КЛИНИЧЕСКИЕ И ЛАБОРАТОРНЫЕ ИСПЫТАНИЯ СПЛАВОВ ДЛЯ МЕТАЛЛОКЕРАМИКИ, ПРОИЗВЕДЕННЫЕ ПО МЕТОДУ ПОРОШКОВОЙ МЕТАЛЛУРГИИ

Христо Кисов*, Димитър Радев**, Златина Томова*, Ангелина Влахова*

*Кафедра протетической дентальной медицины, Факултет дентальной медицины, Медицинский университет – Пловдив

**Институт общей и неорганической химии, Болгарская Академия Наук – София

Введение. Состав, структура и свойства металлических сплавов, использованных для изработки скелета для металлокерамической неподвижной конструкции, изключительно важны для их оптимального и безопасного функционирования в условиях ротовой полости. В сравнение с конвенциональными методами получения металлических сплавов, когда исходные компоненты расплавляют, смешивают и гомогенизируют, по методу порошковой металлургии (РМ) в качестве исходных компонентов используют изключительно мелкие металлические порошки, которы его могенизируют и прессуют под давлением в подходящей форме при температуре, более низкой от температуры плавления отдельных компонентов(3).

Целью настоящей презентации является представление информации о клинических и лабораторных испытаниях неблагородных сплавов для металлокерамики, произведенных по РМ методу.

Материалы и методы. Производство сплавов по методу порошковой металлургии имеет свой специфические особенности. Именно они являются причиной постоянства их состава, высокой прочности на разрыв и изключительной коррозионнойустойчивости сплавов, даже и после их повторного плавления и литья, доказанные соответственно через рентгеноструктурный и электронно-микроскопический анализ, исследование прочности на разрывопытных образцов и исследование коррозионных

потенциалов после терморециклирования опытных образцов, поставленных в искусственную слюну. Биологическая толерантность исследуется путем гальванометрии в ротовой полости пациента, объективного наблюдения признаков коррозии конструкции, признаков патогальванизма со стороны мягкихтканей, отсутствие или наличие субъективных жалобсостороны пациента с металлокерамической конструкцией, изготовленной из сплава, произведенного по РМ методу, которая долгое время находилась в ротовойполости.

обсуждение. Сплавы И ДЛЯ металлокерамики, произведенные ПО методу порошковой металлургии, отличаются гомогенностью в составе и структуре, высокими показателями физикомеханических характеристик и коррозионнойустойчивости, даже и после повторного плавления и литьясплава.В Табл. 1 сделано сравнение механических свойств Ni-базированных сплавов, полученных вышеописанной технологии (означены какРМ), и таковых, произведенных ведущими в этой области фирмами(1). Впечатляют улучшенные значения показателей прочности на разрыв (660 MPa), начальной пластической деформации (480 МРа) и твердостиНу(220) для РМ-сплава. После разрывалинейная деформация едва 5%. Эти данные показывают, что полученный дентальный сплав на основе никеля по механическим качествам не уступает некоторым маркам сплавов на основе кобальта, которые в принципе превозходят никелевые по вышеописанным свойствам. Эти свойства получены благодаря использованию чистых металлических порошков вместо окисленных или наличие других примесей(Ве или другиетоксическиеэлементы).

Таблица1.

Alloy	Density	Hardness	Elongation	Tensile	Ductile	Coef.of
	[g/cm ³]	(HV10)	limit	strength	yield	expansion
7			(RP _{0.2})	[MPa]	%	20-600°C
			[MPa]			
						[mm/mK]

PM ALLOY	8,3	220	480	660	5	14,0
REMANIUMCS (DENTAURUM)	8,2	210	340	580	15	14,1
HERAENIUM NA	8,3	185	360	650	23	14,4
WIRON 99	8,2	180	330	No data	25	14,0
(BEGO) SUPRANIUM (KRUPP)	8,4	185	310	520	35	13,9

Ниже приведены сравнительные данные о механических свойствахCoCrMo-дентальных сплавов, произведенных ведущими в обрасти фирмами:

Таблица 2.

СПЛАВ	Tensile strength	Elongation limit	Hardness	
	Rm	$\mathbf{Rp_{0.2}}$	Hv	
Wirobond 280	680 MPa	540 MPa	280	
Wirobond C	720 MPa	480 MPa	310	
Wironium extra	970 MPa	670 MPa	350	
hard				
Wironium	940 MPa	650 MPa	330	
PM	826 MPa	740 MPa	435	
Magnum	734 MPa	570 MPa	286	
Ceramic				
Magnum Lucens	659 MPa	475 MPa	324	

Сравнительный анализ (Табл.2) показывает, что по показателям начальная пластическая деформация и твердость сплава ($Rp_{0.2}$), полученного по PM методу, превозходит остальные сплавы, призведенные фирмоймировымлидером в данной области. Эти данные показывают улучшенные

свойства, которые получены в результате использования сверхчистых материалов и идеального баланса компонентов сплава(2).

Изготовленные восстановительные конструкции отличаются высокой биотолерантностью и высокой устойчивостью при длительном нахождении в ротовой полости и не наблюдаются негативные изменения в самой конструкции и в организме человека.

Заключение. Знание особенностей неблагородных сплавов для металлокерамики, произведенных по РМ методу, их механо-прочностных и медико-биологических качеств, создают возможность для разширения их использования, а также и снижения себестоимости констукции при повторное использовании, не доводя до ухудшения характеристик сплава и конструкции вцелом.

Литература:

- 1. Радев.Д.-собствено изследване; "Прилагане на методите на праховата металургия при производството на дентални сплави"
- 2. Радев,Д.,М.Маринов: Състав на никел-хром-молибденова и кобалт-хром-молибденова сплав за стоматологията. Полезен модел№1558U1/бюл.№5,31.01.2012
- 3. Radev,D; M Marinov,Chr Kissov: New routes for synthesis of nickel-based dental alloys. Comptes rendus de l'Academie Bulgare des science 2008; vol.61,issue 9, p.1133-1138.