МОЛЕКУЛЯРНОЕ ПОДОБИЕ 6-ТЕТРАГИДРОГАРМОЛА И ТАБЕРНАНТАЛОГА, СИНТЕТИЧЕСКОГО ИНГИБИТОРА СЕРОТОНИНОВОГО ТРАНСПОРТЕРА

Марцинкевич А. Ф.,

к. б. н., доцент кафедры общей и клинической биохимии учреждения образования «Витебский государственный медицинский университет», г. Витебск, Беларусь

argentum32@gmail.com;

Фомченко Г. Н.,

к. б. н., доцент, заведующий кафедрой общей и клинической биохимии учреждения образования «Витебский государственный медицинский университет», г. Витебск, Беларусь

gfomchenko25@gmail.com;

Буянова С. В.,

к. б. н., доцент, доцент кафедры общей и клинической биохимии учреждения образования «Витебский государственный медицинский университет», г. Витебск, Беларусь

bu_lana@mail.ru

В работе приводится краткий обзор свойств алкалоидов растения ибога, а также высказывается предпосылка о схожести ибогаина и эндогенно синтезируемого 6-тетрагидрогармола. Последующий анализ молекулярных дескрипторов и фармакофора серотонинового транспортера показал, что 6-тетрагидрогармол может быть использован для рационального дизайна лекарственных веществ, обладающих способностью ингибировать обратный захват серотонина.

Ключевые слова: серотонин; ибогаин; 6-тетрагидрогармол; алкоголь

MOLECULAR SIMILARITY OF 6-TETRAHYDROHARMOL AND TABERNANTHALOG, SYNTHETIC INHIBITOR OF THE SEROTONIN TRANSPORTER

Martsinkevich A. F.,

Candidate of Biology, Associate Professor of the Department of General and Clinical Biochemistry of the Educational Institution "Vitebsk State Medical University", Vitebsk, Belarus, argentum32@gmail.com;

Fomchenko G. N.,

Candidate of Biology, Associate Professor, Head of the Department of General and Clinical Biochemistry of the Educational Institution "Vitebsk State Medical University", Vitebsk, Belarus, gfomchenko25@gmail.com;

Buyanova S. V.,

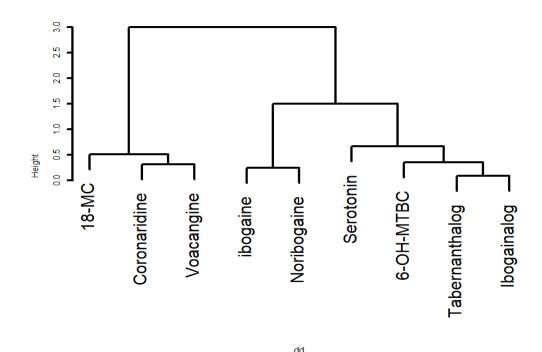
Candidate of Biology, Associate Professor of the Department of General and Clinical Biochemistry of the Educational Institution "Vitebsk State Medical University", Vitebsk, Belarus, bu_lana@mail.ru

The paper provides a brief overview of the iboga plant alkaloids properties, as well as the premise of the similarity of ibogaine and endogenously synthesized 6-tetrahydroharmol. Subsequent analysis of the molecular descriptors and pharmacophore of the serotonin transporter showed that 6-tetrahydroharmol can be used for the design of drugs that have the ability to inhibit serotonin reuptake.

Key words: serotonin; ibogaine; 6-tetrahydroharmol; alcohol

Серотонинергическая система играет важную роль в регуляции поведенческих реакций человека, опосредуя широкий спектр психоэмоциональных состояний от апатии до агрессии. Известно также, что серотонин участвует в формировании и укреплении различных зависимостей, таких как азартные игры, алкоголизм и наркомания.

Вполне ожидаемым является и то, что метаболизм серотонина является мишенью для многих психоактивных соединений, используемых в качестве лекарственных препаратов или с рекреационной целью. В контексте настоящей работы могут быть примечательны алколоиды растения ибога [1], которые наряду с галлюциногенными обладают также и анти-аддитивными свойствами, в частности, снижают тягу к алкоголю [2]. Были предприняты весьма успешные попытки получения синтетических аналогов основного алкалоида ибоги табернанталога (англ. ибогаина. приведшие к синтезу tabernanthalog), обладающего терапевтическим потенциалом, но лишенного галлюцинаторных свойств [3]. Предположительно, табернанталог ингибирует серотониновый переносчик (SERT), увеличивая время его нахождения в синаптическом пространстве и пролонгируя действие.


Ибогаин и его аналоги структурно схожи с серотонином, так как основаны на аналогичном индольном фрагменте. Также нельзя не отметить схожесть с производными тетрагидро-β-карболина, с тем лишь исключением, что вместо гексагидропиридинового цикла ибогаиноиды имеют семичленное кольцо азепана. Любопытным представляется также и то, что один из тетрагидро-βкарболинов, 6-тетрагидрогармол (6-ОН-МТВС, 6-гидрокси-метилтетрагидро-βкарболин) может синтезироваться эндогенно после употребления алкоголя. Ацетальдегид, образовавшийся при окислении этанола, вступает с серотонином в реакцию Пиктета-Шпенглера [4], которая может протекать самопроизвольно, без участия ферментов. Однако в доступных литературных источниках 6-OH-MTBC активность как правило ингибированию относят К моноаминооксидаз, опуская возможную активность по отношению к SERT. По мнению авторов, возможность поддержания достаточного уровня серотонина без активации дофаминовой системы поощрения может быть важным элементом

при лечении синдрома алкогольной зависимости, однако современная фармакология не обладает богатым арсеналом лекарственных препаратов с указанными свойствами.

Таким образом, как и в случае с ибогаином и созданным на его основе табернанталогом, 6-OH-MTBC также может быть привлекательным «соединением-лидером» для конструирования новых лекарственных соединений, снижающих тягу к алкоголю или иным психоактивным веществам.

Исходя из вышеперечисленного, целью настоящей работы было определение схожести ибогаиноидов и 6-OH-MTBC на основании молекулярных дескрипторов и структуры фармакофора.

В анализе были использованы структуры 6-OH-MTBC, а также различные ибогаиноиды, такие как 18-метоксикоронаридин, коронаридин, воакангин, ибогаин и норибогаин, табернанталог и ибогаиналог. В качестве «внутреннего стандарта» использовалось строение серотонина. Для каждой из структур рассчитывали молекулярные дескрипторы BCUT (Eigenvalue Based Descriptor), основанные на взвешенной матрице Бурдена, которая учитывает, как связность, так и атомные характеристики молекулы. Обработка данных выполнена в среде R 3.6.4. В результате иерархической кластеризации было обнаружено три относительно обособленных кластера, в один из которых были отнесены серотонин, 6-OH-MTBC, табернанталог и ибогаиналог, второй был сформирован 18-метоксикоронаридином, коронаридином, воакангином, а третий состоял из ибогаина и норибогаина (рисунок 1).

Рисунок 1. Иерархическая кластеризация по молекулярным дескрипторам BCUT.

В первом кластере наибольшее сходство имели табернанталог и ибогаиналог, а следующим элементом выступал 6-OH-MTBC.

Таким образом, можно с некоторыми основаниями утверждать о наличии у 6-ОН-МТВС и табернанталога схожего строения. Следующим этапом рационального дизайна является определение молекулярной мозаики участка табернанталога была И SERT. Для ЭТОГО использована кристаллографическая модель 6DZY из Protein Data Bank, моделирование фармакофора выполнялось при помощи программного обеспечения Ligand Scout, определение оптимальных конформаций – на основании консольной утилиты Auto Dock Vina. Фармакофор, рассчитанный для нативного лиганда содержит в своем составе следующие аминокислоты: Ala96A, Tyr95A, Asp98A, Ile172A, Ala169A, Ala173A (рисунок 2, A). Примечательно, что для 6-OH-MTBC был определен схожий набор взаимодействий: Tyr95A, Ala137A, Tyr176A, Met180A, Leu443A (рисунок 2, В).

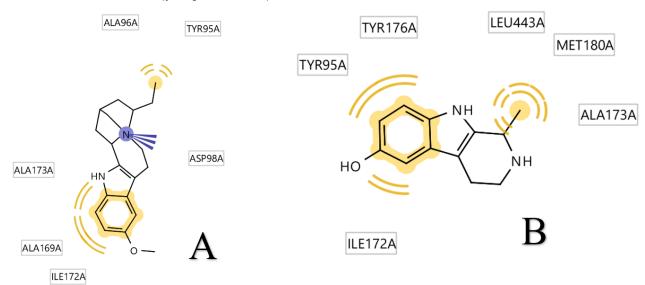


Рисунок 2. Фармакофор для ибоганоидов (А) и 6-ОН-МТВС (В)

Причем для некоторых из взаимодействий, специфических для 6-OH-MTBC была показана ингибирующая активность по отношению к серотониновому транспортеру. Исходя из полученных результатов есть основания полагать, что 6-OH-MTBC также обладает способностью замедлять обратный транспорт серотонина.

Разумеется, полученных сведений недостаточно для однозначных выводов, но они создают предпосылки для продолжения работы и подтверждают возможность использования 6-OH-MTBC в качестве «соединения-лидера» для рационального дизайна.

Список литературы

- 1. Wells, G. B. The effects of ibogaine on dopamine and serotonin transport in rat brain synaptosomes / G. B. Wells, M. C. Lopez, J. C. Tanaka // Brain Res Bull. $1999. N_2 48(6). P. 641-647.$
- 2. Rezvani, A. H. Attenuation of alcohol intake by ibogaine in three strains of alcohol-preferring rats / A. H. Rezvani, D. H. Overstreet, Y. W. Lee // Pharmacol Biochem Behav. 1995. № 52(3). P. 615-20.
- 3. A non-hallucinogenic psychedelic analogue with therapeutic potential / L. P. Cameron [et al] // Nature. -2021. V.589. No 7842. P.474-479.
- 4. Beck, O. Serotonin condensation product 5-hydroxymethtryptoline: evidence for in vivo formation from acetaldehyde during intoxication using deuterium labelled ethanol / O. Beck, A. Tyler, K. Faull // Alcohol Alcohol Suppl. − 1987. − №1. − P. 743-747.