ОСОБЕННОСТИ МИКРОФЛОРЫ В ТКАНЯХ СТЕНКИ ОБОДОЧНОЙ КИШКИ И БРЫЖЕЕЧНЫХ ЛИМФОУЗЛАХ ПРИ РАЗНЫХ ФОРМАХ ДИВЕРТИКУЛЯРНОЙ БОЛЕЗНИ

Полуян О.С., Хаджи Исмаил И.А., Костюк С.А., Воробей А.В. ГУО «Белорусская медицинская академия последипломного образования», г. Минск, Республика Беларусь

Актуальность. Дивертикулярная болезнь ободочной кишки является одним из наиболее распространенных заболеваний ЖКТ. Дивертикулы представляют собой мешотчатые выпячивания стенки ободочной кишки, являющиеся оптимальным эпитопом для размножения бактерий и вирусов что может вызвать серьезные воспалительные процессы в стенке кишки и в окружающих её тканях [1,2,3]. Прогрессирование этих процессов, приводит к развитию кровотечений из дивертикулов, перфораций стенки кишки, формированию параколических и тазовых абсцессов или гнойных и каловых перитонитов, образованию наружных, межкишечных или межорганных свищей с возможным развитием кишечной непроходимости [4,5,6].

Цель. Изучить патологические изменения в тканях стенки ободочной кишки брыжеечных лимфоузлов на фоне транслокации микрофлоры как фактор риска развития дивртикулярной болезни.

Материалы и методы. В исследование включено 35 пациентов с осложненной дивертикулярной болезнью ободочной кишки, находившихся на лечении Республиканском центре реконструктивной стационарном В хирургической гастроэнтерологии и колопроктологии на базе УЗ «Минская областная клиническая больница», при этом женщин -19 (54,28 \pm 6,63%), мужчин -16 (45,72 \pm 6,20%). Возраст пациентов на момент обследования составил Ме (min...max) 44,5 (35,7...81,1) года для женщин и 41,6 (36,8...77,5) года для мужчин. Патологические участки поражений левого фланга ободочной кишки были выявлены у 30 (85,71±7,74%) пациентов, поперечно-ободочной кишки — у 1 $(2,86\pm1,68\%)$ пациента, правого фланга — у 1 $(2,86\pm1,68\%)$ пациента, тотальное поражение – у 3 (8,57±2,88%) пациентов, соответствовало «западному» типу дивертикулярной болезни. В качестве биологического материала у каждого из пациентов использовали биоптаты слизистой оболочки из патологического участка дивертикула, слизистой оболочки здоровой стенки кишки, а также лимфоузла мезоколона, забранного в 10-15 мм от стенки наиболее патологически измененного отдела. Все образцы биологического материала предварительно гомогенизировали использованием TissueLyser II (Qiagen) в течение 3 мин (частота 10/с). Выделение ДНК из клинических образцов проводили с использованием набора реагентов «Нуклеосорб. Комплектация С» (ОДО «Праймтех», РБ). Оценку качества и количества выделенной ДНК оценивали спектрофотометрически. Молекулярно-генетические исследования по выявлению ДНК Herpes simplex «Новое в хирургии: наука, практика, обучение» Республиканская научно-практическая конференция с международным участием, посвященная 100-летию кафедры общей хирургии БГМУ Минск, 24 сентября 2021 г.

virus I, II типов, Cytomegalovirus, Epstein-Barr virus; ДНК условно-патогенной флоры аэробной этиологии семейства Enterobacteriacea, рода Staphylococcus species, рода Streptococcus species; ДНК метициллин-чувствительного и метициллин-резистентного Staphylococcus aureus, метициллин-резистентных коагулазонегативных Staphylococcus species; ДНК Human papilloma virus высокого (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 типов) и низкого (6, 11 типов) канцерогенного риска проводили с использованием тест-систем «АмплиСенс» (РФ). Детекцию результатов проводили в режиме реального времени с использованием программного обеспечения прибора «Rotor-Gene-6000» («Corbett research», Австралия).

Результаты. На основании проведенных исследований установлена высокая (94,28±7,95%, n=33) инфицированность биоптатов слизистой оболочки из патологического участка дивертикула и лимфоузлов мезоколона; у 2 пациентов (5,72±2,37%) исследуемые возбудители выявлены не были. ДНК исследуемых патогенов во всех (n=35) биоптатах слизистой оболочки здоровой инфицирование кишки не детектировалась. Вирусное патологических участков ободочной кишки лимфоузлов было верифицировано у 16 (45,71 \pm 6,20 %) пациентов. ДНК Herpes simplex virus I, II типов выявлялась одновременно в биоптатах патологического участка дивертикула и лимфоузлов у 5 (14,29±3,68%) пациентов; у 3 (8,57±2,88 %) пациентов ДНК вируса была выявлена только в содержимом лимфоузлов. Аналогичные данные были получены при изучении частоты встречаемости ДНК Cytomegalovirus – у 4 (11,43±3,31 %) ДНК вируса пациентов детектировалась в биоптатах патологического участка дивертикула лимфоузлов, у 1 (2,86±1,68 %) пациента – только в содержимом лимфоузла. Epstein-Barr virus была выявлена одновременно патологического участка дивертикула и лимфоузлах у 3 (8,57±2,88 %) пациентов. Частота выявления микроорганизмов бактериальной этиологии составила 94,28±7,95 % (n=33). Обращает на себя внимание тот факт, что данные возбудители выявлялись только в биоптаты слизистой оболочки из патологического участка дивертикула. При этом установлено превалирование условно-патогенной флоры аэробной этиологии семейства Enterobacteriacea, Staphylococcus species, рода Streptococcus species. Бактериальное инфицирование тканей патологических участков ободочной кишки было характерно для 33 пациентов: ДНК Enterobacteriacea выявлена в биологическом материале 28 (84,85 \pm 7,82 %) пациентов, ДНК Staphylococcus species – 22 $(66,67\pm7,21 \%)$ пациентов, ДНК Streptococcus species – 19 $(57,58\pm6,83 \%)$ пациентов, при этом моно-инфицирование данными возбудителями выявлено у 5 (15,15±3,79 %), 3 (9,09±2,97 %) и 4 (12,12±3,41 %) пациентов соответственно. Микст-инфицирование характеризовалось наличием следующих ассоциаций возбудителей: Enterobacteriacea + Staphylococcus species выявлено у 13 (39,39±5,85 %) пациентов, Enterobacteriacea + Streptococcus species - y 9 (27,27±4,98 %) пациентов, Staphylococcus species + Streptococcus species - у 5

«Новое в хирургии: наука, практика, обучение» Республиканская научно-практическая конференция с международным участием, посвященная 100-летию кафедры общей хирургии БГМУ Минск, 24 сентября 2021 г.

 $(15,15\pm3,79 \%)$ пациентов. У 1 $(3,03\pm1,73 \%)$ пациента выявлена ассоциация возбудителей Enterobacteriacea + Staphylococcus species + Streptococcus species. Из 22 образцов, положительных в отношение Staphylococcus species, 8 $(36,36\pm5,78)$ %) образцов были дифференцированы как метициллинчувствительные Staphylococcus aureus, 4 (18,19±4,18 %) – как метициллинрезистентные Staphylococcus aureus, 10 (45,45±6,40%) – как метициллинрезистентные коагулазонегативные Staphylococcus species; концентрации ДНК составили Ме (min...max) 2,37 (0,139...8,18) х 104 копий/мл образца; 3,27 (0,22...5,61) х 104 копий/мл образца и 3,82 (0,11...13,4) х 104 копий/мл образца соответственно. В ходе проведения исследований было установлено отсутствие инфицирования пораженных участков ободочной кишки и здоровой стенки кишки Human papilloma virus высокого канцерогенного риска. При этом в содержимом лимфоузла 1 (3,03±1,73 %) пациентки была выявлена ДНК Human papilloma virus 33 типа, у 2 пациенток (6,06±2,43 %) была выявлена ДНК Нитап papilloma virus 16 типа. ДНК Human papilloma virus 6 и 11 типов (низкого канцерогенного риска) была выявлена в биоптатах лимфоузлов мезоколона 2 $(6,06\pm2,43\%)$ и 5 $(15,15\pm3,79\%)$ пациентов соответственно; в биоптатах слизистой оболочки из патологического участка дивертикула, а также слизистой оболочки здоровой стенки кишки ДНК искомых патогенов не детектировалась.

Выводы. На основании проведенных исследований установлена транслокация патогенной и условно-патогенной микрофлоры бактериальной и вирусной этиологии в слизистую оболочку ободочной кишки и лимфоузлы мезоколона при осложненной дивертикулярной болезни ободочной кишки. Инфицирование пораженных участков характеризуется микст-состоянием, т.е. одновременным присутствием нескольких возбудителей, при этом основную роль играет условно-патогенная микрофлора аэробной этиологии.

Литература.

- 1. Воробьев Г.И. Основы колопроктологии М., 2006. 432 с. [Vorob'ev G.I. Fundamentals of Coloproctology M., 2006.432 р. (in Russian)]
- 2. Commane D.M., Arasaradnam R.P., Mills S. et al. Diet, ageing and genetic factors in the pathogenesis of diverticular disease. World J Gastroenterol 2009 May 28;15(20):2479-2488.
- 3. Tursi A. Biomarkers in Diverticular Diseases of the Colon. Dig Dis 2012;30:12–18.
- 4. Strate L.L., Liu Y.L., Aldoori W.H. et al. Physical activity decreases diverticular complications. Am J Gastroenterol 2009;104: 1221- 1230.
- 5. Murphy T., Hunt R.H., Fried M., Krabshuis J.H. World Gastroenterology Organisation Practice Guidelines: Diverticular Disease: 2007.
- 6. Ивашкин В.Т., Лапина Т.Л. Гастроэнтерология. Национальное руководство. М., 2008. C.450– 459.