АНАЛИЗ ЛИПОФИЛЬНЫХ СОЕДИНЕНИЙ CEMЯH DÁUCUS CARÓTA C ЦЕЛЬЮ РАЗРАБОТКИ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Горлачёва В. И., Ткачук О. Ю., Вишневская Л. И.

Национальный фармацевтический университет, г. Харьков

Ключевые слова: морковь дикая, липофильные соединения, хромато-масс-спектрометрия **Резюме:** Проведен анализ липофильных соединений семян Daucus carota L. (Umbelliferae) методом хромато-масс-спектрометрии. Идентифицировано 30 соединений, среди которых преобладают терпеновые соединения и жирные масла, следовательно, семена Daucus carota можно считать перспективным сырьем для разработки новых косметических и лекарственных средств.

Resume: The analysis of lipophilic compounds seed Daucus carota L. (Umbelliferae) by the method of chromato-mass-spectrometry. It identified 30 compounds, which are dominated by terpene compounds and fatty oils, therefore, seeds of Daucus carota can be considered trans-promis- raw material for the development of new medicines and cosmetics.

Актуальность. Семейство Umbelliferae — одно из наиболее широко применяемых в хозяйственном отношении семейств цветковых растений в качестве пищевых (преимущественно овощных и пряных), кормовых и технических растений [1]. Многие зонтичные высоко ценятся как источники эфирных масел.

Некоторые виды Umbelliferaeae ядовиты. Многие лекарственные растения Umbelliferae (дудник даурский, вех ядовитый, вздутоплодник сибирский) используются в фармацевтической промышленности как спазмолитические средства, при различного рода кровотечениях, хронических болезненных сыпях.

Одним из представителей семейства Umbelliferae является Daucus carota (L.). В семенах моркови дикой содержатся эфирные и жирные масла, алкалоиды, дубильные вещества, органические кислоты, сахара, флавоноиды и кумарины [1, 2].

На данный момент на фармацевтическом рынке существует ряд препаратов, в состав которых входит экстракт семян моркови дикой для лечения острых и хронических заболеваний почек мочевого пузыря формы И (различные мочекаменной и желчнокаменной болезни, солевые диатезы, острые и хронические пиелонефриты и холецистит, холангиогепатит и дискинезия желчных путей). В фитотерапии семена моркови дикой используются как противовоспалительное антигельминтное, спазмолитическое, ветрогонное, мочегонное, абортивное средство, для нормализации и стимуляции менструаций [1-3].

Цель: определение липофильных соединений семян в полученном гексановом экстракте семян D. Carotae.

Материалы и методы:

Исследование проводилось методом хромато-масс-спектрометрии, который широко применяется для определения качественного состава пробы [5].

Высушенные и измельченные семена моркови дикой экстрагировали гексаном в соотношении 1 : 6. Внутренний стандарт тридекан вводили в пересчете 50 µг субстанции на определенное количество растительного образца.

Исследования проводили на хроматографе Agilent Technologies, оснащенном хроматографической колонкой (с внутренним диаметром 0,25 мм и длиной 30 м), серии 6890 с масс-спектрометром серии 5973.

Температура термостата была запрограммирована от 50 °C (1 мин) и затем до 320 °C со скоростью 4 °C/мин, последнее значение температуры удерживалось в течение 9 мин. В качестве газа-носителя использовали гелий, скорость газа-носителя -1.2 мл/мин.

Соединения идентифицировали, используя библиотеки масс-спектров Nist 05 и Wiley 138.

Результаты исследования и их обсуждение:

Значения содержания основных компонентов (> 0.1% от общей площади пика), полученные в результате эксперимента, представлены в таблице.

Таблица 1. Хромато-масс-спектрометрическое определение соединений в образцах экстрактов семян $D.\ carotae$

No	<i>D. carotae</i> Индекс удержания,	Соединение	Содержание компонентов, мг/кг
Π/Π	мин		, , ,
1	5.27	α-пинен	1369.9
2	6.18	сабинен	2850.1
3	6.28	β-пинен	90.3
4	6.61	мирцен	370.8
5	7.59	лимонен	386.9
6	8.45	ү-терпинен	22.1
7	9.66	линалоол	383.6
8	12.36	вербенон	84.6
9	15.23	борнилацетат	57.5
11	17.29	α-терпинилацетат	189.5
12	18.7	геранилацетат	9861.8
13	19.81	β-кариофиллен	2215.2
14	20.32	транс-α-бергамотен	433.1
15	20.65	гумулен	141.3
16	20.84	β-фарнезен	747.7
17	21.39	гермакрен D	89.0
18	22.4	β-бисаболен	697.0
19	22.69	β-сесквифелландрен	83.1
20	24.02	кариофилленоксид	677.4
21	25.28	гексадекан	66.7
22	28.64	миРис.тиновая кислота	137.7
23	31.84	пальмитиновая кислота	918.7
24	31.97	этилпальмитат	103.5
25	34.09	линолевая кислота	3408.5
26	34.16	олеиновая кислота	2927.0

Инновации в медицине и фармации 2015

27	41.31	дитерпеновое производное	819.0
		гераниола	
28	42.63	стигмаста-3,5-диен	21.0
29	45.26	β-амирин ацетат	72.3
30	45.55	α-амирин ацетат	131.4

Как видно из данных таблицы, в химическом составе гексанового экстракта семян D. carotae было идентифицировано 30 соединений: жирные кислоты, терпеновые соединения, спирты, углеводород и т. д. Среди них преобладают терпены (моно-, ди- и тритерпены). Среди обнаруженных терпеновых соединений, которые обладают спазмолитическими, антимикробными, противовоспалительными свойствами, больше всего содержится геранилацетата (9861.8) и сабинена (2850.1). Также наблюдается достаточно высокое содержание жирных кислот, в особенности, линолевой (3408.5) и олеиновой (2927.0), – алифатических одноосновных карбоновых кислот с открытой цепью, содержащихся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения. Линолевая кислота является незаменимой в организме человека, а олеиновая – одна из самых важных жирных кислот, принимающих участие в обмене веществ. Содержание углеводородов (в частности, гексадекана) в семенах моркови дикой является низким. Среди спиртов, кетонов и эфиров достаточно содержится линаоола (383.6), который используют в косметической промышленности при разработке средств гигиены, продуктов для бритья, декоративной косметики, парфюмерии, средств по уходу за кожей, в том числе и продуктов для загара, а также как ароматизатор в продуктах и смягчитель ткани.

Выводы:

По результатам проведенных исследований, семена D. carotae являются перспективным сырьем для получения терпеновых соединений и жирных масел и разработки на их основе лекарственных, профилактических и косметических средств.

Литература

- 1. Barnes J. Herbal Medicines / Barnes J., Anderson L., Phillipson D. Third edition. London: PhP, 2007. 710 p.
- 2. Herbal Drugs and Phytopharmaceuticals. A handbook for practice on a scientific basis. Edited and translated from the second German edition by Norman Grainger Bisset. German ed., edited by Max Witchl, Marburg. With a foreword by J. David Phillipson. London: Stuttgart, 1994. 566 p.
 - 3. O. Ballesteros, A. Zafra, A. Naval'on, and J. L. V'ılchez, J. Chrom. A., 1121, 154, (2006).
- 4. Вміст летких речовин у водно-етанольних екстрактах Achillea millefolium 1. та Achillea collina j. becker ex rchb / Γ . В. Корнільєв, А. Є. Палій, В. Д. Работягов // Біологічні студії. − 2011. − Т. 5. № 3. С. 103-108.
- 5. Дученко М. А. Хромато-мас-спектрометричне визначення компонентного складу ефірної олії гледичії звичайної / М. А. Дученко, О. В. Демешко, С. В. Ковальов // Український біофармацевтичний журнал. − 2010. − № 2. − С. 46-50.
- 6. Журавель І. О. Вивчення складу ефірної олії плодів кардамону / О. І. Журавель // Український біофармацевтичний журнал. -2010. -№ 2. C. 51-53.

Инновации в медицине и фармации 2015

- 7. Зеленець В. І. Дослідження моно- та сесквітерпеноїдних сполук рослин роду Galinsoga ruiz et pav флори України / В. І. Зеленець, В. М. Ковальов, Т. О. Краснікова // Український біофармацевтичний журнал. -2011. -№ 3. -34-38.
- 8. Морковь дикая, морковь обыкновенная Daucus carota L.: Аналит. Обзор / Б. Зузук, Р. Куцик, И. Гресько (и др.) // Провизор. -2005. -№ 10. C. 37-41.
- 9. Смірнов О. Флавоноїди рутин і кверцетин. Біосинтез, будова, функції / О. Смірнов, О. Косик // Вісник Львівського університету. 2011. № 56. С. 3-11.
- 10. Химический состав и антимикробная активность эфирного масла Daucus carota sativa / X. Imamu, A. Yili, H. A. Aisa (и др.) // Химия природных соединений. 2007. № 4. С. 404–405.