Е. В. Клинцов, П. В. Жук ВЛИЯНИЕ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ НА ОБМЕН ПУРИНОВЫХ ОСНОВАНИЙ

Научный руководитель канд. хим. наук, доц. Н.Н. КовганкоКафедра биологической химии
Белорусский государственный медицинский университет, г. Минск

Резюме. Проведен анализ способности лекарственных средств — производных имидазола, пиридина и тетрагидропирана ингибировать работу фермента ксантиноксидаза с целью поиска потенциальных противоподагрических препаратов.

Ключевые слова: имидазол, пиридин, тетрагидропиран, ксантиноксидаза, ингибитор.

 $\it Resume$. The analysis of the ability of drugs – imidazole, pyridine and tetrahydropyran derivatives inhibit the enzyme xanthine oxidase work.

Keywords: imidazole, pyridine, tetrahydrofuran, xanthineoxidase, inhibitor.

Актуальность. При нарушении обмена пуринов и повышенном содержании мочевой кислоты в плазме крови развивается заболевание подагра. Мочевая кислота является конечным метаболитом, образующимся под действием фермента ксантиноксидаза в организме из пуриновых оснований. Вследствие плохой растворимости мочевая кислота может образовывать в тканях кристаллы, что в дальнейшем приводит к развитию воспалительной реакции, сопровождающейся болью. Для лечения заболевания используются аллопуринол (конкурентный ингибитор) и фебуксостат (неконкурентный ингибитор) фермента ксантиноксидазы [1]. Основной проблемой при создании препаратов для лечения подагры, является токсичность. Это и стимулирует постоянный поиск новых структур, способных эффективно ингибировать работу фермента ксантиноксидазы. Следует отметить, что в последнее время интерес к поиску новых соединений, способных эффективно ингибировать работу ксантиноксидазы, возрос [2-5]. Было показано, что соединения, содержащие имидазольный и другие гетероциклы в своей структуре, обладают большим потенциалом [2] и обладают очень высокой активностью, порой превосходящую активность аллопуринола и фебуксостата.

Цель: изучить влияние лекарственных соединений, содержащих различные гетероциклические фрагменты, на работу фермента ксантиноксидаза.

Задачи:

- 1. Определить ингибирующую способность производных имидазола.
- 2. Определить ингибирующую способность производных пиридина.
- 3. Определить ингибирующую способность производных тетрагидропирана.
 - 4. Сравнить ингибирующую способность исследованных соединений.

Материалы и методы исследований. Для исследования использовались коммерчески доступные действующие вещества лекарственных средств бифоназол, клотримазол, кетоконазол (производные имидазола), изониазид (производное пири-

дина) и кларитромицин (производное тетрагидропирана).

Изучение способности полученных соединений ингибировать работу фермента ксантиноксидаза проводили при 37°С в условиях открытого воздуха при рН 7.4 (фосфатный буфер). Для того, чтобы оценить ингибирующие свойства синтезированных соединений, использовали методику, основанную на спектрофотометрическом определении количества образовавшейся мочевой кислоты в УФ-области при 293 нм [4]. К буферному раствору добавляли ксантин (20 µМ), синтезированное вещество (5,3 µМ) (раствор в ДМСО) и фермент. В качестве контроля использовали раствор ксантина и исследуемого вещества (для нивелирования поглощения при длине волны 293 нм). Стандартный образец представлял собой раствор в буфере ксантина (20 µМ) и фермента. По разности оптических плотностей стандартного и опытного образцов определяли % ингибирования действия фермента в присутствии синтезированного соединения с концентрацией 5,3 µМ.

Результаты и их обсуждение исследованные вещества проявили ингибирующие свойства, которые приведены в таблице 1.

*Таблица 1.*Ингибирующие свойства соединений

Соединение	% ингибирования при концентрации 5,3 µМ
Бифоназол	0,3
Клотримазол	0,4
Кетоконазол	5,0
Изониазид	3,6
Кларитромицин	3,4
Аллопуринол	92,2

Из данных таблицы видно, что наиболее активным соединением оказался кетоконазол, который ингибировал фермент на 5.0% при концентрации 5.3μ М. В целом просматривается закономерность, что наличие полярных заместителей в молекуле улучшает ее ингибирующие свойства.

Выводы.

- 1. Лекарственные соединения на основе имидазола, пиридина и тетрагидропирана оказывают влияние на работу фермента ксантиноксидаза и выступают ее ингибиторами.
- 2.Среди исследованных соединений наибольшую активность проявил кетоконазол (лекарственное средство на основе имидазола).

E. V. Klintsou, P. V. Zhuk EFFECT OF HETEROCYCLIC COMPOUNDS FOR PURINE BASES EXCHANGE

Tutor PhD, associate professor N. N. Kauhanka
Department of biological chemistry
Belarussian State Medical University, Minsk

Литература.

- 1. Borges, F. Progress Towards the Discovery of Xanthine Oxidase Inhibitors. / F. Borges, E. Fernandes, F. Roleira // *Curr. Med. Chem.* 2002. Vol. 9, № 2. P. 195–217.
- 2. Chen, S. Synthesis and evaluation of 1-hydroxy/methoxy-4-methyl-2-phenyl-1 H-imidazole-5-carboxylic acid derivatives as non-purine xanthine oxidase inhibitors. / S. Chen, T. Zhang, J. Wang, F. Wang, H. Niu, C. Wu, S. Wang // Eur. J. Med. Chem. 2015. Vol. 103. P. 343–353.
- 3. Kumar, R. Xanthine oxidase inhibitors: a patent survey. / R. Kumar, Darpan, S. Sharma, R. Singh // Expert Opin. Ther. Pat. 2011. Vol. 21, № 7. P. 1071–1108.
- 4. Pacher, P. Therapeutic Effects of Xanthine Oxidase Inhibitors: Renaissance Half a Century after the Discovery of Allopurinol. / P. Pacher, A. Nivorozhkin, C. Szabo // *Pharm. Rev.* − 2006. − Vol. 58, № 1. − P. 87–114.
- 5. Wang, S. Synthesis of some 5–phenylisoxazole–3–carboxylic acid derivatives as potent xanthine oxidase inhibitors. / S. Wang, J. Yan, J. Wang, J. Chen, T. Zhang, Y. Zhao, M. Xue // Eur. J. Med. Chem. -2010. Vol. 45, N_2 6. P. 2663–2670.