МЕДИКО-БИОЛОГИЧЕСКИЕ, СОЦИАЛЬНО-ПЕДАГОГИЧЕСКИЕ И ПСИХОЛОГИЧЕСКИЕ АСПЕКТЫ ФИЗИЧЕСКОГО ВОСПИТАНИЯ СТУДЕНЧЕСКОЙ МОЛОДЕЖИ

Аниськова О.Е., Ромбальская А.Р.

СРАВНИТЕЛЬНОЕ ИССЛЕДОВАНИЕ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СИСТЕМЫ ВНЕШНЕГО ДЫХАНИЯ СТУДЕНТОВ

УО «Белорусский государственный университет физической культуры», Минск, Беларусь

Одним из важнейших составляющих элементов гомеостаза высших животных и человека является кислородный гомеостаз. Его сущность заключается в создании и поддержании эволюционно закрепленного оптимального уровня напряжения кислорода в структурах, обеспечивающих освобождение энергии и ее утилизацию.

Кислородный гомеостаз создается и поддерживается деятельностью системы обеспечения организма кислородом, включающей внешнее дыхание, кровообращение, кровь, тканевое дыхание, нейрогуморальные регуляторные механизмы [3].

В нормальных условиях эффективность биологического окисления, соответствует функциональной активности органов и тканей. При нарушении этого соответствия возникает состояние энергетического дефицита, приводящее к разнообразным нарушениям вплоть до гибели ткани. Недостаточное энергетическое обеспечение процессов жизнедеятельности и лежит в основе состояния, называемого гипоксией.

(кислородное голодание, кислородная недостаточность) -Гипоксия патологический процесс, типичный возникающий результате недостаточности биологического окисления обусловленной энергетической необеспеченности жизненных процессов. Поскольку обеспечении тканей кислородом участвует ряд органов и систем (органы дыхания, сердечно-сосудистая система, кровь и др.) нарушения функции каждой из этих систем может привести к развитию гипоксии. Деятельность указанных систем регулируется и координируется центральной нервной системой, в первую очередь, корой головного мозга. Поэтому нарушение центральной регуляции этих систем также приводит к развитию кислородного голодания. Гипоксия является патогенетической основой разнообразных патологических состояний и заболеваний. При любом патологическом процессе Поскольку смерть явления гипоксии. является прекращением спонтанного кровообращения и дыхания, значит, в конце любой смертельной болезни, не зависимо от ее причин наступает острая гипоксия. Умирание организма всегда сопровождается тотальной гипоксией с развитием

гипоксического некробиоза и гибелью клеток. Кислородное голодание часто является ближайшей причиной расстройств еще и потому, что запасы кислорода у высших организмов ограничены: у человека, примерно, 2-2,5 л.. Этих запасов кислорода, даже при условии полного использования их, достаточно для существования лишь в течение нескольких минут, но нарушение функций возникает при наличии еще значительного содержания кислорода в крови и тканях [2].

В зависимости от причин и механизма развития различают следующие основные типы гипоксий, представленные в таблице 1.

Таблица 1 Типы гипоксий

TD Y
Типы гипоксий
Экзогенные
1. Гипоксический:
а) гипобарический; б) нормобарический
2. Гипероксический:
а) гипобарический; б)
нормобарический
Дыхательный (респираторный)
Сердечно-сосудистый (циркулярный)
а) ишемический; б) застойный
Гемический (кровяной)
а) анемический; б) вследствие
инактивации гемоглобина
Тканевой (первично-тканевой)
а) при нарушении способности
клеток поглощать кислород;
б) при разобщении окисления и
фосфорилирования (гипоксия
разобщения)
Субстратный
Перегрузочный (гипоксия нагрузки)
Смешанный
а) молниеносный (взрывной); б)
острый;
в) подострый; г) хронический
а) общий; б) регионарный
а) легкий, б) умеренный, в) тяжелый,
г) критический (смертельный)

К наиболее простым гипоксическим пробам, которые используются в спортивной медицине, относятся пробы Штанге и Генчи. Они позволяют оценить адаптацию человека к гипоксии и гипоксемии, т.е. дают некоторое представление о способности организма противостоять недостатку кислорода. Лица, имеющие высокие показатели гипоксемических проб, лучше переносят физические нагрузки. В процессе тренировки, особенно в условиях среднегорья, эти показатели увеличиваются [1].

<u>Проба Штанге:</u> измеряется максимальное время задержки дыхания после субмаксимального вдоха.

*Методика проведения :и*сследуемому предлагают сделать вдох, выдох, а затем вдох на уровне 85-95% от максимального. При этом плотно закрывают рот и зажимают нос пальцами. Регистрируют время задержки дыхания.

Оценка пробы: средние величины пробы Штанге для женщин -40-45 сек, для мужчин -50-60 сек, для спортсменок -45-55 сек и более, для спортсменов -65-75 сек и более. Для детей (по данным Язловецкого В.С., 1991г.) 7-11 лет -30-35 сек, 12-15 лет -40-45 сек, 16-17 лет -45-50 сек. По данным Тихвинского С.Б. отличаются почти в 1,5-2 раза.

С улучшением физической подготовленности в результате адаптации к двигательной гипоксии время задержки дыхания нарастает. Следовательно, увеличение этого показателя при повторном обследовании расценивается (с учетом других показателей) как улучшение подготовленности (тренированности) спортсмена.

<u>Проба Генчи</u>: регистрация времени задержки дыхания после максимального выдоха.

*Методика проведения: ис*следуемому предлагают сделать глубокий вдох, затем максимальный выдох. Исследуемый задерживает дыхание при зажатом пальцами носе и плотно закрытом рте. Регистрируется время задержки дыхания между вдохом и выдохом.

Оценка пробы: в норме у здоровых людей время задержки дыхания составляет 25-40сек (на 40-50% меньше показателей пробы Штанге). Спортсмены способны задержать дыхание на 40-60 сек и более. При утомлении время задержки дыхания резко уменьшается.

По величине показателя пробы Генчи можно косвенно судить об уровне обменных процессов, степени адаптации дыхательного центра к гипоксии и гипоксемии.

Нами было обследовано 106 студентов третьего курса всех факультетов Белорусского государственного университета физической культуры (БГУФК). Лиц женского пола было меньше, чем мужского: 33 (31,1%) и 73 (68,9%), соответственно. Средний возраст обследуемых составил 20 лет (от 19 до 21). На факультете оздоровительной физической культуры и спорта (ФОФКиТ) было обследовано 44 студента (23 женщины и 21 мужчина), на спортивно-педагогическом факультете массовых видов спорта (СПФ МВС) – 26 человек (6 женщин и 20 мужчин) и на спортивно-педагогическом факультете спортивных

игр и единоборств (СПФ СИиЕ) — 36 спортсменов (4 женщины и 32 мужчины). На момент обследования продолжали тренироваться 61 студент (57,5%) (25 женщин и 36 мужчин), из которых на ФОФКиТ — 19 студентов (15 женщин и 4 мужчины), на СПФ МВС — 14 обследуемых (6 женщин и 8 мужчин) и на СПФ СИиЕ — 28 человек (4 женщины и 24 мужчины). Для тренированных мужчин проба Штанге составила: на ФОФКиТ — 57 сек., на СПФ МВС — 95 сек. и на СПФ СИиЕ — 81сек.; проба Генчи — на ФОФКиТ — 30 сек., на СПФ МВС — 45 сек. и на СПФ СИиЕ — 35сек. Для нетренированных мужчин проба Штанге составила: на ФОФКиТ — 53 сек., на СПФ МВС — 79 сек. и на СПФ СИиЕ — 75сек.; проба Генчи — на ФОФКиТ — 29 сек., на СПФ МВС — 35сек. и на СПФ СИиЕ — 31сек. В среднем для тренированных мужчин проба Штанге составила 78 сек., а проба Генчи — 37 сек.; для нетренированных в среднем проба Штанге составила 69 сек., а проба Генчи — 32 сек.

Для тренированных женщин проба Штанге составила: на ФОФКиТ – 45 сек., на СПФ МВС – 75 сек. и на СПФ СИиЕ – 61 сек.; проба Генчи – на ФОФКиТ – 28 сек., на СПФ МВС – 35 сек. и на СПФ СИиЕ – 30 сек. Для нетренированных женщин проба Штанге составила: на ФОФКиТ – 48 сек., на СПФ МВС – 63 сек. и на СПФ СИиЕ – 59 сек.; проба Генчи – на ФОФКиТ – 27 сек., на СПФ МВС – 31 сек. и на СПФ СИиЕ – 29 сек. В среднем для тренированных женщин проба Штанге составила 60 сек., а проба Генчи – 31 сек.; для нетренированных в среднем проба Штанге составила 57 сек., а проба Генчи – 29 сек.

Таким образом, можно сделать следующие выводы:

- 1. По результатам проведения проб адаптацию человека к гипоксии и гипоксемии, а также способность организма противостоять недостатку кислорода всех обследованных студентов 3 курса БГУФК в 2014 году можно оценить как среднюю.
- 2. Наиболее высокие показатели адаптации организма к гипоксии выявлены у представителей СПФ MBC, мужчин и женщин, как тренированных, так и нетренированных.
- 3. Не отмечено существенных различий в способности организма студентов противостоять недостатку кислорода в зависимости от пола, спортивной квалификации и продолжительности тренировочной деятельности.

Литература

- 1. Гамза, Н.А. Функциональные пробы в спортивной медицине / Н.А. Гамза, Г.Р. Гринь, Т.В. Жукова; Белорус. гос. ун-т физ. культуры. 4-е изд., стереотипное. Минск: БГУФК, 2013. 57 с.
- 2. Макарова, Г.А. Спортивная медицина / Г.А. Макарова. Москва: Советский спорт, 2002.-478 с.
- 3. Спортивная медицина: учебник для институтов физической культуры / под ред. В.Л. Карпмана: 2-е изд., перераб. Москва: ФиС, 1987. 304 с.