Скоробогатый М. В., Деменчук Е. А. ЭКСТРАКЦИОННОЕ РАЗДЕЛЕНИЕ НЕКОТОРЫХ ПРЕДСТАВИТЕЛЕЙ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ МЕТАНОЛЬНЫМ РАСТВОРОМ МЕТИЛСУЛЬФАТА МЕТИЛХИНОЛИНИЯ

Научный руководитель магистр хим. наук, ассист. Онищук А. В.Кафедра биоорганичекой химии
Белорусский государственный медицинский университет, г. Минск

Актуальность. Результаты работы можно использовать для пробоподготовки при анализе объектов, содержащих смеси ароматических углеводородов, для достижения более полного экстракционного разделения ароматических углеводородов по сравнению с экстракцией классическими эктрагентами (ДМСО, ДМФА).

Цель: установить закономерности экстракции ароматических углеводородов в экстракционной системе н-гептан — растворы метилсульфата метилхинолиния с различной концентрацией соли, определить оптимальную концентрацию экстрагента для наилучшей экстракции ароматических углеводородов.

Задачи:

- 1 Провести экстракцию ароматических углеводородов из их раствора в н-гептане раствором метилхинолиния метилсульфата в метаноле.
- 2 Рассчитать константы распределения ароматических углеводородов, сравнить их с константами распределения в традиционных экстракционных системах.

Материал и методы. Проводилась экстракция ароматических углеводородов из их раствора в н-гептане раствором метилхинолиния метилсульфата в метаноле. В качестве распределяемых веществ были использованы следующие ароматические углеводороды: антрацен, перилен, азулен, тетрацен, рубрен, 9,10-бис(2-фенилэтил)антрацен. Концентрации ароматических углеводородов в неполярной фазе определялись методом спектрофотометрии с помощью спектрофотометра SolarPV 1251C.

Результаты и их обсуждение.Определены константы распределения ароматических углеводородов в исследуемых системах. Увеличение концентрации соли в полярной фазе приводит к снижению констант распределения и улучшению экстрагирующей способности системы.

Выводы:

- 1 Растворы метилсульфата метилхинолиния в метаноле являются хорошими экстрагентами ароматических углеводородов.
- 2 Исследуемые экстракционные системы могут найти применение для пробоподготовки объектов, содержащих смеси ароматических углеводородов, в связи с их способностью разделять арены различного строения.