ХРОМАТО-МАСС-СПЕКТРОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ КАРБОНОВЫХ КИСЛОТ ЦВЕТКОВ ЯСНОТКИ ПУРПУРНОЙ

Очкур А.В., Гончаров А.В.

Национальный фармацевтический университет, кафедра фармакогнозии, г. Харьков

Ключевые слова: хромато-масс-спектрометрия, яснотка пурпурная (Lamium purpureum L.), карбоновые кислоты, высшие жирные кислоты, ароматические кислоты.

Резюме: Методом хромато-масс-спектромерии исследован состав карбоновых кислот цветков яснотки пурпурной (*Lamium purpureum* L.). Идентифицировано и установлено содержание 24 соединений, в т. ч. 8 низкомолекулярных алифатических кислот, 10 высших жирных кислот, 6 ароматических кислот. Суммарное содержание карбоновых кислот в венчиках составило 4,1 %, в чашечках -2.3 %.

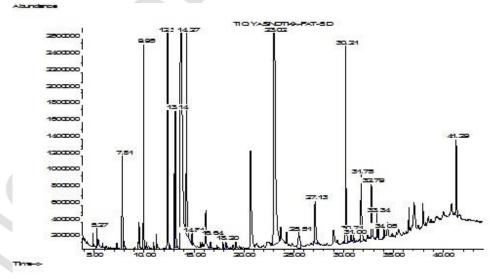
Resume: The composition of the carboxylic acids of *Lamium purpureum* L. flowers have been carried out by the method of gas chromatography-mass spectrometry. Identified and quantified 24 compounds including 8 low molecular weight aliphatic acids, 10 higher fatty acids and 6 aromatic acids. The total content of carboxylic acid in corollas was 4.1%, in calyces -2.3%.

Актуальность. Растения рода Яснотка (*Lamium* L.), являющегося типовым для семейства Яснотковые (*Lamiaceae*), — одно-, дву- и многолетние травы. Род включает в себя почти 40 видов, произрастающих в Европе, Азии и Северной Африке, наиболее распространенными из которых являются яснотка белая (*L. album* L.), яснотка пурпурная (*L. purpureum* L.) и яснотка крапчатая (*L. maculatum* L.). Виды рода издавна используются в народной медицине многих стран мира для лечения ушибов, переломов, параличей, гипертонии, меноррагий и маточных кровотечений, запоров и других заболеваний. В эксперименте биологически активные вещества (БАВ) травы и цветков яснотки пурпурной проявляют противовоспалительную, антиноцицептивную, антибактериальную, антиоксидантную и антирадикальную активность [4, 5].

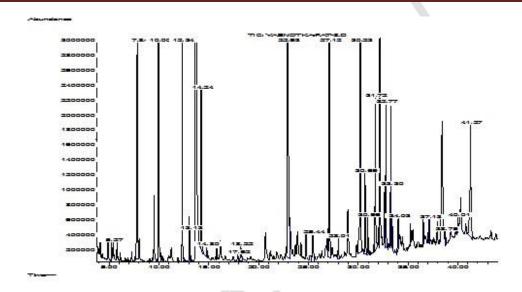
Таким образом, растения рода Яснотка, широко представленного во флоре Украины и сопредельных государств, являются перспективными объектами для фармакогностического исследования.

Ранее нами был исследован состав карбоновых кислот травы, листьев и цветков яснотки белой флоры Харьковской области [1, 2]. В настоящей работе нами изучены карбоновые кислоты цветков яснотки пурпурной.

Цель: изучение качественного и количественного состава карбоновых кислот цветков (венчиков и чашечек) яснотки пурпурной.


Задачи: 1. Провести пробоподготовку и анализ исследуемого сырья. 2. Интерпретировать и проанализировать полученные результаты.

Материал и методы. Объектом исследования стали цветки (венчики и чашечки) травы яснотки пурпурной, заготовленной в июле 2013 г. в Харьковской обл.


Исследование проводили методом хромато-масс-спектрометрии на хроматографе Agilent Technologies 6890 с масс-спектрометрическим детектором 5973. Для этого к 50 мг (точная навеска) сухого растительного материала, помещенного в виалу на 2 мл, добавляли внутренний стандарт (50 мкг тридекана в гексане) и добавляли 1 мл метилирующего агента (14 % BCl₃ в метаноле, Supelco 3-3033). Смесь выдерживали в герметично закрытой виале в течение 8 ч при 65 °C. Реакционную смесь сливали с осадка и разбавляли 1 мл дистиллированной воды. Для извлечения метиловых эфиров жирных кислот к смеси добавляли 0,2 мл хлоРис.того метилена, аккуратно встряхивали несколько раз в течение часа, после чего полученный экстракт метиловых эфиров хроматографировали. Введение пробы (2 мкл) в хроматографическую колонку проводили в режиме splitless.

Для идентификации компонентов использовали библиотеки масс-спектров NIST05 и WILEY 2 007 в сочетании с программами для идентификации AMDIS и NIST. Для количественных расчетов использовали метод внутреннего стандарта [3].

Результаты и их обсуждение. Хроматографические профили метиловых эфиров карбоновых кислот венчиков и чашечек цветков я. пурпурной показаны на Рис. 1-2.

Puc. 1 - Хроматографический профиль метиловых эфиров карбоновых кислот венчиков яснотки пурпурной

Рис. 2. - Хроматографический профиль метиловых эфиров карбоновых кислот чашечек яснотки пурпурной

По результатам исследования в сырье было выявлено 24 карбоновые кислоты (20 в венчиках и 23 в чашечках), в т. ч. 8 низкомолекулярных алифатических кислот (НАК), 10 высших жирных кислот (ВЖК) и 6 ароматических кислот (АрК). Количественный состав идентифицированных карбоновых кислот приведен в Таблица1.

Таблица1. Содержание карбоновых кислот в венчиках и чашечках цветков яснотки пурпурной

№	Время	Название соединения	Содержание, мг/кг				
п/п	удерж.,		Венчики	Чашечки			
	МИН		цветка	цветка			
НАК							
1	9.99	щавелевая кислота	1906,6	3557,5			
2	12.34	малоновая кислота	5113,9	1130,0			
3	13.13	фумаровая кислота	1399,5	143,3			
4	14.24	янтарная кислота	5890,3	800,4			
5	16.64	глютаровая кислота	218,6	-			
6	22.93	яблочная кислота	17240,1	3721,0			
7	25.44	азелаиновая кислота	623,7	313,7			
8	30.23	лимонная кислота	2714,7	5171,0			
Сум	ма НАК		35107,4	14836,9			
ВЖК							
9	5.26	капроновая кислота	142,3	58,6			
10	27.11	пальмитиновая кислота	984,3	2725,9			
11	28.00	пальмитолеиновая кислота	-	145,3			
12	30.68	стеариновая кислота	191,6	596,6			
13	30.96	олеиновая кислота	149,8	255,7			
14	31.72	линолевая кислота	1333,9	1005,4			
15	32.77	линоленовая кислота	937,4	890,9			

16	34.02	арахиновая кислота	148,8	241,1			
17	37.13	бегеновая кислота	-	117,1			
18	40.00	тетракозановая кислота	-	147,7			
Сумм	Сумма ВЖК			6184,3			
АрК							
19	14.80	бензойная кислота	122,8	52,9			
20	17.92	фенилуксусная кислота	100,6	65,3			
21	18.21	салициловая кислота	165,2	172,6			
22	33.30	ванилиновая кислота	340,9	204,1			
23	38.74	сиреневая кислота	-	104,5			
24	41.26	феруловая кислота	1240,7	1344,9			
Сумм	Сумма АрК			1944,3			
Сумм	Сумма карбоновых кислот			22965,5			

Среди НАК идентифицировано и определено содержание 5 насыщенных дикарбоновых (щавелевой, малоновой, янтарной, глютаровой и азелаиновой), 1 ненасыщенной дикарбоновой (фумаровой), 1 гидроксидикарбоновой (яблочной) и 1 гидрокситрикарбоновой (лимонной); среди ВЖК – 6 насыщенных (капроновой, стеариновой, арахиновой, бегеновой, тетракозановой), пальмитиновой, мононенасыщенные (пальмитолеиновой и олеиновой), 2 полиненасыщенных (линолевой и линоленовой); среди АрК – бензойной, 3 фенолокислот (салициловой, сиреневой), фенилкарбоновой (фенилуксусной) ванилиновой 1 гидроксикоричной (феруловой).

Общее содержание НАК в венчиках более чем в 2 раза превышает их содержание в чашечках. Среди НАК в венчиках преобладают яблочная (17240,1 мг/кг), янтарная (5890,3 мг/кг) и малоновая (5113,9 мг/кг), в чашечках — лимонная (5171,0 мг/кг), яблочная (3721,0 мг/кг) и щавелевая (3557,5 мг/кг). Содержание ВЖК, напротив, гораздо выше в чашечках, при этом в венчиках преобладают ненасыщенные кислоты (62,3 %), а в чашечках — насыщенные (62,9 %). Среди АрК высоким содержанием как в венчиках, так и в чашечках отличается феруловая кислота (1970,2 мг/кг и 1944,3 мг/кг соответственно).

Идентифицированные карбоновые кислоты являются важными БАВ растений и вносят существенный вклад в различные виды фармакологической активности фитопрепаратов. Полученные результаты будут использованы для стандартизации цветков яснотки пурпурной.

Выводы: 1. Методом хромато-масс-спектромерии исследован состав карбоновых кислот венчиков и чашечек цветков я. пурпурной. Идентифицировано и установлено содержание 24 соединений. 2. Установлено, что среди выявленных НАК в венчиках превалируют яблочная, янтарная и малоновая, а в чашечках – лимонная, яблочная и щавелевая. Среди ВЖК в венчиках преобладают ненасыщенные кислоты, а в чашечках – насыщенные. Среди АрК высоким содержанием в обоих видах сырья отличается феруловая кислота. Суммарное содержание карбоновых кислот в венчиках составляет 4,1 %, в чашечках – 2,3 %.

Литература

- 1. Гончаров О.В. Фенолкарбонові та гідроксикоричні кислоти трави яснотки білої / Гончаров О.В., Ковальова А.М., Ільїна Т.В. // Актуальні питання створення нових лікарських засобів. Т.1. Матеріали Всеукраїнської науково-практичної конференції студентів та молодих вчених, 19-20 квітня 2012 року, м. Харків. Харків, НФаУ. 2012. С. 58.
- 2. Ковальова А.М. Порівняльне хромато-мас-спектрометричне дослідження жирних кислот в листі та квітках *Lamium album* L. / А. М. Ковальова, А.П. Осьмачко, О.В. Гончаров, О.В. Очкур // 3б. наук. праць співробітників НМАПО ім. П.Л. Шупика. К., 2012. Вип. 21, кн. 4. С. 296-302.
- 3. Bicchi C. Methods of the chromate-mass-spectrometric research / C. Bicchi, C. Brunelli, C. Cordero, P. Rubiolo, M. Galli, A. Sironi // J. Chromatogr. A. − 2004. − №1-2. − P. 195-207.
- 4. Bubueanu C. Antioxidant activity of butanolic extracts of Romanian native species *Lamium album* and *Lamium purpureum* / C. Bubueanu, C. Gheorghe , L. Pirvu, G. Bubueanu // Romanian Biotechnological Letters. Vol. 18, No. 6. 2013. P. 8855-8862.
- 5. Yalçin F.N. Ethnobotany, Pharmacology and Phytochemistry of the Genus *Lamium* (*Lamiaceae*). Scientific Review / Funda N. Yalçin, Duyugu Kaya // FABAD J. Pharm. Sci. 31. 2006. P. 43-52.