П. А. Перевощиков, С. Н. Русак

ОСОБЕННОСТИ ЭКСПРЕССИИ ПОСТТРАНСЛЯЦИОННЫХ МОДИФИ-КАЦИЙ α-ТУБУЛИНА И ИЗОТИПОВ β-ТУБУЛИНА ПРИ БОЛЕЗНИ КРОНА И ЯЗВЕННОМ КОЛИТЕ

Научный руководитель канд. мед. наук, доц. А. С. Портянко Кафедра патологической анатомии, Белорусский государственный медицинский университет, г. Минск

Резюме. В работе представлены результаты анализа экспрессии ацетилированного и тирозинированного α-тубулина, β_I-, β_{III}-тубулинов в слизистой оболочке толстой кишки при болезни Крона и язвенном колите. Использован биопсийный материал 27 пациентов с язвенным колитом, 9 пациентов с болезнью Крона и 23 человек группы сравнения. Измерение экспрессии проводилось путем компьютерного анализа препаратов, окрашенным методом двойной иммунофлуоресценции.

Ключевые слова: ацетилированный, тирозинированный, β_{I} -, β_{II} -, β_{III} .

Resume. In this research, we present results of analysis of expression of acetylated, tyrosinated α -tubulin, β_{I} -, β_{III} -tubulins in colonic mucosa of patients with Crohn's disease and ulcerative colitis. Biopsy material of 27 patients with ulcerative colitis, 9 patients with Crohn's disease and 23 people of control group was used for the analysis. Expression was measured by computer image analysis of immunofluorescence-stained sections.

Keywords: acetylated, tyrosinated α -tubulin, β_{I^-} , β_{II^-} , β_{III^-} tubulin.

Актуальность. Внедрение новых лекарственных препаратов в настоящее время во многом базируется на изучении молекулярного патогенетического каскада заболеваний. Обнаружение ключевых молекул патогенеза и изучения способов воздействия на них является основой создания лекарств таргетного воздействия.

Тубулины представляют собой семейство белковых молекул, являющихся одним из главных компонентов цитоскелета. Их отличает большое разнообразие: основные типы – α- и β-тубулин представлены большим числом изотипов и посттрансляционных модификаций. Выявлено 8 генов, кодирующих изотипы α- тубулина и 7 генов β-тубулина [1]. Основа различия биомолекул – гипервариабельный Сконец. Кроме того аминокислотная последовательность может быть изменена после трансляции путем добавления или отщепления аминокислотных остатков, реакций фосфорилирования или ацетилирования. Изучена биохимическая роль подобных модификаций, однако их функции в клетке до сих пор не расшифрованы. Достоверно известно, что в ходе дифференцировки клетки происходит ремоделирование цитоскелета, одним из компонентов которого является изменение экспрессии различных модификаций тубулина [2]. Сходные изменения были обнаружены также в опухолевых клетках.

Хронические воспалительные заболевания кишечника (XB3K) — группа заболеваний, включающая язвенный колит (ЯК) и болезнь Крона (БК), основным проявлением которых является хроническое воспаление кишечника. Этиология этих заболеваний остается неизвестной. Схема патогенеза содержит много белых пятен. Все

это наряду со сходством морфологической, эндоскопической, а во многих случаях и клинической картин обусловливает сложность их дифференциальной диагностики. Изучение особенностей ремоделирования цитоскелета при данных заболеваниях может помочь в уточнении картины патогенеза, послужить основой создания новых диагностических методик и направлений лекарственного воздействия.

Цель: Описать изменения экспрессии ацетилированного и тирозинированного α -тубулина и β_{I} - β_{II} - изотипов в слизистой оболочке толстой кишки при болезни Крона и язвенном колите.

Задачи:

- 1. Изучить особенности экспрессии модификаций тубулинов при БК и ЯК в сравнении с нормой.
- 2. Установить зависимость обнаруженных изменений и морфологических признаков воспаления.

Материал и методы. В ходе работы было использовано 233 биопсийных фрагмента слизистой оболочки толстой кишки. Биопсийный материал был получен в ходе колоноскопии от пациентов с язвенным колитом (27 человек: 15 мужчин, 12 женщин, средний возраст 35,3±5,3 года) и болезнью Крона (9 человек: 5 мужчин, 4 женщины, средний возраст 45,8±13,8 года). Кроме того была сформирована группа сравнения (23 человека: 8 мужчин, 15 женщин, средний возраст 47,5±5,1 года). Поводом для проведения колоноскопии с биопсией в группе сравнения послужили следующие симптомы: хроническая диарея – 7 случаев, абдоминальная боль – 9 случаев, анемия – 5 случаев, хронический запор – 1 случай, лихорадка – 1 случай. В ходе морфологического исследования были исключены XB3К и другие состояния, протекающие с поражением толстого кишечника. Были установлены следующие диагнозы: функциональные заболевания кишечника – в 19 случаях, В₁₂-дефицитная анемия – в 2 случаях, целиакия – в 1 случае, другие, не связанные с кишечником, заболевания – 1 случай.

Биопсийный материал забирался в соответствии с диагностическими требованиями — не менее 2 фрагментов из каждого сегмента толстой кишки. Материал из каждого сегмента помещался в отдельный флакон. Фрагменты ткани фиксировались в 10 % нейтральном забуференном формалине в течение 48 ч, после чего проводились по батарее спиртов восходящей концентрации и заключались в парафин. В исследование были включены биоптаты из 2 наиболее измененных участков кишечника, мелкие малоинформативные биоптаты исключались.

Гистологические срезы окрашивались гематоксилином и эозином. Препараты анализировались на предмет наличия воспаления и другой структурной патологии: эрозий, интраэпителиальной нейтрофильной инфильтрации, уменьшения содержания крипт.

Для анализа экспрессии тирозинированного (Tyr), ацетилированнного (Acet), β_{I^-} , β_{III} -тубулинов использовалось окрашивание по методу иммунофлуоресценции в соответствии с разработанным протоколом [4].

В качестве первичных были использованы мышиные антитела к модификациям тубулинов. Также использовались мышиные антитела к цитокератину и кроличьи антитела к цитокератину широкого спектра. При окраске серий препаратов использовались следующие комбинации антител: βι-тубулин+WSS, βш-тубулин+WSS, Асеt-тубулин+AE1/AE3, Туг-тубулин+AE1/AE3. Для визуализации применялись вторичные гусиные антитела, конъюгированные с флуорохромом AlexaFluor® (Molecular Probes, Invitrogen, США) в разведении 1:200. Использованные комбинации антител представлены в таблице 1.

Таблица 1. Первичные и вторичные антитела

Первичные антитела	Изотип	Клон	Разведение	Вторичные	Флуорохром,	
				антитела	длина волны,	
					HM	
К Туг-тубулину	IgG3	TUB-1 A2	1:800	анти- IgG3	488	
(Sigma)			4			
К Acet-тубулину	IgG2b	6-1B-1	1:800	анти-IgG2b	546	
(Sigma)						
К β _I -тубулину (Sigma)	IgG ₁	SAP.4G5	1:1200	анти- IgG1	555	
К β _{ІІІ} -тубулину	IgG1	5G8	1:1000	анти-IgG1	555	
(Promega)						
К цитокератину ши-		WSS	1:1250	анти-F(ab')2	488	
рокого спектра						
(DAKO)						
К цитокератину	IgG1	AE1/AE3	1:400	анти-IgG1	488 и 555	
(DAKO)			-			

Для оценки экспрессии β_{II} - тубулина, гистологические срезы окрашивались по методике иммуногистохимии. Использовались моноклональные мышиные антитела к β_{II} -тубулину (клон JDR3B8, изотип Ig G_{2b} , разведение 1:40, BioGenex, США). Оценивалось наличие, либо отсутствие позитивного окрашивания эпителия.

Для оценки и съемки препаратов использовался микроскоп Leica DM5000B, оснащенный флуоресцентной осью и цифровой фотокамерой Leica DFC420C. Использовалось увеличение ×200. На каждом тканевом фрагменте производилась съемка 1-2 неперекрывающихся поля зрения. Выбор поля зрения производился на канале цитокератина - для исключения систематической ошибки выбора, связанной с влиянием видимой позитивной искомой реакции на решение исследователя.

Анализ полученных изображений производился с использованием программного пакета eCognition Developer v.9 (Trimble, Германия). Компьютерный анализ включал этапы: выделение ядер на канале DAPI, выделение эпителиальных регионов на канале цитокератина, классификация эпителиальных структур и стромы. Полученная зона выделения накладывалась на изображения, полученные на канале тубулина и производилось измерение интенсивности флуоресценции.

Средняя интенсивность свечения региона (Ирег) определялась как отношение

суммарной интенсивности пикселей региона к его площади. Для стандартизации полученных значений был использован внешний позитивный контроль ($N_{\kappa+}$). В качестве И_{к+} использовались структуры слизистой оболочки с высокой интенсивностью флуоресценции анализируемых тубулинов: эпителий крипт одного из препаратов группы сравнения (Туг, β_I), клетки стромы препарата группы сравнения (Acet), эпителиальные регионы с позитивной реакцией на β_{III} -тубулин в одном из препаратов группы XB3K. Также измерялось свечение эпителия в отрицательном контрольном препарате ($И_{9п.K}$ -).

Нормализованный уровень экспрессии (НУЭ) вычислялся по формуле: $HYЭ = \frac{\text{Ирег - Иэп.к}}{\text{Ик+- Истр.к-}} \times 100$

$$HYЭ = \frac{\text{Ирег - Иэп.к}}{\text{Ик+- Истр.к-}} \times 100$$

Статистический анализ производился с использованием пакета RStudio, v. 0.98.1103 (RStudio, Inc., США).

Результаты. Экспрессия Туг-, Асеt- и β_I -тубулина была обнаружена во всех исследованных случаях. Вш-тубулин в норме в эпителиальных клетках слизистой оболочки не выявлялся, напротив в части препаратов ХВЗК была обнаружена его гиперэкспрессия. Вп-тубулин в эпителии не выявлялся.

Было обнаружено, что содержание Tyr-, Acet- и β_I-тубулина в поверхностном эпителии и эпителии крипт достоверно различается. Кроме того при БК и ЯК были выявлены достоверные изменения экспрессии исследуемых тубулинов в сравнении с нормой (Таблица 2).

Таблица 2. Значения экспрессии модификаций α- и β-тубулина в исследуемых группах. Жирным шрифтом обозначены значения, достоверно отличающиеся от контрольных.

	Группа	Эпителий крипт			Поверхностный эпителий		
		Среднее	Доверительный интервал		Среднее	Доверительный интервал	
			-95%	+95%		-95%	+95%
Acet	БК	37,5	32,3	42,6	26,3	21,9	30,7
	ЯК	28,5	25,4	31,3	20,0	17,6	22,3
	Контроль	44,7	40,7	48,6	32,0	28,6	35,4
Tyr	БК	88,5	71,3	105,7	62,7	51,9	73,6
	ЯК	77,6	69,6	85,6	56,6	50,3	62,9
	Контроль	67,6	60,7	74,6	51,7	46,3	57,0
$\beta_{\rm I}$	БК	92,2	75,9	118,6	48,3	36,1	60,5
	ЯК	70,5	61,8	79,2	38,3	32,2	44,3
	Контроль	83,8	74,8	92,9	38,4	32,4	44,4

$\beta_{\rm III}$	БК	4,0	1,7	6,2	3,4	1,3	5,5
	ЯК	6,0	3,6	8,5	5,8	1,9	9,6
	Контроль	1,7	0,5	2,9	0,6	-0,6	1,8

Содержание Acet-тубулина в эпителии было достоверно снижено при БК и ЯК в сравнении с нормой. При ЯК экспрессия тубулина была достоверно ниже, чем при БК. Кроме того обнаружена ассоциация данных изменений и эрозий эпителия.

При БК наблюдалась также гиперэкспрессия Туг-тубулина, в то время как при ЯК такие изменения были редки и не было выявлено достоверных отличий от нормы.

Анализ экспрессии β_I -тубулина в группе БК было выявил увеличение экспрессии содержания данного белка в поверхностном эпителии. В группе ЯК отмечено снижение уровня данного тубулина в эпителии крипт.

Наиболее выраженные изменения были обнаружены для β_{III} -тубулина. Обнаруженное ранее различие между нормальной и воспаленной слизистой оболочкой было подтверждено в ходе статистического анализа в группе ЯК. Появление его в клетках было ассоциировано с наличием эрозий, уплощением эпителия и уменьшением содержания крипт — то есть с признаками высокой активности воспаления. Несмотря на наличие сходных изменений в части препаратов БК, статистически значимых отличий от нормы не было выявлено.

Выводы:

- 1 Хроническое воспаление кишечника при болезни Крона и язвенном колите сопровождается перестройкой состава микротрубочек.
- 2 Для болезни Крона характерно: уменьшение экспрессии ацетилированного тубулина, увеличение содержания тирозинированного тубулина в эпителии крипт и $\beta_{\text{I-}}$ тубулина в поверхностном эпителии. При язвенном колите отмечена гипоэкспрессия ацетилированного тубулина и гиперэкспрессия β_{III} тубулина во всех структурах эпителия, уменьшение содержания β -I тубулина в эпителии крипт.

P. A. Perevoschikov, S. N. Rusak

CHARACTERISTICS OF EXPRESSION OF α -TUBULIN POSTTRANSLATIONAL MODIFICATIONS AND β -TUBULIN ISOTYPES IN CROHN'S DISEASE AND ULCERATIVE COLITIS

Tutor Associate professor A. S. Portyanko, Department of Pathology, Belarusian State Medical University, Minsk

Литература

1. Fojo, T. The role of microtubules in cell biology, neurobiology, and oncology/ T. Fojo. - Hu-

70-я Международная научно-практическая конференция студентов и молодых учёных "Актуальные проблемы современной медицины и фармации - 2016"

mana Press, 2008. – 628 pp.

- 2. Zink, S. Tubulin detyrosination promotes monolayer formation and apical trafficking in epithelial cells / S. Zink [et al.] //Journal of Cell Science 2012. 125. P. 5998–6008.
- 3. Carles, G. Differentiation of human colon cancer cells changes the expression of β -tubulin isotypes and MAPs / G. Carles [et al.] // British Journal of Cancer -1999. 80(8). P. 1162–1168.
- 4. Портянко, А.С.. Экспрессия ацетилированного альфа-тубулина при хронических воспалительных заболеваниях и аденокарциноме толстой кишки. / А.С. Портянко [и др.] // Лечебное дело. 2016. 48(2). С. 39-46.