Соотнесите термин и его определение:

А) Хронологиче-	1. Характеризует истинное состояние организма на данный		
ский возраст	момент времени, определяется совокупностью обменных,		
	структурных и функциональных, в т. ч. приспособительных,		
	изменений в организме		
Б) Биологический	2. Паспортный (календарный) — период от рождения до		
возраст	момента исчисления		
В) Старение	3. Этап развития индивидуума, сопровождающийся харак-		
	терными морфологическими изменениями всех систем ор-		
	ганизма, угнетением всех функций		
Г) Старость	4. Закономерный разрушительный процесс возрастных из-		
	менений организма, ведущий к снижению его адаптацион-		
	ных возможностей, увеличению вероятности смерти		
Д) Валеология	5. Замедление темпов протекания определенных этапов он-		
	тогенеза		
Е) Ретардация	6. Раздел современной профилактической медицины,		
	направленный на формирование у людей ЗОЖ, понимания		
	личной и общественной необходимости сохранения соб-		
	ственного здоровья и здоровья своих близких, в первую		
	очередь здоровья детей		

282. Соотнесите медико-биологическую отрасль исследований и ее назначение:

А) Геронтология	1. Выявляет закономерности и механизмы старения орга-	
	низмов в эволюционном аспекте	
Б) Гериатрия	2. Раздел биологии и медицины, изучающий закономерно-	
	сти старения живых организмов, в том числе человека	
В) Герогигиена	3. Раздел клинической медицины, изучающий болезни лю-	
	дей старческого и пожилого возраста, разрабатывающий	
	методы их диагностики, лечения и профилактики	
Г) Геронтопсихо-	4. Раздел геронтологии, изучающий влияние факторов сре-	
логия	ды обитания (социальных, бытовых, природных) и образа	
	жизни на процесс старения человека и разрабатывающий	
	практические мероприятия, направленные на предупрежде-	
	ние раннего и патологического старения, и создание усло-	
	вий, способствующих максимальному продлению активной	
	и полноценной жизни человека	
Д) Сравнительная	5. Отрасль геронтологии и возрастной психологии, изуча-	
геронтология	ющая особенности психики и поведения лиц пожилого	
	и старческого возраста	
Е) Эволюционная	6. Устанавливает общие и специфические закономерности	
геронтология	старения организмов разных биологических видов	

283. Соотнесите отрасль медицины и ее основные задачи:

А) Герон-	1. Изучение механизмов старения и проявлений возрастных изменений
тология	2. Экологическое воспитание — формирование у человека созна-
	тельного восприятия окружающей природной среды, убежденности
	в необходимости бережного отношения к природе, разумного ис-
	пользования ее богатств, естественных ресурсов
	3. Разработка мероприятий по увеличению продолжительности жиз-
	ни и работоспособности людей
	4. Обучение правилам восстановления, укрепления и совершенство-
	вания нравственного и духовного здоровья человека и общества
	5. Поиск воздействий, замедляющих темп старения и увеличиваю-
	щих продолжительность жизни
Б) Валео-	6. Обучение гигиеническим правилам восстановления, укрепления и
логия	совершенствования физического и психического здоровья человека
	7. Установление влияния социально-гигиенических факторов на ход
	возрастных изменений
	8. Грамотная пропаганда и привитие каждому человеку навыков
	ЗОЖ с использованием всех средств информации и охватом всех
	общественных структур: семьи, детских дошкольных учреждений,
	школ и вузов, учреждений культуры и управления
	9. Разработка мероприятий, обеспечивающих оптимальные условия
	для здоровой жизни и деятельности в пожилом возрасте
	10. Воспитание оптимизма как защитной, компенсаторной силы орга-
	низма, позволяющей не только предупреждать заболевания, но и
	успешно совершенствовать индивидуальное и общественное здоровье

284. Соотнесите термин и его определение:

А) Смерть	1. Терминальное состояние, при котором отсутствуют види-	
	мые признаки жизни (сердечная деятельность, дыхание), уга-	
	сают функции ЦНС, но сохраняются обменные процессы	
	в тканях. Длится несколько минут, в течение которых сохра-	
	няется возможность восстановления жизненных функций	
	с помощью методов реанимации	
Б) Клиническая	2. Прекращение жизнедеятельности организма; закономерная	
смерть	и неизбежная заключительная стадия существования индиви-	
	дуума	
В) Биологиче-	3. Преждевременная смерть, наступающая в результате болез-	
ская смерть	ни или несчастного случая	
Г) Патологиче-	4. Истинная смерть, характеризуется развитием необратимых	
ская смерть	изменений в органах и тканях, в первую очередь в ЦНС; при	
	этом любые реанимационные мероприятия оказываются без-	
	успешными	
Д) Физиологи-	5. Естественная смерть, наступающая в финале онтогенеза	
ческая смерть	в результате старения	

285. Соотнесите термин и его определение:

А) Реанимация	1. Комплекс мероприятий, направленных на восстановление	
	жизненных функций организма (сердечной деятельности и ды-	
	хания) у находящихся в состоянии клинической смерти и меры,	
	направленные на профилактику клинической смерти, а также	
	искусственное управление функциями дыхания, сердцебиения,	
	деятельностью мозга, метаболическими процессами и др.	
Б) Эвтаназия	2. Прекращение лечения или отключение оборудования ис-	
	кусственного поддержания жизни больного	
В) Насильствен-	3. Удовлетворение просьбы больного об ускорении его смер-	
ная смерть	ти какими-либо действиями или бездействием врача	
Г) Ненасиль-	4. Смерть (убийство, самоубийство, несчастный случай)	
ственная смерть	наступает вследствие действия различных факторов окружа-	
	ющей среды (механических, физических, химических, терми-	
	ческих и др.)	
Д) Активная	5. Смерть вследствие различных заболеваний, глубокой недо-	
эвтаназия	ношенности новорожденного, а также в финале физиологиче-	
	ского старения	
Е) Пассивная	6. Осуществление врачом реальных шагов (введение препара-	
эвтаназия	тов, прекращающих жизнь) с целью вызвать смерть неизле-	
	чимо больного человека	

286. Соотнесите действия, направленные на поддержание здорового образа жизни или препятствующие ему (анти-ЗОЖ):

А) ЗОЖ	1. Чрезмерное потребление алкоголя
	2. Употребление наркотиков
	3. Беспорядочные сексуальные связи
	4. Рациональное питание
	5. Личная гигиена, гигиена половых отношений
	6. Своевременное обращение к врачу
Б) Анти-ЗОЖ	7. Курение
	8. Активный труд
	9. Рациональный отдых
	10. Занятия физической культурой и закаливание
4	11. Бессистемное поглощение информации
	12. Безделье

287. Соотнесите уровень организации живого и теорию, представляющую старение на данном уровне, как ключевой механизм явления:

А) Организ-	1. Теория изнашивания (Sacher, 1966)
менный	2. Теория катастрофы ошибок (Orgel, 1963)
уровень	3. Теория стрессового повреждения (Selye, 1970)
	4. Теория аутоинтоксикации (Metchnikoff, 1904)
	5. Эволюционная теория (Williams, 1957)

Б) Клеточ-	6. Теория клеточных мембран (Zg-Nagy, 1978)	
ный уровень	7. Теория соматических мутаций (Szillard, 1959)	
	8. Митохондриальная теория (Miquel et al., 1980)	
	9. Митохондриально-лизосомальная теория (Brunk, Terman, 2002)	
	10. Теория пролиферативного лимита клетки (Hayflick, Moorhead,	
	1961)	

288. Соотнесите уровень организации живого и теорию, представляющую старение на данном уровне, как ключевой механизм явления:

А) Органный	1. Эндокринная теория (Korenchevsky, 1961)
уровень	2. Теория катастрофы загрязнения (Terman, 2001)
	3. Теория торможения головного мозга
Б) Молеку-	4. Теория накопление повреждений ДНК (Vilenchik, 1970)
лярный	5. Теория следовых элементов (Eichhorn, 1979)
уровень	6. Свободно-радикальная теория (Harman, 1956)
	7. Теория поперечных сшивок (Bjorksten, 1968)
	8. Теория окислительного стресса (Sohal, Allen, 1990; Yu, Yang,
	1996)
	9. Теория неэнзиматической гликозиляции (Cerami, 1985)
	10. Иммунологическая теория (Walford, 1969)

289. Соотнесите теорию старения и ее основную идею:

А) Метаболические	1. Долголетие обратно пропорционально скорости ме-
теории	таболизма
Б) Свободно-	2. Старение вызывается запрограммированными изме-
радикальная теория	нениями экспрессии генов
В) Накопление «за-	3. Долголетие обратно пропорционально степени по-
грязнений»	вреждения клетки свободными радикалами и прямо
	пропорционально эффективности ее антиокислитель-
	ных систем
Г) Укорочение теломер	4. Накопление отходов метаболизма снижает жизне-
	способность клеток
Д) Гены смерти	5. Укорочение теломер с возрастом in vitro и in vivo
	приводит к нестабильности хромосом и гибели клеток
Е) Генетические теории	6. Существуют гены клеточной гибели

290. Соотнесите теорию старения и ее основную идею:

А) Избирательная	1. Естественный отбор устраняет индивидуумов после того,
гибель клетки	как они произведут потомство
Б) Нарушения	2. Старение и смерть являются результатом определенного
дифференцировки	биологического плана
В) Нейроэндо-	3. Процесс старения всегда связан с отклонениями в функ-
кринные теории	ции иммунной системы, которые проявляются в нарастании
	инфекционных процессов, аутоиммунных заболеваниях,
	новообразованиях

Г) Иммунологиче-	4. Недостаточность нервной и эндокринной систем в под-
ская теория	держании гомеостаза, что приводит к старению и смерти
Д) Часы старения	5. Ошибки в механизмах активации репрессии генов, при-
организма	водящие к синтезу избыточных, несущественных или не-
	нужных белков
Е) Эволюционные	6. Гибель клетки обусловлена наличием специфических
теории	мембранных рецепторов

291. Соотнесите теорию старения и ее основную идею:

А) Соматические	1. Ошибки процессов транскрипции и/или трансляции
мутации	уменьшают эффективность жизненных процессов клеток
Б) Катастрофа	2. Мутации нарушают генетическую информацию и умень-
ошибок	шают функциональный потенциал клеток
В) Повреждения	3. Конформационные нарушения белков и ферментов изме-
ДНК	няют функции клеток
Г) Повреждения	4. Возникающие дефекты ДНК постоянно «редактируются»
белков	в ходе репарации. Эффективность репарации положительно
	коррелирует с продолжительностью жизни и уменьшается
	с возрастом
Д) Перекрестные	5. Накопление повреждений в организме в течение жизни
сшивки	уменьшает его эффективность
Е) Износ организ-	6. Химические перекрестные сшивки любых макромолекул
ма	(напр. коллагена) нарушают функции клеток и тканей

Гомеостаз и хронобиология

292. Установите соответствие между термином и определением:

А) Гомеостаз	1. Медицинские аспекты биоритмологии
Б) Хронобиология	2. Наука об управлении
В) Хрономедицина	3. Свойство живых систем сохранять относительное ди-
	намическое постоянство внутренней среды
Г) Гелиобиология	4. Зависимость интенсивности физиологических процес-
	сов от циклов активности Солнца
Д) Магнитобиология	5. Ритмические изменения гомеостаза живых систем
Е) Кибернетика	6. Влияние магнитного поля Земли на живые организмы

293. Установите соответствие между термином и его определением:

А) Фотопериодизм	1. Генетически обусловленная способность организмов
	восприятия времени
Б) Биологические	2. Количество периодических колебаний в единицу вре-
ритмы	мени
В) Биологические	3. Реакции на изменение длины светового дня
часы	
Г) Ритмы	4. Повторные отклонения и возврат к исходному состоя-
	нию показателя

Д) Период	5. Автоколебательный процесс в биологической системе
Е) Частота	6. Продолжительность одного цикла колебаний в едини-
	цу времени

294. Установите соответствие между названием компонента системы управления и его описанием:

А) Система	1. Увеличивает влияние входного воздействия
Б) Детектор	2. Генерирует выходной сигнал
В) Эффектор	3. Воспринимает определенные сигналы
Г) Отрицательная обратная связь	4. Уменьшает влияние входного воздействия
Д) Положительная обратная	5. Совокупность элементов, удовлетворяю-
СВЯЗЬ	щих определенному закону поведения
Е) Входные переменные	6. Стимул, раздражитель, причина
Ж) Выходные переменные	7. Эффект, реакция, ответ

295. Соотнесите стадии стресс-реакции и соответствующие им состояния/ понятия:

А) Мобилизация защитных	1. Гомеостаз сохраняется
механизмов	
Б) Повышение сопротивляемо-	2. Стадия тревоги
сти организма	
В) Истощение защитных	3. Срыв механизмов гомеостаза
механизмов	
Г) Стресс-реакция	4. Развитие патологических изменений
	5. Ответ организма на необычные сильные
	воздействия окружающей среды

296. Соотнесите уровень организации живого и регуляторные механизмы гомеостаза:

1	
А) Молекулярно-	1. Превращение энергии и круговорот веществ
генетический	в природе
Б) Клеточный и тканевой	2. Включение и выключение генов, регулирующих
	биосинтез белков-ферментов
В) Организменный	3. Срастание костей при переломах
Г) Популяционно-видовой	4. Взаимодействие эндокринной и иммунной систем
Д) Биогеоценотический	5. Сохранение постоянства частот генов в больших
	популяциях
Е) Биосферный	6. Саморегуляция численности популяций животных

297. Соотнесите уровень организации живого и регуляторные механизмы гомеостаза:

А) Молекулярно-	1. Отрастание хвоста у ящерицы
генетический	
Б) Клеточный и тканевой	2. Взаимодействие нервной и эндокринной систем
В) Организменный	3. Сохранение постоянства частот генотипов
	в больших популяциях

Г) Популяционно-видовой	4. Саморегуляция численности популяций растений
Д) Биогеоценотический	5. Прогрессивное уменьшение массы каждого по-
	следующего звена в цепях питания
Е) Биосферный	6. Репарация ДНК

298. Соотнесите показатель биоритма и его характеристику:

А) Амплитуда	1. Графическое изображение биоритма — волнообразная кривая
Б) Мезор	2. Наивысшая точка синусоиды биоритма
В) Надир	3. Средний уровень показателя биоритма
Г) Синусоида	4. Отражает размах колебаний показателя
Д) Акрофаза	5. Низшая точка синусоиды биоритма

299. Соотнесите тип биоритма и его характеристику:

А) Биоритмы высокой	1. В их основе лежит периодическая смена бодрствова-
частоты	ния и сна
	2. Периодические изменения в течение суток
Б) Циркадные	3. Обусловлены сменой фаз луны
	4. Основной ритм физиологических процессов человека
	(их имеют 300 показателей человека)
В) Селенические	5. Микроритмы (от долей секунды до 30 минут)
	6. Период ритмов близкий к 24 часам
Г) Цирканные	7. Их периодичность 3, 7, 11 и более лет
	8. Обусловлены изменением солнечной активности
Д) Биоритмы низкой	9. В тропиках отсутствуют
частоты (гелеобиоло-	10. Связаны со сменой времен года и продолжительно-
гические)	стью светового дня

300. Соотнесите тип биоритма и его характеристику:

А) Биоритмы высокой	1. Несколько колебаний в минуту
частоты	2. Колебания интенсивности биологических процессов,
	связанные со сменой дня и ночи
Б) Циркадные	3. Ритмы средней частоты
	4. Базисный биоритм человеческого организма
В) Селенические	5. Периодичность около 28 суток
Г) Цирканные	6. Интенсивность зависит от географической широты
	местности
	7. У человека выражены слабее, чем у животных
Д) Биоритмы низкой	8. Их периодичность 3, 7, 11 и более лет
частоты (гелеобиоло-	
гические)	

301. Соотнесите тип биоритма и его пример:

А) Биоритмы высокой	1. В годы максимальной солнечной активности возрас-
частоты	тает число случаев травматизма на производстве
	2. Менструальный цикл у женщин

Б) Циркадные	3. Максимальная продукция вазопрессина в летнее	
	время, для сохранения воды в организме	
В) Селенические	4. Скорость переработки информации	
	5. Наивысшие спортивные результаты у спортсменов-	
	мужчин достигаются примерно раз в три года	
Г) Цирканные	6. Выделение желчи	
	7. Дыхательные движения	
Д) Биоритмы низкой	8. Колебания душевного состояния человека происхо-	
частоты (гелеобиоло-	дят с периодичностью в 6–7 лет	
гические)	9. Волны электроэнцефалограммы	

302. Соотнесите тип биоритма и его пример:

А) Биоритмы высокой	1. Волны электрокардиограммы
частоты	2. Частота сердечных сокращений
Б) Циркадные	3. Кровяное давление
	4. Количество выделяемой мочи
В) Селенические	5. Менструальный цикл у женщин
Г) Цирканные	6. Максимальное напряжение иммунной системы орга-
	низма человека зимой
	7. Акрофаза смертности от сердечно-сосудистых забо-
	леваний у жителей северного полушария совпадает
	с январем
Д) Биоритмы низкой	8. Наивысшие спортивные достижения у спортсменок-
частоты (гелеобиоло-	женщин регистрируются через 2 года
гические)	9. Конец каждого семилетнего периода у человека ха-
	рактеризуется особым творческим подъемом

303. Соотнесите тип биоритма и его пример:

А) Биоритмы высокой	1. Менструальный цикл у женщин
частоты	2. Синтез и распад АТФ
Б) Циркадные	3. Наивысшие спортивные достижения у спортсменок-
	женщин регистрируются через 2 года
	4. Электрическая активность головного мозга
В) Селенические	5. Периодичность перистальтики кишечника
Г) Цирканные	6. Максимальная продукция вазопрессина в летнее
	время, для сохранения воды в организме
	7. В годы максимальной солнечной активности чаще
	возникают гипертонические кризы, инфаркты миокар-
	да, инсульты мозга
Д) Биоритмы низкой	8. Митотическая активность клеток
частоты (гелеобиоло-	9. Колебания душевного состояния человека происхо-
гические)	дят с периодичностью в 6–7 лет

304. Соотнесите положения гипотезы трех (триады) биологических циклов и их характеристики:

А) Физиологическая	1. Кривая биоритма пересекает нулевую отметку
активность	(посередине каждого полупериода цикла)
Б) Эмоциональная	2. Положительный период (подъем показателей)
активность	
В) Интеллектуальная	3. Периодичность 28 дней
активность	
Г) Критический день	4. Периодичность 23 дня
Д) Первая половина цикла	5. Периодичность 33 дня
(1-й полупериод)	
Е) Вторая половина цикла	6. Отрицательный период (снижение)
Ж) Каждый биоритм имеет	7. 1 день — начало цикла; середина — переход с
три критических дня	«+» на «-»; последний день — начало нового цикла

305. Соотнесите биологический цикл и параметры организма человека, которые он контролирует:

А) Физический	1. Критические дни 1, 15
	2. Энергия человека
	3. Критические дни 1, 12
Б) Эмоциональный	4. Уровень иммунитета
	5. Настроение человека
	6. Качество сна
В) Интеллектуальный	7. Характеризует работу полушарий головного мозга
	8. Определяет работу ядер гипоталамуса
	9. Критические дни 1, 17

306. Соотнесите период присутствия отрицательной фазы соответствующего цикла и характеристики состояния организма человека:

А) Физический	1. Решение простых задач требует больших усилий
	2. Отсутствие концентрации внимания
	3. Возможен неоправданный риск
Б) Эмоциональный	4. Человек становится унылым, раздражительным
	5. Повышенная напряженность
	6. Снижение сопротивляемости организма к заболеваниям
В) Интеллектуальный	7. «Тусклое восприятие информации»
	8. Физический тонус понижен
_(/)	9. Привычная работа утомляет

307. Соотнесите период присутствия положительной фазы соответствующего цикла и характеристики состояния организма человека:

А) Физический	1. Энтузиазм
	2. Здравый смысл руководит
	3. Человек бодрый, ощущает прилив сил, чувствует себя
	превосходно

Б) Эмоциональный	4. Максимальная энергия и сила
	5. Человек открыт для общения
	6. Адекватное восприятие собеседников
В) Интеллектуальный	7. Наивысшая устойчивость к воздействию экстремаль-
	ных факторов
	8. Прекрасная творческая форма
	9. Простые задачи решаются легко и без раздумий

308. Соотнесите характеристики состояния организма человека в критический день соответствующего цикла:

А) Физический	1. Склонность к ссорам
	2. Обострение хронических заболеваний
	3. Ухудшение запоминания
Б) Эмоциональный	4. Необходимо воздержаться от принятия ответственных
	решений
	5. Возрастает вероятность травм, аварий
	6. Встречная агрессия
В) Интеллектуальный	7. Ввиду сниженного внимания возможны ошибочные
	заключения
	8. Головные боли
	9. Склонность к снижению реакций

309. Установите соответствие между термином и его определением:

F	
А) Десинхроноз	1. Учет времени проведения мероприятий, предупре-
	ждающих развитие заболеваний
Б) Хронодиагностика	2. Состояние динамического несоответствия между
	живыми организмами и внешней средой
В) Хронотерапия	3. Определение оптимального времени при постановке
,	диагностических тестов
Г) Хронопрофилактика	4. Рассогласование биоритмов организма
Д) Дезадаптация	5. Определение оптимального времени для проведения
	лечебных мероприятий

310. Установите верные примеры для определений:

А) Десин-	1. Изменение ритма перистальтики кишечника при болезнях ЖКТ
хроноз	2. Снижение работоспособности
	3. Нарушения в работе со стороны многих систем организма чело-
	века, наблюдаемые при пересечении нескольких часовых поясов
Б) Дезадап-	4. Нарушение сна и отдыха
тация	5. Нарушения в работе со стороны ряда систем организма челове-
	ка, наблюдаемые при работе в разные смены
	6. Обострение хронических заболеваний
В) Хроно-	7. Измерение температуры тела проводить в определенные часы
диагностика	суток
	8. Разработка оптимальных графиков посменной работы

Г) Хроно-	9. Введение экзогенных кортикостероидов проводить в ранние
терапия	утренние часы
	10. Предварительная перестройка рабочего графика перед поезд-
	кой в Америку с учетом иного часового пояса
Д) Хроно-	11. Исследование крови на филяриатозы проводить в вечернее
профилак-	и ночное время
тика	12. Для получения глубокого наркоза вводить меньше наркотиче-
	ского вещества в ночные часы

- **311.** Выберите из предложенных вариантов структуры, служащие «Водителями» биоритмов у человека: 1) нервная система; 2) иммунная система;
 - 3) гипоталамус; 4) тимус; 5) гипофиз; 6) щитовидная железа; 7) эпифиз;
 - 8) надпочечники.
- **312.** Составьте верную последовательность этапов стресс-реакции организма человека, используя все ответы из предложенных: 1) действие стрессфактора; 2) передача регуляторного сигнала гипофизу; 3) передача возбуждения гипоталамусу; 4) возбуждение коры больших полушарий головного мозга; 5) гипофиз выделяет АКТГ; 6) выделение кортикостероидов в кровь; 7) возбуждение, корковый слой надпочечников; 8) влияние на внутренние органы (сохранение механизмов гомеостаза).

РЕГЕНЕРАЦИЯ И ТРАНСПЛАНТАЦИЯ

313. Соотнесите понятие и его определение:

А) Регенерация	1. Пересадка тканей или органов от организма того
	же вида
Б) Аутотрансплантация	2. Восстановление организмом утраченных частей
В) Изотрансплантация	3. Пересадка собственных тканей организма
Г) Аллотрансплантация	4. Пересадка тканей и органов от организма другого
(Гомотрансплантация)	вида
Д) Ксенотрансплантация	5. Пересадка тканей или органов от генетически
	идентичного организма

314. Соотнесите вид стволовых клеток и его характеристику:

А) Тотипотентные СК	1. Способны дифференцироваться только в один тип
	клеток
Б) Плюрипотентные СК	2. Способны образовывать разные клетки одного ти-
	па ткани
В) Мультипотентные СК	3. Клетки эмбриобласта бластоцисты, способные дать
	все типы тканей
Г) Унипотентные СК	4. Клетки, способные дать целый организм (зигота
	и первые бластомеры)

315. Соотнесите вид регенерации и примеры:

А) Физиологиче-	1. Заживление ран
ская регенерация	2. Восстановление клеток крови
	3. Эпиморфоз
	4. Восстановление клеток эпителия кожи
Б) Репаративная	5. Морфаллаксис
регенерация	6. Восстановление эпителия желудочно-кишечного тракта
	7. Регенерационная гипертрофия
	8. Компенсаторная гипертрофия

316. Соотнесите понятие и его определение:

	-	
А) Стволовые клетки	1. Клетки, детерминированные на дифференцировку	
	в определённый тип клеток и имеющие определенные	
	стойкие клеточные маркеры	
Б) Типирование тканей	2. Особь, у которой забирают орган для транспланта-	
	ции	
В) Клетки предшествен-	3. Особь, которой пересаживают орган	
ники, прогениторы		
Г) Донор	4. Выявление совместимости тканей донора и реци-	
	пиента	
Д) Реципиент	5. Незрелые клетки, способные к самообновлению	
	и развитию в специализированные клетки организма	

317. Соотнесите понятие и его определение:

А) Трансплантация	1. Восстановление утраченных частей после травмы	
	или других повреждающих факторов	
Б) Трансплантат	2. Изъятие жизнеспособного органа или ткани у од-	
	ной особи и пересадка в другой организм	
В) Комплекс	3. Генетически обусловленный процесс отторжения	
гистосовместимости	донорских тканей иммунной системой реципиента	
Г) Тканевая	4. Участок ткани или орган, используемый для пере-	
несовместимость	садки	
Д) Репаративная	5. Гены, определяющие «судьбу» трансплантата	
регенерация		

318. Соотнесите уровни регенерации и примеры:

А) Молекулярный	1. Восстановление целого организма из части у гидры
Б) Внутриклеточный	2. Восстановление клеток эпителия кожи
В) Клеточный	3. Репарация молекулы ДНК
Г) Органный	4. Восстановление органоидов
Д) Организменный	5. Отрастание хвоста у ящерицы

319. Соотнесите виды СК согласно указанной классификации:

А) По способности	1. Унипотентные
к дифференцировке	2. Фетальные
	3. Эмбриональные
	4. Плюрипотентные
Б) По источнику получения	5. Мультипотентные
	6. Пуповинной крови
	7. Тотипотентные
	8. Плацентарной крови

320. Соотнесите морально-этическую проблему трансплантологии и ее описание:

А) Проблема доступности операций по	1. Принята пересадка органов и тканей
трансплантации органов и тканей	от живого донора только лицам, нахо-
	дящимся в близком родстве
Б) Проблема получения органов	2. Операции дорогостоящие и доступ-
от живых доноров	ны не всем нуждающимся в них
В) Проблема забора органа для	3. Зачатие плода с целью лечения уже
пересадки от трупа человека	имеющегося больного ребенка
Г) Проблема пересадки фетальных ор-	4. Надежность концепции смерти мозга
ганов и тканей	

321. Соотнесите понятие и его определение:

А) Банк СК	1. Иммунная сыворотка, содержащая антитела к лимфо-
	идным клеткам
Б) Индуцированные	2. Медицинское предприятие, производящее гарантиро-
плюрипотентные	ванное по определенным правилам хранение клеточных
СК	образцов и обеспечивающее их последующее применение
В) Иммунодепрес-	3. Антитела, вырабатываемые иммунными клетками,
санты	принадлежащими к одному клеточному клону
Г) Моноклональные	4. Клетки, полученные из соматических путем репро-
антитела	граммирования с помощью набора определенных тран-
	скрипционных факторов
Д) Антилимфоци-	5. Лекарственные препараты, применяемые для искус-
тарная сыворотка	ственного угнетения иммунитета

322. Соотнесите понятие и его характеристику:

А) Дифференцировка	1. Скопление клеток одного вида, выросших из од-
клеток	ной клетки
Б) Трансдифференцировка	2. Длительное размножение клеток
В) Мобилизация	3. Возникновение различий между однородными
и хоуминг	клетками и тканями, приводящие к специализации
Г) Пролиферация	4. Способность взрослой региональной стволовой
	клетки дифференцироваться в клетки другого органа
Д) Образование колоний	5. Способность СК мигрировать
в культуре	

323. Соотнесите определенный вид тканей или клеток организма человека и характерный для них белок:

А) Мышечная	1. Коллаген	
Б) Хрящевая	2. Белок S100	
В) Костная	3. Эластин	
Г) Нервная	4. Гемоглобин	
Д) Эритроциты	5. Миозин	

324. Соотнесите способ профилактики отторжения трансплантата и его описание:

А) Применение монокло-	1. Подбор максимально совместимой ткани донора
нальных антител	и реципиента
Б) Подавление иммунитета	2. Узнавание и разрушение антигена транспланта-
реципиента	та
В) Типирование тканей	3. Воздействие на костный мозг и лимфоидную
	ткань рентгеновскими лучами
Г) Введение клеток в сосу-	4. Эмбрионам и новорожденным (эксперимен-
дистое русло	тально) вводят различные дозы трансплантата,
	а потом во взрослом состоянии — ткани
Д) Приобретенная иммуно-	5. Ограничивается иммунологическая несовме-
логическая толерантность	стимость при транслантации клеток

325. Соотнесите способ регенерации и его описание:

А) Эпиморфоз	1. Образование нового организма из остатков старого
Б) Морфаллаксис	2. Отрастание органа от раневой поверхности
В) Регенерационная	3. Разрастание одного из парных органов при утрате дру-
гипертрофия	гого
Г) Компенсаторная	4. Увеличение размера остатка органа без восстановле-
гипертрофия	ния исходной формы
Д) Физиологическая	5. Восстановление частей организма в результате нор-
регенерация	мальной жизнедеятельности

326. Соотнесите способ регенерации и примеры организмов, у которых он происходит:

А) Эпиморфоз	1. Восстановление клеток крови
Б) Морфаллаксис	2. Восстановление печени у крыс (без восстановления
	исходной формы органа)
В) Регенерационная	3. Отрастание после травмы конечности у аксолотля
гипертрофия	
Г) Компенсаторная	4. Восстановление из кусочка особи планарии маленьких
гипертрофия	размеров
Д) Физиологическая	5. Увеличение оставшейся почки после удаления парной
регенерация	ей

327. Соотнесите составляющие системы HLA, являющиеся значимыми при трансплантации с их характеристиками:

А) Антигены I класса	1. Находятся на поверхности лейкоцитов и макрофагов			
системы HLA	2. HLA-A-B-C			
	3. Находятся на поверхности любых клеток			
Б) Антигены II класса	4. HLA-DQ-DP-DR			
системы HLA	5. Многовариантны			
	6. Ключевое значение имеет совместимость по HLA-DR			

328. Установите соответствие между клеточной технологией и ее характеристикой:

А) Пептидная терапия	1. Создание биотрансплантатов с помощью ген-					
11) Пентидная терания						
	ноинженерных методов					
Б) Клеточная трансплантация	1 2. Синтез геноконструкций в культивируемь					
	клетках					
В) Клеточная генотерапия	3. Пересадка стволовых клеток					
Г) Создание индивидуальных	4. Перенос ядра соматической клетки					
линий стволовых клеток						
Д) Тканевая инженерия	5. Идентификация и синтез факторов роста, вы-					
	деляемых клеткой					

329. Соотнесите понятие и его определение:

А) Клонирование	1. Оплодотворение яйцеклеток вне организма
	и последующий перенос их в матку
Б) Репродуктивное	2. Устройства, предназначенные для временной
клонирование	или постоянной замены утраченной функции
	природного органа
В) Терапевтическое	3. Получение идентичных потомков с помощью
клонирование	бесполого размножения
Г) ЭКО	4. Получение копии того организма, от которого
	взята ДНК
Д) Искусственные органы	5. Получение эмбриональных стволовых клеток

330. Соотнесите понятие и его определение:

А) Трансплантацион-	1. Клетки, выращиваемые в контролируемых условиях				
ный иммунитет					
Б) Видовая специфич-	2. Генетически обусловленный процесс отторжения				
ность белков	донорских тканей иммунной системой реципиента				
В) Тканевая	3. Особенности строения белков для разных организмов				
несовместимость					
Г) Криопротекторы	4. Состояние повышенной иммунной реактивности				
	организма в ответ на пересадку органа				
Д) Культура клеток	5. Вещества, защищающие живые клетки при замора-				
	живании				

- **331.** Укажите последовательность этапов заживления ран: 1) по сгустку фибрина клетки эпидермиса мигрируют вглубь раны; 2) с противоположных сторон раны клетки эпидермиса вступают в контакт; 3) эпителий по краю раны утолщается 4) образование сгустка фибрина и остановка кровотечения; 5) наступает кератинизация раневого эпидермиса и отделение корки.
- **332.** Укажите последовательность этапов ЭКО: 1) извлечение из яичников зрелых яйцеклеток; 2) стимуляция яичников гормональными препаратами для одновременного созревания нескольких яйцеклеток; 3) перенос эмбриона в матку (на стадии 8 бластомеров; 4) оплодотворение яйцеклеток в лабораторных условиях; 5) перенос ранних эмбрионов в культуру ткани.
- 333. Укажите последовательность этапов репродуктивного клонирования:
 1) образование морулы; 2) перенос в матку морулы; 3) дробление зиготы с ядром соматической клетки; 4) слияние безъядерной яйцеклетки с соматической клеткой под действием электрошока; 5) удаление из яйцеклетки ядра.

ОТВЕТЫ НА ЗАКРЫТЫЕ ЗАДАНИЯ

Роль биологии в системе медицинского образования

1 – а, д	$3-\Gamma$	5 – а, г	7 – а, в	9 – Γ	11 – B
$2 - \pi$	4 – а в л	6 – а. б. л	8 $-\pi$	10 – ნ	

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ И КЛЕТОЧНЫЙ УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО

Цитологические основы наследственности

12 – а, в, д	32 – б, д	52 – в, д	72 – Γ	92 – в, д	112 — в
13 – в, д	33 − 6	53 – а, в, д	73 – б, в, д	93 – B	113 — в
14 − a, б	34 – а, в, г	54 – б	74 – в, д	94 – Γ	114 – в, д
15 – Γ	35 – г, д	55 – д	75 – б, д	95 – Γ	115 – г
16 – в	36 − B	56 – б	76 – δ, Γ	96 – δ, Γ	116 – г, д
17 – б, в	37 — в	57 – а, д	77 – б, д	97 – a	117 – б
18 − 6	38 − б, в	58 – а, г	78 – а, г	98 – Γ	118 – б
19 – а, г	39 - B	59 − B	79 – B	99 – б	119 – д
20 – а, г	40 – д	60 – a	80 – в, г, д	100 − 6	120 − 6
21 – г, д	41 – б, в	61 – д	81 – a, Γ	101 – Γ	121 – в
22 – a	42 – а, д	62 – Γ	82 – a	102 – Γ	122 – б, д
23 – а, г	43 – г, д	63 – д	83 – б	103 - B	123 – Γ
24 – δ, Γ	44 – а, г	64 – б	84 – Γ	104 – в	124 – б
25 - B	45 – в, д	65 — д	85 – б, в	105 – а, в	125 – б
26 – д	46 − B	66 – д	86 – б	106 – а, г, д	126 – a
27 – г, д	47 − a, б	67 – в, д	87 — д	107 – в	127 − 6
28 – а, в, д	48 – a	68 – б, г	88 – a	108 – Γ	
29 − a, б	49 – а, в, г	69 – б, д	89 – б, в, д	109 – а, г, д	
30 − б, в	50 – a	70 − a, б	90 − a, в	110 – а, в	
31 - a, 6	51 – а, б, г	71 – б	91 − 6, в	111 – б, д	

ОРГАНИЗАЦИЯ НАСЛЕДСТВЕННОГО МАТЕРИАЛА

128 – б, в, г	138 – в	148 — в	158 − б	168 – б, в	178 – б
129 – д	139 – б	149 – a, в	159 – а, б, г	169 − a, в	179 – в
130 – б, в	140 – a	150 – б, д	160 – г	170 - B	180 – a
131 – Γ	141 – a	151 – Γ	161 – а, д	171 – Γ	181 − Γ
132 – Γ	142 – a	152 – а, д	162 – Γ	172 - B	182 — д
133 – д	143 – г, д	153 – в, г	163 − 6	173 - B	
134 – Γ	144 – в, г	154 – Γ	164 − B	174 – б, д	
135 – д	145 – а, в, д	155 $-$ a, δ	165 – г	175 − a	
136 – a	146 – г, д	156 – б, д	166 – д	176 – в, д	
137 – Γ	147 – б	157 — в	167 – г	177 − a, б	

ЭКСПРЕССИЯ ГЕНОВ У ПРОКАРИОТ И ЭУКАРИОТ

183 − 6	190 – д	197 — в	204 – в, г	211 − a, в	218 – б, в, д
184 – в, д	191 – б, в, г	198 – Γ	205 – Γ	212 – б, г	219 – г, д
185 – a	192 – a	199 – B	206 – а, д	213 − a, в	A
186 – б, в	193 – a	200 − a, в	207 – Γ	214 – а, г, д	
187 – а, г, д	194 — в	201 – в, г	208 − б	215 – а, в, д	
188 – г, д	195 — д	202 – б, д	209 – а, д	216 – б, в, д	
189 – в, д	196 – б	203 – Γ	210 – б, г	217 – а, в, д	

ОНТОГЕНЕТИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОГО

ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ

220 – a	227 – а, в	234 – д	241 – а, д	248 – a	255 – a
221 – а, в, г	228 – б, г	$235 - \Gamma$	242 – б	249 – д	256 – Γ
222 $-$ б, Γ	229 – б, д	236 – б, в	243 – б, д	250 – a	257 - B
223 – б	230 – д	237 – Γ	244 − a, б	251 – г, д	258 – a
224 – б	231 – б, д	238 - B	245 – б, в	252 − a, в	259 – д
225 — в, г	232 - B	239 – б, в	246 – Γ	253 − a, в	260 – д
226 – а, г, д	233 – Γ	240 – а, г	247 – д	254 – б	

Биология и генетика пола

261 – а, д	268 – д	275 – Γ	282 – д	289 – д	296 – Γ
262 — В, Γ	269 – Γ	276 – Γ	283 – в, д	290 – а, г, д	297 – в, д
263 – Γ	270 - B	277 – б	284 – a	291 – а, г	298 – а, в, г
264 − a, б	271 – а, д	278 – в, г	285 − 6	292 – a, в	
265 – д	272 – д	279 – б, в	286 – в, г	293 – а, д	
266 – Γ	273 – б	280 – Γ	287 - B	294 – б	
267 – в	274 – a	281 – а, б, г	288 – д	295 – a	

Изменчивость

299 – B	309 – б, г	319 – б, в, г	329 – а, д	339 – a	349 – б, в, г
300 − 6	310 – б, в	320 – г, д	330 – б	340 – б	350 — д
301 − a, в	311 – г, д	321 – в	331 – a	341 – в, г	351 – б, г
302 – б	312 – а, д	322 - б, г	332 – б	342 — д	$352 - \Gamma$
303 – б, г	313 – д	323 – а, в, д	333 – б	343 – г, д	353 – б, в
304 – б, д	314 − a, в	324 – а, г, д	$334 - \Gamma$	$344 - \Gamma$	354 – a
305 – б	315 – б, в, д	325 – б	335 – a	345 – б, г, д	355 - B
306 – а, в, д	316 – д	326 — д	336 — д	346 – a	356 – а, в
307 – a	317 – а, г	327 − a, в	337 − a, б	347 – a	
308 – а. г	318 – а. б	328 – б. в	338 – B	348 – a	

МЕТОДЫ ИЗУЧЕНИЯ ГЕНЕТИКИ ЧЕЛОВЕКА

357 – б, д	367 – а, г	377 – б, д	387 − б	397 – б	407 – Γ
358 — в	368 – б, г	378 − б	388 − a, в	398 — в	408 – а, г
359 – а, б, г	369 – а, г	379 – Γ	389 - B	399 – Γ	409 – a
360 — в	370 – б, в, г	380 - a	390 – а, в, д	400 – Γ	410 – б, в, г
361 – в	371 – г, д	381 — д	391 – в, г	401 – δ, Γ	411 – б
362 – б, в	372 – б, в	382 − 6	392 - B	402 – в, д	412 — в
363 – а, д	373 − a	383 − 6	393 – в, г	403 – a	413 – в, г
364 – в	374 − a	384 − σ	394 – б, в	404 – б, в, д	414 – B
365 — д	375 — д	$385 - \Gamma$	395 − a, б	405 – б	
366 – в, г, д	376 — в	386 – a	396 — д	406 – а, г, д	

НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ ЧЕЛОВЕКА

415 – Γ	426 – д	437 – а, б, г	448 – а, в, д	459 – б, в	470 – а, б, д
416 – a	427 – б, г	438 − a, в	449 – a, в	460 – B	471 – б, д
417 − a, в	428 – в, д	439 – в, д	450 – а, в, д	461 – д	472 – а, б, д
418 – а, г, д	429 – б, в, д	440 – б, г, д	451 – а, д	462 – б, в, д	473 – а, б, д
419 – Γ	430 − a, б, в	441 – б, д	452 – a, б, г	463 – B	474 – а, в, д
420 - B	431 – б, в, д	442 – а, в, г	453 – а, в, г	464 – б, д	475 – б, г, д
421 - 6	432 – a, б, в	443 – а, в, д	454 – б, г	465 – в, г	
422 – a	433 – а, б, д	444 – а, в, д	455 – а, г, д	466 – г, д	
423 – б	434 – б, в, д	445 - B	456 − a, б	467 – б, д	
424 – a	435 – а, в, д	446 – Γ	457 – д	468 – а, г, д	
425 – a	436 − a, б, в	447 – a	458 – б, в, д	469 – б, д	

МЕДИКО-ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ

476 – а, в, г	479 – в, г	482 – г, д	485 – б, г, д	488 – б, г
477 – а, б, г	480 − б	483 – a	486 — д	
478 – а, в, г	481 – в	484 – в, д	487 – б. г	

Размножение животных и человека

489 – а, д	494 – д	499 – а, г	504 – б, д	509 – б, в, д	514 – б, г, д
490 – г, д	495 – Γ	500 - B	505 − a, в	510 – a, б, в	515 – б, в, г
491 – a, в	496 – б, д	501 – а, г	506 – Γ	511 – a, б, в	
492 – г, д	497 – а, г	502 – a	507 — в	512 – г, д	
493 – Γ	498 – б, в	503 – б, д	508 - в	513 – а, в, д	

ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ ЖИВОТНЫХ И ЧЕЛОВЕКА

516 – в	523 – a	530 – в, д	537 – б, в	544 − a, в	551 – б, в
517 – a, в	524 – а, д	531 − a, б	538 – б, д	545 – б, г, д	552 – д
518 – б	525 – б, в, г	532 – д	539 – б, в	546 – б, в	553 – б
519 – г, д	526 – а, в, г	533 - B	540 – г, д	547 – а, г	554 – в, д
520 – в, г	527 – б, д	534 – д	541 – б, в, д	548 – а, б, г	555 – в, г, д
521 – Γ	528 – б, д	535 – Γ	542 – б, в, г	549 – б, в, д	556 − a, в
522 – б	529 – б	536 – б, г	543 – а, г	550 – a	557 – б, г

Постнатальный онтогенез

558 – в, г, д	566 – a	574 − Γ	582 − Γ	590 − a, б	598 – б, г
559 – б	567 – в	575 – в, д	583 – а, б, д	591 – в, г	599 – a
560 – а, б, в	568 – а, д	576 − б	584 – б, д	592 – а, б, г	600 – а, б, д
561 – Γ	569 – a	577 − a, в	585 – а, г	593 – б, в	601 − a, б, в
562 – Γ	570 – б	578 – б, в, г	586 – а, в, г	594 – а, в, г	602 − 6
563 – в	571 – Γ	579 – a	587 – а, в, г	595 – б	603 — д
564 – д	572 — в	580 – в, д	588 – а, д	596 – B	
565 – б. в. г	573 — д	581 – a	589 – б. г. д	597 — в. д	

Гомеостаз и хронобиология

604 - B	607 – a	610 − a, б, в	613 – а, д	616 — в	619 – б
605 – а, б, г	608 - в	611 − a, б	614 – Γ	617 – a	620 – a
606 – a	609 – б. г	612 - B	615 − a, в	618 – г	621 − B

РЕГЕНЕРАЦИЯ И ТРАНСПЛАНТАЦИЯ

622 − б	626 – в, д	630 – г, д	634 – Γ	638 – в, д	642 – д
623 − a, в	627 – б, в	631 – б, в	635 – г, д	639 − a, б	
624 – в, д	628 − σ	632 – Γ	636 – б, в	640 – г, д	
625 — д	629 – б, д	633 – а, г	637 – a	641 – д	

ОТВЕТЫ НА ОТКРЫТЫЕ ЗАДАНИЯ

РОЛЬ БИОЛОГИИ В СИСТЕМЕ МЕДИЦИНСКОГО ОБРАЗОВАНИЯ

1 — медицины4 — Е. Н. Павловский7 — С. С. Четвериков2 — медицинская5 — Л. Пастер8 — И. В. Давыдовский

3 – 32 **6** – К. И. Скрябин

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ И КЛЕТОЧНЫЙ УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО

Цитологические основы наследственности

9 – Р. Вирхов **42** – 6–8

10 – бутербродную 43 – комплекс Гольджи

11 – С. Сингером, Г. Николсоном 44 – ядрышках

12 – компартментализацией 45 – аминоацильный, пептидильный

 13 – пластичность
 46 – митохондриях

 14 – контактной
 47 – рибосомами

 15 – пассивным
 48 – 70

 16 – интегральных
 49 – 3

17 – облегченным **50** – 1 **18** – рецепторную **51** – диктиосомой

19 – холестерин **52** – глиоксисом

20 – гликокаликс 53 – эндоплазматической сети

21 – рецепторную 54 – комплекс Гольджи

 22 – гидрофильными
 55 – пластиды

 23 – полуинтегральные
 56 – глиоксисомах

24 – пермеазами 57 – комплексе Гольджи

25 – плазмолеммой **58** – рибосомах ЭПС

 26 – самозамыканием
 59 – анаболической

 27 – муреин (пептидогликан)
 60 – ассимиляция

28 – пассивного **61** – катаболической

29 – экзоцитозом **62** – митохондрии

30 – низкомолекулярные незаряженные 63 – гетерофагия

 31 – эндоцитозом
 64 – аутофагия

 32 – пиноцитоз
 65 – автолиз

33 – муреин (пептидогликан)
 34 – облегченная диффузия
 66 – полисома
 67 – митохондрия

35 – пассивного 68 – окислительного фосфорилирования

36 – пластичность **69** – АТФ **70** – порины

38 – фагосома **71** – подготовительном

39 – цитоскелетом **72** – ацетил-КоА

40 – актин, тубулин **73** – тканевого дыхания

41 – микрофиламентами (электрон-транспортной цепи)

74 – АТФ-сомы

75 – окислительного фосфорилирования (АТФ-синтетазу)

76 – цикл Кребса

77 – АТФ-сомах

78 - матриксе

79 – ΑΤΦ

80 - 60 %

81 – 45 %

 $82 - O_2$

83 – 40 %

84 – 55 %

85 – кариолемма

86 – ламины

87 – пластинку

88 - перинуклеарное

89 – нитей

90 – эухроматин

91 – ДНК

92 - кинетохор

93 – ядрышкового организатора (вторичной перетяжки)

94 – ядрышковым организатором

95 – теломеры

96 – Парижской

97 – Денверской

98 - 1960

99 – индивидуальности

100 – центромерный индекс

101 – C

102 - G

103 – 13–15

104 - спутничные

105 - C

106 – 1q31

107 – 17q21

108 - 6p41

109 - 22

110 – 22

111 – 2

111 – 2

112 – политенными

113 – «ламповых щеток»

114 - плазмидами

115 – плазмиды

116 - негистоновыми

117 - мезосомы

118 - надвое

119 - митотическим циклом

120 – интерфаза

121 – циклинам

122 - политения

123 – 2n 1chr 2c

124 – 2n 2chr 4c

125 – 2n 2chr 4c

126 – тубулины

(ахроматинового веретена)

127 – 2n 2chr 4c

128 – 2n 1chr 2c

129 – телофаза

130 - телофазой

131 – эндомитозом

132 – редукционным (мейоз I)

133 – интеркинезом

134 – эквационным

 $135 - 1n_{biv} 4chr 4c$

136 – 1n_{biv} 4chr 4c

137 – 1n 2chr 2c

138 – 2n 2chr 4c

139 – 1nbiy 4chr 4c

140 – коньюгашией

141 – зиготены

142 – биваленты (тетрады)

143 – кроссинговер

144 – хиазмами

145 – пахитена

146 – 1n_{biv} 4chr 4c

147 – биваленты

148 – 1n 2chr 2c

149 – 1n 2chr 2c

150 – 1n 2chr 2c

151 – 1n 1chr 1c

152 – 1n 1chr 1c

153 – лизогенной

155 Justi Cillion

154 – вирулентными

155 – капсид (нуклеокапсид)

ОРГАНИЗАЦИЯ НАСЛЕДСТВЕННОГО МАТЕРИАЛА

 $156 - H_{2B}$ 183 – репликационная вилка 157 – линкерной 184 – праймером **185** – хеликаза 158 – негистоновые 186 – фрагменты Оказаки 159 – нуклеосому 160 - 5 - 7187 - 3' - 5'188 - генетическим кодом 161 – интерфазных, метафазных **162** – профазе 189 – универсальность 163 – хроматидном 190 - вырожденностью, избыточностью **164** – 10 000 191 – колинеарностью 165 - геномный 192 – однонаправленностью 193 – цистрон **166** – аденин 194 – РНК-полимераза 167 – азотистое основание 195 – рекогниция **168** – тимин, цитозин **196** – антикодоном **169** – аденин, гуанин **197** – 3[/], ЦЦА **170** – Чаргафф 171 – Чаргаффа 198 - трансляцией **172** – урацил, цитозин **199** – инициация 173 – фосфодиэфирными **200** – АУГ 174 – пара нуклеотидов **201** – элонгацией **175** – плазмиды 202 – ингибиторами 176 - уникальные 203 – усилителем 177 – транспозоны 204 – экспрессивностью 178 – трансформацией 205 – специфичностью 179 - трансдукция 206 - плейотропия 180 – Френкель-Конрат 207 – лабильностью 181 – амплификацией 208 – экспрессивность 182 - репликация

ЭКСПРЕССИЯ ГЕНОВ У ПРОКАРИОТ И ЭУКАРИОТ

209 – опероном	224 – процессинг
210 – транскриптоном	225 – сплайсинг
211 – генами-операторами	226 – модификаторами
212 – промотора	227 – интенсификаторы
213 – интроны	228 – обратной транскрипции
214 – интроны	229 – ревертаза
215 – экзоны	230 – обратная транскрипция
216 – структурные	231 – плазмиды
217 – функциональными	232 – цитоплазматической
218 – репрессоров	233 – пластидных
219 – белков-репрессоров	234 – Б. Эфрусси
220 – терминатором	235 – митохондрий
221 – индуктор	236 – митохондриях
222 – индукторами	237 – митохондрий
223 – РНК-полимераза	238 – псевдоцитоплазматической
-	162

ГЕННАЯ ИНЖЕНЕРИЯ

239 – рестриктазы **249** – тупые 250 – клонированием 240 – аланиновой тРНК **251** – одной 241 – (био)ферментативного синтеза 242 – (био)ферментативным **252** – инсулин 243 – челночные векторы 253 – аллергогенность 254 – Penicillium chrysogenum **244** – фазмиды **255** – коз **245** – космиды **246** – 33–39 **256** – метионина **247** – SV40 257 – генный нокаут

248 – липкие

ОНТОГЕНЕТИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОГО

ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ

258 – альтернативными	272 - множественными
259 – кроссинговер	273 – аллельного исключения
260 – рецессивный эпистаз	274 – множественный аллелизм
261 – эффект положения	275 – комплементарным
262 – полное	276 – пенетрантности
263 – эпистаз	277 – плейотропией
264 – неполное	278 – кроссинговера
265 – кроссинговера	279 – плейотропного
266 – комплементарного	280 – сверхдоминированием
267 – 100	281 – кодоминантного
268 – комплементарности	282 – плейотропное действие
269 – 50 %	283 – пенетрантность
270 – 1 : 1 : 1 : 1	284 – комплементарному
271 – кумулятивной	•

Биология и генетика пола

285 – одна	298 – 140–160
286 – Ч. Бертраном	299 – гетерогаметным
287 – гинандроморфы (мозаики)	300 – контролируемыми
288 – мозаичность, гинандроморфизм	301 – митоза
289 – трисомии X	302 – Шерешевского-Тернера
290 – Шерешевского-Тернера	303 – 45,X0
291 – Клайнфелтера	304 – 2
292 – гемизиготностью	305 – 4
293 – контролируемые	306 – Клайнфельтера
294 – трансвестизм	307 – вторичным
295 – мейоза	308 – транссексуализм
296 – голандрическими	309 – тестостерону
297 – генетический	310 – трисомии X

Изменчивость

	HISMEH HIDOCTD			
311 – анеуплоидия (трисомия)	324 – мисценс			
312 – физические	325 – нонсенс-мутаці	ИМКИ		
313 – химических	326 – функциональн			
314 – Надсоном, Филипповым	327 – геномных			
315 – фенокопия	328 – нонсенс			
316 – экзонуклеазы	329 – моносомия			
317 – эндонуклеазы	330 – инверсии			
318 – транзиция	331 – моносомией			
319 – нереципрокной	332 – гаплоидия			
320 – рецессивной	333 – Робертсоновск	ие перестройки		
321 – делеция	334 – анемия Фанкон			
322 – инверсия	335 – пигментная ксе	родерма		
323 – дефишенси (делеции)	336 – количества			
•	ВУЧЕНИЯ ГЕНЕТИКИ ЧЕЛОВЕКА			
337 – пробанд	355 – цитогенет	ическим		
338 – 8–12	356 – УЗИ-диаг	ностика		
339 – коэффициент наследован				
340 – математического модели		357 – аутосомно-доминантный		
341 – гибридизации		358 – аутосомно-рецессивный		
342 – Х-сцепленный доминанти	ный 359 – инвазивнь	359 – инвазивными		
343 – конкордантностью		360 – нагрузочные		
344 – гетерокарионом	361 – 20 %			
345 – повышен	362 – прямых ин	нвазивных		
346 – снижение		ному рецессивному		
347 – УЗИ-диагностика (ультра	асонография) 364 – 56,25 %			
348 – аутосомно-рецессивному				
349 – 0	366 – 50 %			
350 – 0	367 – 50 %			
351 – повышается	368 – 20 %			
352 – 0	369 – 50 %			
353 – 0	370 – акрихин-и	притом		
354 – близнецовым	371 − 57°			
	гвенные болезни человека			
372 – церулоплазмина	377 – альбинизма	382 – Эдвардса		
· 1 3	378 – Вильсона–Коновалова	383 – Дауна		
	379 – гиперлипопротеинемии	384 – геномной		
	380 – хромосомных			
	381 – Патау			
	ЕТИЧЕСКОЕ КОНСУЛЬТИРОВАН	ІИЕ		
385 – патогенетического	388 – патогенетическ			
386 – патогенетического	389 – симптоматичес			
387 — симптоматического	(хирургическог			
(лекарственного)	390 – этиологическог			
(Menuperbellillero)	164			

РАЗМНОЖЕНИЕ	животных	У И ЧЕ ПОВЕКА	
	MIDUITIDIA	N H TEJIODENA	

РАЗМНОЖЕНИЕ ЖИ	ІВОТНЫХ И ЧЕЛОВЕКА		
391 – конъюгацией	400 – центролецитальных		
392 – осеменением	401 – митозом		
393 – оплодотворением	402 – мейозом		
394 – синкариогамией	403 – суррогатным		
395 – партеногенезом	404 – клонированием		
396 – андрогенезом	405 – онтогенезом		
397 – резко телолецитальными	406 – полиэмбриония		
398 – изолецитальными	407 – фертилизины (гиногамоны II)		
399 – изолецитальных	408 – 24–48 ч		
	ОНТОГЕНЕЗА		
	– лимфоидный		
	– репродуктивный		
	- соматотропин		
* *	- акселерацией		
<u>-</u>	– акселерацией– гетерозиготности		
· · · · · · · · · · · · · · · · · · ·	7		
<u>-</u>	- конституцию		
	– эктоморфного (астенического)		
<u>-</u>	– эндоморфного (гиперстенического)		
<u>*</u>	– гериатрия		
*	– валеологией		
	- клинической 		
1 1	– эвтаназией 		
	– деламинацией		
	– энтероцельным		
423 – эмбриональной индукцией 440	– хорион, аллантоис		
	– дискоидальный		
425 – критическими			
Гомеостаз и	ХРОНОБИОЛОГИЯ		
442 – У. Кеннон	451 – X		
443 – гомеостазом	452 – 25		
444 – усиливает	453 – 50		
445 – ослабляет	454 – 0		
446 – отрицательная	455 – 50		
447 – молекулярно-генетическом	456 – 23		
448 – Харди–Вайнберга	457 – 28		
449 — хронобиология	458 – 33		
450 – высокой	459 — фотопериодизмом		
РЕГЕНЕРАЦИЯ И ТРАНСПЛАНТАЦИЯ			
460 – регенерацией	466 – аутотрансплантация		
461 – соматическим эмбриогенезом	467 – изотрансплантация		
462 – Р. Реомюр	467 – изотрансплантация 468 – аллотрансплантация		
463 – эпиморфозом	469 – иммунологическая		
* *	•		
464 — морфаллаксисом	толерантность (терпимость)		
465 – ксенотрансплантация	470 — 6-й		

ОТВЕТЫ НА КОМПЛЕКСНЫЕ ЗАДАНИЯ

Роль биологии в системе медицинского образования

1. A - 2, 5, 6; B - 1, 3, 4

2. А2 Б5 В4 Г1 Д3

3. А5 Б2 В3 Г1 Д4

4. A2 Б4 В1 Г5 Д3

5. А3 Б4 В5 Г2 Д1

6. A4 Б3 В1 Γ2

7. А4 Б1 В5 Г2 Д3

8. А4 Б5 В1 Г3 Д2

9. А4 Б3 В5 Г2 Д6 Е1

10. A – 4, 6, 8; B – 2, 5, 9;

B-1, 3, 7

11. $2 \rightarrow 5 \rightarrow 8 \rightarrow 6 \rightarrow 3 \rightarrow 4 \rightarrow 7 \rightarrow 1 \rightarrow 9$

12. $5 \rightarrow 6 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2$

13. А4 Б7 В6 Г3 Д1 Е2 Ж5

14. A - 2, 4, 6, 7; B - 3, 8, 9, 11;

B-1, 5, 10, 12;

15. АЗ Б5 В4 Г1 Д2

16. A4 Б6 В1 Г5 Д3 Е2

17. A2 Б5 В1 Г6 Д3 Е4

18. A1 Б4 В6 Г5 Д2 Е3

19. A2 Б4 В5 Г1 Д3

20. А5 Б1 В3 Г4 Д2

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ И КЛЕТОЧНЫЙ УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО

Цитологические основы наследственности

21. $1 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 3$

22. $1 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 4$

23. $4 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 5$

24. $3 \rightarrow 5 \rightarrow 4 \rightarrow 2 \rightarrow 1$

25. $3 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 5$

26. $3 \rightarrow 5 \rightarrow 1 \rightarrow 4 \rightarrow 2$

27. A – 2, 4, 5, 8, 10, 12;

B-1, 3, 6, 7, 9, 11

28. A -3, 5, 8; B -2, 4, 9; B -1, 6, 7

29. A - 3, 4, 6, 7; B - 1, 2, 5, 8

30. АЗ Б5 В4 Г2 Д1

31. A4 Б5 В2 Г1 Д3

32. А2 Б1 В5 Г4 Д3

33. А3 Б4 В5 Г1 Д2

34. A -3, 4, 6, 8; B-1, 2, 5, 7

35. A2 Б1 В5 Г3 Д4

36. А2 Б1 В4 Г3 Д5

37. А5 Б4 В1 Г2 Д3

38. A4 Б2 В5 Г1 Д3

39. A -3, 5, 6, 8; B - 1, 2, 4, 7

40. A4 Б1 В5 Г2 Д3 Е7 Ж6

41. $2 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 6 \rightarrow 1 \rightarrow 3$

ОРГАНИЗАЦИЯ ПОТОКА ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ

42. $4 \rightarrow 3 \rightarrow 6 \rightarrow 5 \rightarrow 1 \rightarrow 2$

43. $4 \rightarrow 2 \rightarrow 1 \rightarrow 5 \rightarrow 3 \rightarrow 6$

44. $5 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 1$

45. $5 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 3$

46. $5 \rightarrow 3 \rightarrow 1 \rightarrow 4 \rightarrow 6 \rightarrow 2$

47. $4 \rightarrow 2 \rightarrow 1 \rightarrow 5 \rightarrow 3$

48. А1 Б4 В3 Г2 Д5

49. А4 Б3 В2 Г5 Д1

50. A -1, 2, 4; B - 3, 5, 6

51. A2 Б4 В3 Г1 Д5

52. A2 Б1 В4 Г3 Д5

53. A4 Б3 В5 Г2 Д1

54. A -3, 5, 7; B -1, 6; B -2, 4, 8

55. A3 Б4 B1 Γ2

56. A3 Б5 В1 Г4 Д2

57. А7 Б6 В2 Г5 Д1 Е3 Ж4

58. A2 Б3 В5 Г1 Д4

59. A -3, 5, 6; B -1, 2, 4

60. АЗ Б5 В1 Г2 Д4 Е6

ОРГАНИЗАЦИЯ НАСЛЕДСТВЕННОГО МАТЕРИАЛА

61.
$$5 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 1$$

62.
$$6 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 5 \rightarrow 2$$

63.
$$4 \rightarrow 2 \rightarrow 5 \rightarrow 1 \rightarrow 3$$

64.
$$2 \rightarrow 3 \rightarrow 1 \rightarrow 5 \rightarrow 4$$

65.
$$1 \rightarrow 5 \rightarrow 3 \rightarrow 2 \rightarrow 4$$

66.
$$4 \rightarrow 5 \rightarrow 3 \rightarrow 2 \rightarrow 1$$

67.
$$2 \rightarrow 5 \rightarrow 4 \rightarrow 1 \rightarrow 3$$

68.
$$5 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2$$

70. A – 2, 4, 7, 8;
$$B - 1$$
, 3, 5, 6

71. A – 1, 4, 5, 8;
$$B$$
 – 2, 3, 6, 7

72. A – 1, 5, 9;
$$B$$
 – 2, 4, 7; B – 3, 6, 8

79. A
$$-2$$
, 5, 6; $B - 1$, 3, 4

80. A – 2, 4, 5;
$$B - 1$$
, 3, 6

ЭКСПРЕССИЯ ГЕНОВ У ПРО- И ЭУКАРИОТ

81.
$$5 \rightarrow 1 \rightarrow 3 \rightarrow 6 \rightarrow 2 \rightarrow 4$$

82.
$$3 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 1$$

83.
$$6 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 1 \rightarrow 3$$

84.
$$1 \rightarrow 3 \rightarrow 5 \rightarrow 2 \rightarrow 4 \rightarrow 6$$

85.
$$3 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 1$$

86. A – 2, 4, 6, 8, 9;
$$E = 1, 3, 5, 7, 10$$

89. A
$$-2$$
, 4, 6, 7; B -1 , 3, 5, 8

90. A
$$-2$$
, 3, 6, 7; $B-1$, 4, 5, 8

96. A – 1, 4, 5, 8;
$$B - 2$$
, 3, 6, 7

98. A
$$-2$$
, 3, 6, 8; $B - 1$, 4, 5, 7

99. A
$$-2$$
, 4, 6, 7; B -1 , 3, 5, 8

ГЕННАЯ ИНЖЕНЕРИЯ

101.
$$4 \rightarrow 5 \rightarrow 1 \rightarrow 3 \rightarrow 2$$

102.
$$5 \rightarrow 3 \rightarrow 6 \rightarrow 1 \rightarrow 2 \rightarrow 4$$

103.
$$2 \rightarrow 4 \rightarrow 1 \rightarrow 3 \rightarrow 5$$

104.
$$5 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1$$

105.
$$4 \rightarrow 2 \rightarrow 6 \rightarrow 5 \rightarrow 1 \rightarrow 3$$

106.
$$3 \rightarrow 5 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

107.
$$3 \rightarrow 5 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 6$$

108.
$$3 \rightarrow 4 \rightarrow 1 \rightarrow 5 \rightarrow 2$$

115. A – 1, 4, 5, 7, 8;
$$B – 2$$
, 3, 6, 9, 10

121. A
$$-1$$
, 4, 8; B -2 , 5, 8; B -3 , 6, 7

122. A
$$-3$$
, 4, 6; B -1 , 2, 5

ОНТОГЕНЕТИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОГО

ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ

125. A2 Б1 В5 Г4 Д3	131. АЗ Б4 В2 Г1 Д5
126. А5 Б2 В1 Г4 Д3	132. А4 Б3 В5 Г1 Д2
127. A2 Б5 В1 Г4 Д3	133. А3 Б4 В5 Г2 Д1
128. A − 1, 5, 6, 7; Б − 2, 3, 4, 8	134. A2 Б4 В1 Г5 Д3
129. А5 Б4 В1 Г2 Д3	135. А3 Б5 В2 Г1 Д4
130. А5 Б1 В2 Г3 Д4	136. А5 Б4 В1 Г3 Д2

Биология и генетика пола

137. А3 Б4 В2 Г1 Д5	141. А3 Б4 В2 Г5 Д1
138. А5 Б3 В1 Г2 Д4	142. АЗ Б4 В2 Г5 Д1
139. A2 Б3 В1 Г5 Д4	143. A -1 , 3, 4, 6, 7; $B-2$, 5, 8
140. A3 Б1 В2 Г5 Д4	144. $3 \rightarrow 6 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 1$

Изменчивость

145. A4 Б3 В1 Г5 Д2	157. A4 Б3 В5 Г1 Д2
146. A4 Б3 В1 Г5 Д2	158. A4 Б1 В5 Г3 Д2
147. A – 1, 3, 7, 9, 10; Б – 2, 4, 5, 6, 8	159. А2 Б5 В1 Г3 Д4
148. А3 Б5 В2 Г4 Д1	160. A2 Б5 В1 Г3 Д4
149. A4 Б1 В5 Г3 Д2	161. А5 Б4 В1 Г2 Д3
150. A2 Б1 В5 Г3 Д4	162. А4 Б1 В5 Г2 Д3
151. A2 Б1 В5 Г3 Д4	163. А4 Б3 В2 Г5 Д1
152. A4 Б1 В5 Г2 Д3	164. АЗ Б4 В2 Г5 Д1
153. A3 Б5 В4 Г1 Д2	165. А5 Б2 В4 Г3 Д1
154. A3 Б2 В5 Г1 Д4	166. А4 Б3 В5 Г1 Д2
155. А5 Б1 В4 Г2 Д3	167. A – 1, 3, 6; \overline{B} – 2, 4, 5, 7, 8
156. A3 Б4 В5 Г1 Д2	168. $2 \rightarrow 5 \rightarrow 1 \rightarrow 4 \rightarrow 3$

МЕТОДЫ ИЗУЧЕНИЯ ГЕНЕТИКИ ЧЕЛОВЕКА

169. АЗ Б2 В1 Г5 Д4	180. A2 Б5 В4 Г3 Д1
170. A2 Б1 В5 Г3 Д4	181. А5 Б1 В2 Г3 Д4
171. A2 Б3 В1 Г4 Д5	182. А3 Б4 В2 Г5 Д1
172. АЗ Б1 В5 Г2 Д4	183. А5 Б3 В4 Г1 Д2
173. А3 Б4 В1 Г2 Д5	184. $2 \rightarrow 1 \rightarrow 5 \rightarrow 6 \rightarrow 3 \rightarrow 4$
174. A2 Б1 В4 Г5 Д3	185. $2 \rightarrow 4 \rightarrow 5 \rightarrow 1 \rightarrow 3$
175. А3 Б5 В1 Г2 Д4	186. $3 \rightarrow 1 \rightarrow 2 \rightarrow 6 \rightarrow 4 \rightarrow 5$
176. A4 Б1 В5 Г2 Д3	187. $2 \rightarrow 4 \rightarrow 1 \rightarrow 5 \rightarrow 3$
177. А5 Б4 В2 Г3 Д1	188. $4 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 5$
178. А3 Б4 В5 Г1 Д2	189. $1 \rightarrow 5 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 6$
179. А4 Б1 В5 Г3 Д2	

НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ ЧЕЛОВЕКА

190. A -1, 5, 7; B -2, 6, 8; B -3, 4

191. A -1, 2, 5; B - 3, 7; B - 4, 6, 8

192. А4 Б1 В5 Г3 Д2

193. А4 Б3 В2 Г5 Д1

194. А5 Б1 В2 Г3 Д4

195. A2 Б3 В5 Г1 Д4

196. А5 Б4 В2 Г3 Д1

197. А5 Б4 В2 Г3 Д1

198. А4 Б3 В2 Г5 Д1

199. A -2, 3, 4, 5, 6, 8; B-1, 7

200. А5 Б4 В2 Г1 Д3

201. А5 Б1 В4 Г2 Д3

202. А2 Б3 В1 Г5 Д4

203. А2 Б3 В4 Г5 Д1

204. A2 Б1 В5 Г3 Д4

205. A -1, 3, 4, 6, 9; \overline{b} -2, 5, 7, 8

МЕДИКО-ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ

206. А4 Б5 В2 Г1 Д3

207. A2 Б3 В1 Г5 Д4

208. A2 Б1 В5 Г3 Д4

209. A - 1, 3, 5, 7, 9; B - 2, 4; B - 6, 8

210. А4 Б3 В6 Г5 Д1 Е2

211. A2 Б1 В4 Г5 Д3

212. A4 Б2 В1 Γ3

213. A4 Б2 B1 Γ3

214. 3 4 2 5 1

215. 1 4 6 7

216. 3 4 6 7

Размножение млекопитающих и человека

217. A2 Б3 В4 Γ1

218. A -2, 4, 5, 7; B -1, 3, 6, 8

219. I - 1, 2, 3; II - 4, 5, 6

220. I – 2, 3, 4; II – 1, 5, 6

221. A – 1, 3, 4, 8, 9; B – 2, 5, 6, 7

222. A – 3, 7, 9; Б5 В4 Г6 Д1 Е8 Ж2 **233.** A4 Б3 В2 Г1 Д5 Е6

223. A -1, 2, 3; B-4, 5, 6

224. А6 Б4 В5 Г3 Д2 Е7 Ж1

225. 2, 4, 5, 7, 8, 9

226. 1, 3, 6, 10

227. 2, 7, 8

228. 1, 10

229. 4, 5, 9

230. 3, 6

231. A – 1, 6; B – 2, 7; B – 3, 8;

 $\Gamma - 4, 9; \Pi - 5, 10$

232. A – 4, 6, 7; B – 1, 3, 9; B – 2, 5, 8, 10

234. A -2, 3, 4; B-1, 5, 6

235. А4 Б3 В2 Г1 Д6 Е5

236. A2 Б1 В4 Г3 Д6 Е5

237. A – 1, 3, 4, 6, 10, 12; B – 2, 5, 7, 8, 9, 11

238. A1 Б4 В5 Г2 Д3 Е6

239. A – 1, 3, 5, 7, 9; B – 2, 4, 6, 8, 10

Эмбриональное развитие животных и человека

240. A2 Б3 В1 Г5 Д4 Е7 Ж6

241. A5 Б2 В4 Г3 Д1 Е6

242. A2 Б1 В4 Γ3

243. A -3, 5, 7, 8; B-1, 2, 4, 6

244. АЗ Б4 В1 Г2 Д5

245. A4 Б3 В5 Г2 Д1 Е6

246. A – 1, 3, 5, 7; B – 2, 4, 6, 8

247. A1; B - 2, 3; B - 2, 4, 5, 6, 8; $\Gamma - 4$, 5, 6, 7, 8

248. A -2, 4, 6, 8; B -1, 3, 5, 7; B -9, 10, 11

249. A1 Б4 В5 Г2 Д3

250. 2 3 5 6 8

251. 2 5 7 8 10

252. A2 Б1 В4 Г3 Д5 Е6

253. A4 Б3 В2 Γ1

254. A4 Б3 В1 Γ2

255. A -1, 3, 4; B-2, 5, 6

256. A – 2, 5; Б4; B – 1, 3

257. A -3, 5; B = 1, 4

258. A2; B - 3, 5; B - 1, 4

259. A -2, 4, 6; B - 1, 3, 5

260. A – 1, 2, 5, 6; B - 3, 4, 7, 8

261. A1 Б1 В1 Γ1

262. A2 Б2 B2 Γ2 **263.** A3 Б2 B3 Γ3 **264.** A4 Б3 B4 Γ3 **265.** 1 4 6 8 **266.** 2 3 5 7 **267.** 5→3→4→1→2

268. A3 Б4 В1 Γ2

269. A5 Б2 В1 Г3 Д4 **270.** A5 Б2 В1 Г3 Д4 **271.** A3 Б4 В1 Г2 **272.** A1 Б1 В1 **273.** A2 Б2 В2 **274.** A3 Б3 В3 **275.** A3 Б5 В1 Г2 Д6 Е4

ПОСТЭМБРИОНАЛЬНОЕ РАЗВИТИЕ ЖИВОТНЫХ И ЧЕЛОВЕКА

276. A1 Б3 B2
277. A2 Б1 B3
278. A – 4, 8, 9, 10; Б – 1, 2, 3, 5, 6, 7
279. A – 1, 8, 12; Б – 2, 7, 10; B – 3, 6, 9; Γ – 4, 5, 11
280. A2 Б1 B4 Γ3 Д6 E5
281. A2 Б1 B4 Γ3 Д6 E5
282. A2 Б3 B4 Γ5 Д6 E1
283. A – 1, 3, 5, 7, 9; Б – 2, 4, 6, 8, 10

284. A2 Б1 В4 Г3 Д5 **285.** A1 Б3 В4 Г5 Д6 Е2 **286.** A – 4, 5, 6, 8, 9, 10; Б – 1, 2, 3, 7, 11, 12 **287.** A – 1, 2, 3, 4, 5; Б – 6, 7, 8, 9, 10 **288.** A – 1, 3, 10; Б – 2, 4, 5, 6, 7, 8, 9 **289.** A1 Б3 В4 Г5 Д6 Е2 **290.** A6 Б5 В4 Г3 Д2 Е1 **291.** A2 Б1 В4 Г3 Д6 Е5

Гомеостаз и хронобиология

292. A3 Б5 B1 Д6 E2 **293.** A3 Б5 B1 Γ4 Д6 E2 **294.** A5 Б3 B2 Γ4 Д1 E6 Ж7 **295.** A – 1, 2; Б1; В – 3, 4; Γ5 **296.** A2 Б3 B4 Г5 Д6 E1 **297.** A6 Б1 B2 Г3 Д4 E5 **298.** A4 Б3 B5 Γ1 Д2 **299.** A5; Б – 1, 2, 4, 6; B3; Γ – 9, 10; Д – 7, 8 **300.** A1; Б – 2, 3, 4; B5; Γ – 6, 7; Д8 **301.** A – 7, 9; Б – 4, 6; B2;

303. A – 2, 5; Б – 4, 8; В1; Γ – 6, 7; Д3 **304.** A4 Б3 В5 Γ 1 Д2 Е6 Ж7 **305.** A – 2, 3, 4; Б – 1, 5, 6; В – 7, 8, 9 **306.** A – 6, 8, 9; Б – 3, 4, 5; В – 1, 2, 7 **307.** A – 3, 4, 7; Б – 1, 5, 6; В – 2, 8, 9 **308.** A – 2, 5, 8; Б – 1, 6, 9; В – 3, 4, 7 **309.** A4 Б3 В5 Γ 1 Д2 **310.** A – 1, 3, 5; Б – 2, 4, 6; В – 7, 11; Γ – 9, 12; Д – 8, 10 **311.** 1 3 5 7 8

302. A – 1, 2; B – 3, 4; B5; Γ – 6, 7; Π – 8, 9

301. A -7, 9; B-4, 6; B2 $\Gamma-1$, 3; $\mathcal{I}_{-}5$, 8

311. 1 3 5 7 8 **312.** 1 4 3 2 5 7 6 8

РЕГЕНЕРАЦИЯ И ТРАНСПЛАНТАЦИЯ

313. A2 Б3 B5 Г1 Д4 **314.** A2 Б3 B4 Г5 **315.** A – 2, 4, 6; Б – 1, 3, 5, 7, 8 **316.** A5 Б4 B1 Г2 Д3 **317.** A2 Б4 B5 Г3 Д1 **318.** A3 Б4 B2 Г5 Д1 **319.** A – 1, 4, 5, 7; Б – 2, 3, 6, 8 **320.** A2 Б1 B4 Г3 **321.** A2 Б4 B5 Г3 Д1 **322.** A3 Б4 B5 Г2 Д1 **323.** A5 Б3 B1 Г2 Д4

324. A2 Б3 В1 Г5 Д4 325. A2 Б1 В4 Г3 Д5 326. A3 Б4 В2 Г5 Д1 327. A − 2, 3, 5; Б − 1, 4, 6 328. A5 Б3 В2 Г4 Д1 329. A3 Б4 В5 Г1 Д2 330. A4 Б3 В2 Г5 Д1 331. 4→3→1→2→5 332. 2→1→4→5→3 333. 5→4→3→1→2

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Лекционный материал.
- 2. *Медицинская* биология и общая генетика : учеб / Р. Г. Заяц [и др.]. 3-е изд., испр. Минск : Выш. школа, 2017. 480 с.
- 3. Официальный сайт кафедры биологии БГМУ [Электронный ресурс]. http://biology.bsmu.by.
- 4. *Бекиш, О.-Я.* Л. Медицинская биология и общая генетика : учеб. для студ. высших учебных учреждений по специальности «Лечебное дело» / О.-Я. Л. Бекиш, В. Я. Бекиш. 3-е изд., испр. и доп. Витебск : $B\Gamma MY$, 2018. 420 с.
- 5. *Медицинская* биология и общая генетика : сборник задач / В. Э. Бутвиловский [и др.]. 2-е изд. Минск : БГМУ, 2010. 264 с.
- 6. *Медицинская* биология и общая генетика : тесты / В. Э. Бутвиловский [и др.]. Минск.: БГМУ, 2006. 228 с.
- 7. *Тейлор, Д.* Биология. В 3 т. / Д. Тейлор, Н. Грин, У. Стаут. 3-е изд. Москва : Мир, 2004. Т. 1. 454 с. Т. 2. 436 с. Т. 3. 451 с.
- 8. *Биология*. В 2 кн. / В. Н. Ярыгин [и др.] ; под ред. В. Н. Ярыгина. 5-е изд., испр. и доп. Москва : Высшая школа, 2003. Кн. 1. 432 с. Кн. 2. 334 с.
- 9. *Бутвиловский, В.* Э. Медицинская биология и общая генетика: метод. рекомендации к практ. занятиям / В. Э. Бутвиловский, В. В. Давыдов. 3-е изд. Минск: БГМУ, 2017. 54 с.
- 10. Γ ончаренко, Γ . Γ . Основы генетической инженерии : учеб. пособие / Γ . Γ . Гончаренко. Минск : Выш. школа, 2005. 183 с.
- 11. *Общая* и медицинская генетика. Лекции и задачи. Серия «Учебники, учебные пособия» / Р. Г. Заяц [и др.]. Ростов-на-Дону: Феникс, 2002. 320 с
- 12. *Слюсарев, А. А.* Биология / А. А. Слюсарев, С. В. Жукова. Киев : Вища школа, 1987. 415 с.

ОГЛАВЛЕНИЕ

введение	4
СПИСОК СОКРАЩЕНИЙ	5
ЗАКРЫТЫЕ ЗАДАНИЯ	6
Роль биологии в системе медицинского образования	
Молекулярно-генетический и клеточный уровни	
организации живого	7
Цитологические основы наследственности	7
Организация наследственного материала	15
Экспрессия генов у про- и эукариот	
Генная инженерия	
Онтогенетический уровень организации живого	23
Закономерности наследования	23
Биология и генетика пола	27
Изменчивость	30
Методы изучения генетики человека	34
Наследственные болезни человека	39
Медико-генетическое консультирование	44
Размножение животных и человека	45
Эмбриональное развитие животных и человека	
Постнатальное развитие человека	51
Гомеостаз и хронобиология	55
Регенерация и трансплантация	57
ОТКРЫТЫЕ ЗАДАНИЯ	59
Роль биологии в системе медицинского образования	
Молекулярно-генетический и клеточный уровни	
организации живого	59
Цитологические основы наследственности	59
Организация наследственного материала	64
Экспрессия генов у прокариот и эукариот	66
Генная инженерия	67
Онтогенетический уровень организации живого	68
Закономерности наследования	68
Биология и генетика пола	69
Изменчивость	70
Методы изучения генетики человека	71

Наследственные болезни человека	73
Медико-генетическое консультирование	74
Размножение животных и человека	74
Основы онтогенеза	75
Гомеостаз и хронобиология	76
Регенерация и трансплантация	77
КОМПЛЕКСНЫЕ ЗАДАНИЯ	
Роль биологии в системе медицинского образования	
Молекулярно-генетический и клеточный уровни	
организации живого	83
Цитологические основы наследственности	
Организация потока генетической информации	
Организация наследственного материала	90
Экспрессия генов у про- и эукариот	94
Генная инженерия	98
Онтогенетический уровень организации живого	
Закономерности наследования	
Биология и генетика пола	
Изменчивость	108
Методы изучения генетики человека	113
Наследственные болезни человека	
Медико-генетическое консультирование	120
Размножение животных и человека	123
Эмбриональное развитие животных и человека	129
Постэмбриональное развитие животных и человека	138
Гомеостаз и хронобиология	144
Регенерация и трансплантация	150
ОТВЕТЫ НА ЗАКРЫТЫЕ ЗАДАНИЯ	156
ОТВЕТЫ НА ОТКРЫТЫЕ ЗАДАНИЯ	160
ОТВЕТЫ НА КОМПЛЕКСНЫЕ ЗАДАНИЯ	
СПИСОГ ИСПОЛЬЗОВАННОЙ ПИТЕВАТУВЫ	

Учебное издание

Чаплинская Елена Васильевна **Бутвиловский** Валерий Эдуардович **Сычик** Людмила Михайловна и др.

ПРАКТИЧЕСКИЕ ЗАДАНИЯ ПО МЕДИЦИНСКОЙ БИОЛОГИИ И ОБЩЕЙ ГЕНЕТИКЕ

Учебное пособие

В двух частях

Часть 1

Ответственный за выпуск В. В. Давыдов Компьютерная вёрстка Н. М. Федорцовой

Подписано в печать 12.06.20. Формат 60×84/16. Бумага писчая «Снегурочка». Ризография. Гарнитура «Times». Усл. печ. л. 10,12. Уч.-изд. л. 9,37. Тираж 260 экз. Заказ 295.

Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный медицинский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/187 от 18.02.2014. Ул. Ленинградская, 6, 220006, Минск.

