УДК: 61:615.1(043.2) ББК: 5:52.82 А 43

ISBN: 978-985-21-0765-5

Горшков Н. Р.

ХАРАКТЕР РАСПРЕДЕЛЕНИЯ СЛУХОВЫХ РЕЦЕПТОРОВ ПО КООРДИНАТАМ ОРГАНА КОРТИ ПО G. VON BEKESY

Научный руководитель: канд. биол. наук, доц. Овчинников Е. Л.

Кафедра медицинской физики, математики и информатики Самарский государственный медицинский университет, г. Самара

Актуальность. До середины прошлого века распределение слуховых рецепторов по координатам органа Корти было не установлено. Впервые графический вид зависимости был представлен G. von Bekesy на основе его экспериментов (1947 г.). В данной работе предлагается аналитическая зависимость этого распределения.

Цель: установление аналитической зависимости слуховых рецепторов по координатам органа Корти (базилярной мембраны).

Материалы и методы. Эксперименты G. von Bekesy, их математическое описание и биофизическое моделирование.

Результаты и их обсуждение. В предлагаемой работе даётся аналитическое представление о распределении слуховых рецепторов по координатам органа Корти, основанное на экспериментах Bekesy. Впервые такое предположение было высказано в его работе «А new audiometer». Это представление было основано на базе экспериментов и идеи Bekesy о том, что за каждые полгода человек теряет по 80 Γ ц в верхней частотной области звукового диапазона. Такое представление было высказано учёным, если его модель будет носить пропорциональную зависимость: f_B (t) = - f^b · t + f_{m0} , где f_{m0} = 20 f_{m0} = 20 к гц – верхняя максимальная слышимая граница слухового диапазона для f_{m0} = 0 лет. Эта зависимость линейная, но она принимает экзотический вид, если представить вертикальную ось частот в логарифмическом масштабе. Этот вид и представляет собой распределение слуховых рецепторов по координатам, если при этом горизонтальная ось времени будет заменена на ось координат слуховых рецепторов простым линейным соотношением f_{m0} = f_{m0} = f_{m0} - f_{m0}

Выводы. Распределение слуховых рецепторов по органам Корти в таком случае является приближённым и не вполне корректным. Она только в первом приближении становится правомерной и поэтому является приближённой к истинному распределению, но значение этой модели становится ощутимой, потому что является первой из теоретических моделей распределения координат слуховых рецепторов в органе Корти по частотам звука.