А. П. Пантюхов

ПРИМЕНЕНИЕ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ В ИНТЕРЕСАХ МЕДИЦИНЫ

Кафедра организации медицинского обеспечения войск и экстремальной медицины военно-медицинского факультета в УО «БГМУ»

Интенсивное развитие в мире в XXI веке БПЛА многоцелевого использования создало предпосылки для их применения в интересах медицины.

Ключевые слова: беспилотный летательный аппарат, дистанционно пилотируемый летательный аппарат, беспилотные авиационные системы, неотложная медицина, экстренная медицинская служба, чрезвычайная ситуация.

A. Pantsiukhou

APPLICATION OF PILOTLESS FLYING MACHINES IN INTERESTS OF MEDICINE

Intensive development in the world in the XXI-st century of pilotless flying machines of multi-purpose use has created preconditions for their application in interests of medicine.

Key words: a pilotless flying machine, pilotless aviation systems, urgent medicine, emergency medical service, an extreme situation

В конце XX века стали интенсивно применять беспилотные летательные аппараты (далее — БПЛА) как военного, так и специального назначения. Особенно впечатляют успехи военных БПЛА. Во время войны в Югославии (1999 г.) войска НАТО использовали следующие БПЛА: США «Пайонир», «Предэйтор», «Хантер», Франция «Кресерель», Великобритания «Феникс», Франция и ФРГ «CL-289». Несмотря на выявленную высокую уязвимость БПЛА от грамотно применяемых средств ПВО, была подтверждена перспективность применения БПЛА.

С 2001 года в Афганистане и Ираке одни только американцы использовали около 20 моделей БПЛА, при этом из года в год увеличиваются их возможности, количество и налет.

Во время югоосетинских событий (2008 г.) российские военные были неприятно удивлены возможностями израильских БПЛА «Hermes 450», воевавших на грузинской стороне. Это стимулировало в Российской Федерации увеличение денежных средств на разработку и закупку БПЛА, в том числе и за рубежом.

О масштабах развития БПЛА можно судить по количеству стран, занимающихся разработкой БПЛА: в 1970-х до 15 стран (около 50 моделей), в 2005 году 32 страны (около 250 моделей), в настоящее время около 60 стран. Лидерами в разработке БПЛА являются: США (341 разработчиков), Израиль (72), Франция (65), Россия (53), выше 30 имеют Италия и Германия (по состоянию на начало 2009 г.). При этом только 6 стран обладают полной технологией производства комплексов с БПЛА [2].

Если в 2005 г. мировой рынок БПЛА составлял 2 млрд. \$, то на ближайшее десятилетие оценивается в 30-55 млрд. \$.

Основными достоинствами БПЛА являются: их относительно низкая цена, малый вес, большая безопасность при эксплуатации, возможность работы в опасных условиях без угрозы жизни пилоту, экономия на подготовке пилота и расходе горючего, возможность дистанционного управления аппаратом, не нужны аэродромы с бетонным покрытием и др.

БПЛА применяются как самолетного, так и вертолетного типа. При этом у каждого из этих типов есть как положительные качества, так и недостатки.

Современные беспилотные летательные аппараты делят на два типа: военного назначения (разведывательные, ударноразведывательные, корректировочно-разведывательные) и специального назначения-как военного, так и гражданского назначения.

Быстрый прогресс в разработке и производстве БПЛА военного назначения стимулировал разработку БПЛА многоцелевого применения.

В гражданской сфере БПЛА применяются в основном для мониторинга чрезвычайных ситуаций (далее-ЧС), для наблюдения за состоянием электросетей, нефтепроводов, движением транспорта, ретрансляции сигналов, геофизической аэро-, фото-, видеосъемки, аэрокартографии и др. [9]

Увеличению возможностей БПЛА способствует быстрый прогресс используемого навесного оборудования для БПЛА. Неудивительно, что такой быстрый прогресс возможностей БПЛА привлекает к ним медицинских работников, как военных, так и гражданских.

Первые попытки использования БПЛА в интересах медицинской службы проводились в конце 1970-х годов, когда пытались осуществлять поиск раненых военнослужащих с воздуха с помощью оптики. Однако первые опыты оказались неудачными из-за несовершенства технологий. В настоящее время появились достаточно совершенные технологии (новые композитные материалы, нанотехнологии, микропроцессоры, солнечные батареи, сверхъемкие аккумуляторы, гиростабилизированные оптико-электронные системы, эффективные средства приема и передачи информации, навигации, радиолокации и др.), что значительно увеличило возможности БПЛА [5].

Так, за счет использования на БПЛА тепловизоров, лазерных дальномеров, новых цифровых технологий, новой оптики США удалось добиться возможности находить раненых и пострадавших в труднодоступных местах [1].

В Японии создан аппарат A124, который при использовании датчиков на каждом военнослужащем может показывать его месторасположение, а при ранении-датчик подает определенный сигнал о повреждении пользователя. Данные системы дублирует спутник [1].

Подобные аппараты разрабатываются фирмой «Си-Норд» (г. Санкт-Петербург), выпустившей объектное оборудование «МБ-О4», «МБ-О5», «МБ-О6 Маяк», «МБ-О6 Спутник», «МБ-О6 Надежда», «ДПС», «ДНД», «S-911», «GT 2000 NР», интегрированное в систему мониторинга мобильных объектов с помощью программного продукта «Андромеда» [2].

Система мониторинга мобильных объектов «Андромеда» позволяет осуществлять мониторинг состояний контролируемого объекта-определение его местоположения, направления и скорости движения, прием от объекта сообщений, в т. ч. с кодом «Тревога», означающим ранение или получение травмы военнослужащим или выход из строя техники. При этом количество объектов, подключаемых к системе «Андромеда», неограниченно. Кроме того, возможно отслеживать перемещения наблюдаемого объекта на электронной карте местности в режиме реального времени; мгновенно получать сигнал тревоги с координатами местоположения объекта на карте.

В 2007 году во время военных действий в Ливане израильские военные вновь столкнулись с проблемой безопасной и своевременной эвакуации раненых с поля боя, а также своевременной доставки медицинского имущества под огнем противника. Была сформулирована MedUAV концепция применения беспилотной платформы для эвакуации раненых и пораженных с поля боя и зоны ЧС (рис. 1).

В 2007 году в Израиле был анонсирован проект медицинского БПЛА «MULE», компании Urban Aeronautics [7]. Данный БПЛА представляет собой вертолет, принимающий на борт 4 раненых. Габаритные параметры: длина — 8 метров, ширина — 3 м. и высота — 1,5 м. Благодаря отсутствию внешних роторов БПЛА может безопасно работать в густо застроенной местности. Загрузку в вертолет выполняет звено санитаров-носильщиков. Раненые и пострадавшие в нем находятся в ячейках, к каждому из них может быть подключен специальный датчик, подсоединенный к компьютеру, основными задачами которого являются постоянный контроль за основными жизненно важными показателями и передача этих данных в центр управления.

Новый вертолет может развивать скорость до 150 км/ч. Легко бронирован, снабжен системой обороны и противодействия нападению. Новая оптическая система в соответствии с программой посадки позволяет обеспечить точное приземление в назначенный район и стабильное пилотирование машины в любых боевых условиях (рис. 2.)

Интересен опыт Южной Африки, где успешно испытали модернизированный военный БПЛА, который может перевозить медицинские образцы для испытаний или доставлять редкое лекарство, например, змеиное противоядие к жертвам укусов [12]. Это оказалось экономически целесообразным для удаленных регионов, особенно в сезон дождей (рис. 3.).

Данные БПЛА управляются оператором, используя GPS и микроэлектронные гироскопы для навигации. Они могут сбрасывать свой груз в определенную точку и возвращаться назад по пройденному пути, но могут и приземляться автоматически или подудаленным контролем оператора. Больший из двух БПЛА получил название «e-Juba»-от зулусского слова голубь. Он был разработан военной компанией Denel Dynamics, и может пе-

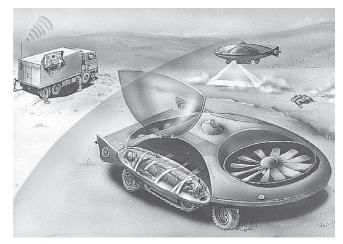


Рис.1. Концепция MedUAV. Израиль

Рис. 2. Модель БПЛА для эвакуации раненых

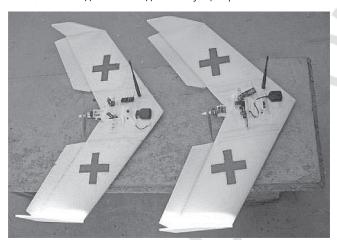


Рис. 3. Электронный голубь. ЮАР.

Рис. 4. Беспилотный вертолет «ZALA 421-06»

реносить груз весом 500 грамм. Этого достаточно для перевозки большинства образцов крови и слюны или двух емкостей с кровью для переливания.

Одним из возможных вариантов применения БПЛА для медицины, это использования их для ретрансляции в интере-

Рис. 5. БПЛА «Иркут-200»

Рис. 6. БПЛА «Иркут-10»

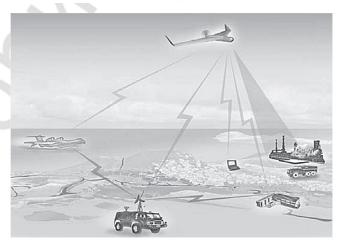


Рис. 7 Схема использования БПЛА «Иркут-10» в ЧС

Рис. 8. БПЛА «Бусел». Республика Беларусь.

сах медицинских работников аудио-, видеосигналы в зонах невидимости. Так многие проекты роботизированных мобильных комплексов для телехирургии и телемедицины предусматривают наличие в данном комплексе БПЛА – ретранслятора.

В настоящее время в мире существует десятки БПЛА, которые могли бы осуществлять следующие операции в интересах медицины:

поиск раненых и пострадавших в труднодоступных районах локальных конфликтов и ЧС:

доставку раненым, пострадавшим и медицинским формированиям, находящимся в труднодоступных (опасных для доставки) местах, различных грузов;

разведку мест предполагаемого развертывания сил и средств медицинской службы;

определять границы зоны ЧС (очага массовых санитарных потерь);

осуществлять мониторинг радиологической, токсикологической, пожароопасной обстановки и т.д. в зоне ЧС.

Принимая во внимание соотношение цены и качества, то в настоящее время в интересах медицины в условиях Республики Беларусь уже могли бы функционировать БПЛА, производства Российской Федерации: «ZALA 421-06», «ZALA 421-15» [15], «Истра-12» [10], «Иркут-10», «Иркут-200» [8], «Пустельга-4» [13] (рис. 4-6), а также украинский многоцелевой беспилотный авиакомплекс «Сапсан» [14].

Схема использования БПЛА «Иркут-10» в ЧС представлена на рис.7.

В Республике Беларусь выпустили первую партию БПЛА «Бусел», которые имеют широкую сферу применения (рис. 8). В модельный ряд белорусских беспилотников входят также авиакомплексы «Стриж», «Грач» и «Мишень» [11]. Данные белорусские БПЛА предназначены для охраны границы, выявления очагов пожаров, мониторинга зоны затопления (наводнения), облёта магистральных газо-, нефтепроводов и т.д., но пока не планируется использовать их в интересах медицины.

Выводы

- 1. Применение БПЛА в интересах медицины является перспективным направлением.
- 2. Важными характеристиками БПЛА, которые могут быть использованы для медицинского обеспечения в районах локальных конфликтов и ЧС, являются: простота в использовании, всепогодность, наличие автоматического комплекса управления с возможностью управления в ручном и автоматическом режимах от взлета до посадки, возможность экстренной доставки раненым и пострадавшим в труднодоступных местах грузов медицинского назначения, наличие систем поиска раненых и пораженных.
- 3. Для поиска раненых и пораженных БПЛА должны быть оборудованы:

тепловизионными системами (двух-или трехканальных, малых размеров, работающих в различных спектральных диапазонах, охватывающих видимую, ближнюю инфракрасную и дальнюю инфракрасную области спектра). Наиболее перспективным представляется применение комбинированных телетепловизионных систем;

гиростабилизированными комбинированными системами (видеокамера, целеуказатель, инфракрасная камера);

системами приема команд и передачи видео информации и телеметрии в реальном времени, а также системами автоматизации и навигационными системами ГЛОНАСС (GPS).

Литература

- 1. Белевитин, А. Б. Информационные технологии на службе военной медицины / А. Б. Белевитин, А. М. Шелепов, Е. А. Солдатов // Военмед. журн. 2009. № 5. С. 4-12.
- 2. Белевитин, А. Б. Информационные технологии на службе военной медицины / А. Б. Белевитин [и др.] // Воен.-мед. журн. 2010. № 7. С. 4-9.
- 3. Ершов, А. Л. Применение вертолетов для оказания экстренной внебольничной медицинской помощи (обзор литературы) / А. Л. Ершов // Мед.-биол. и соц.-психол. пробл. безопасности в чрезв. ситуациях. 2008. № 2. С. 3 19.
- 4. Скотников, А. П. Роль и место беспилотных комплексов в системе вооружения Российской армии / А. П. Скотников, В. И. Якубов, С. В. Шиховец // Воен. мысль. 2007. № 4. С. 62 68.
- 5. Солдатов, Е. А. Перспективы использования беспилотных летательных аппаратов в интересах медицинской службы в ходе ликвидации последствий чрезвычайных ситуаций / Е. А. Солдатов [и др.] // Мед.-биол. и соц.-психол. пробл. безопасности в чрезв. ситуациях. 2010. \mathbb{N}^2 2. С. 50 54.
- 6. Сухачев, А. Б. Исследование технико-экономических характеристик перспективных комплексов беспилотных летательных аппаратов / А. Б. Сухачев [и др.] //Электросвязь. 2008. № 5. С. 16 20.
- 7. www.jewish.ru/news/world/2008/02/news994259063.php (Военное обозрение Jewish. Статья: ВВС Израиля представили беспилотный вертолет для спасения раненых с поля боя).
- 8. http://bp-la.ru/bespilotnyj-letatelnyj-apparat-irkut-10/#more-63.
- 9. http://bp-la.ru/primenenie-bespilotnyx-letatelnyx-apparatov-v-grazhdanskix-celyax/.
- 10. http://bp-la.ru/bespilotnik-istra-12/.
- 11. http://www.ctv.by/news/~news=51018.
- 12. http://infuture.ru/article/1130.
- 13. http://www.microavia.ru/projects/pustelga/index.htm«Пустельга.
- $14.\,http://www.spec-naz.org/forum/forum14/topic2531/.$
- 15. http://zala.aero/ru/uav/1205400748.htm.

Поступила 21.03.2011 г.