Ю. А. Медушевская

МОРФОЛОГИЧЕСКИЕ И ГЕМОДИНАМИЧЕСКИЕ ОСОБЕННОСТИ УЧАСТКОВ ВЕНЕЧНЫХ АРТЕРИЙ, РАСПОЛОЖЕННЫХ ПОД МЫШЕЧНЫМИ МОСТИКАМИ

Научные руководители: д-р мед. наук, доц. Н. А. Трушель, канд. физ.-мат. наук, доц. В. А. Мансуров
Кафедра нормальной анатомии
Белорусский государственный медицинский университет, г. Минск

Резюме. В работе представлены морфологические и морфометрические особенности участков венечных артерий, расположенных под мышечными мостиками. Проведено математическое моделирование кровотока с помощью геометрической модели, соответствующей по строению исследованным участкам венечных артерий. Установлены особенности кровотока в модели, которые могут способствовать искривлению артерии и изменению толщины ее стенки.

Ключевые слова: мышечные мостики, венечные артерии, морфология, гемодинамика, моделирование.

Resume. Morphological and morphometric features of sites of the coronal arteries located under the muscular bridges are presented in this work. Mathematical modeling of a blood flow by means of the

geometrical model corresponding to the explored sites of coronal arteries is carried out. Features of a blood flow in models which can promote a pathological curvature of an artery and change of thickness of its wall are established.

Keywords: muscular bridges, coronal arteries, morphology, hemodynamics, modeling.

Актуальность. Исследование морфологии артерий сердца в настоящее время имеет не только теоретическое, но и практическое значение, так как известно, что смертность от болезней кровообращения в Беларуси составляет около 55%, причем преобладает ишемическая болезнь сердца [1, с. 6]. Одной из причин нарушения коронарного кровообращения с развитием ишемии миокарда вплоть до некроза вследствие сдавливания просвета венечных артерий в систолу могут явиться миокардиальные мостики [2, с. 1]. Мышечными «мостиками» миокарда называется врождённая аномалия расположения венечных артерий, при которой сосуд частично локализуется в толще миокарда, а не непосредственно под эпикардом. По данным литературы [3, с. 60], мышечные мостики в сердце человека являются доброкачественной аномалией, но в патологических условиях (при повышении нагрузки на сердце, атеросклерозе венечных артерий, гипертрофии и фиброзе миокарда и др.) неправильное расположение артерии может приводить к возникновению сердечнососудистых осложнений и внезапной смерти.

Известно, что как в норме, так и при патологии в сосудистой системе имеют место отклонения от ламинарного характера кровотока различной степени выраженности [4, с. 150]. Для турбулентного течения характерно наличие завихрений, в которых компоненты крови перемещаются не только параллельно оси сосуда, но и перпендикулярно ей. Турбулентное течение крови по сосудам создаёт повышенную нагрузку на сердце, что способствует развитию патологических процессов в сердечнососудистой системе.

Цель: установить морфометрические и гемодинамические особенности ветвей венечных артерий, расположенных под мышечными мостиками в сердце взрослого человека.

Материал и методы. Макромикроскопически исследована анатомия и топография венечных артерий на 10 препаратах сердца умерших людей в возрасте 50-70 лет, причина смерти которых не связана с сердечнососудистой патологией, артериальной гипертензией, сахарным диабетом и болезнями соединительной ткани. Методом математического моделирования изучены параметры давления кровотока в участках венечных артерий, расположенных под мышечными мостиками, с помощью программы Comsol-4. Статистическая обработка данных проводилась с помощью программы «Microsoft Excel 2010».

Результаты и их обсуждение. В результате макромикроскопического исследования сердца взрослого человека мышечные мостики были найдены в 40% случаев. Во всех случаях мышечные мостики располагались в области передней межжелудочковой ветви левой венечной артерии.

Морфометрическим методом было установлено, что средний диаметр передней межжелудочковой ветви до мышечного мостика больше $(4,0\pm0,1\,\text{ мм})$ диаметра сосуда после него $(3,0\pm0,3\,\text{мм})$. Угол искривления артерии под мышечным мостиком составил $140\pm5^{\circ}$. В месте изгиба «ныряющей» артерии макромикроскопически было

обнаружено утолщение стенки сосуда - атеросклеротическая бляшка высотой около 1,0-1,2 мм и протяжённостью — 8-9 мм.

На основании макромикроскопических данных о строении участков венечных артерий, расположенных под мышечными мостиками, методом математического моделирования с помощью программы Comsol-4 была построена геометрическая модель этого участка венечной артерии (рисунок 1). Моделирование проводилось с учётом утолщения сосуда в месте изгиба артерии (наличие атеросклеротической бляшки).

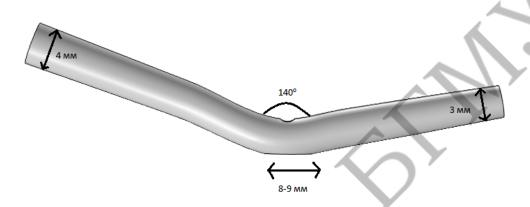
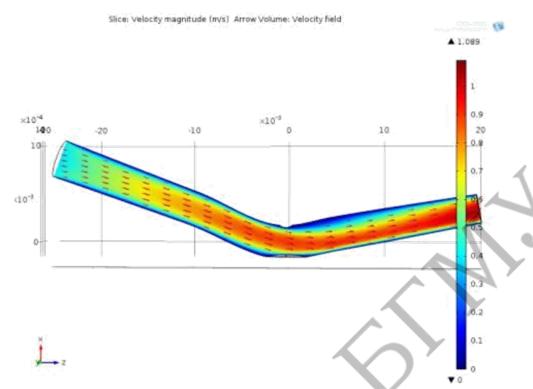
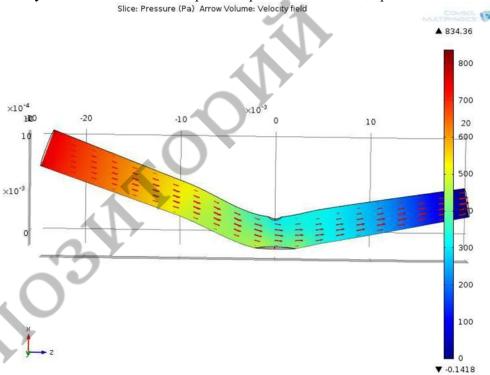



Рисунок 1 – Геометрическая модель, построенная по заданным параметрам


В результате моделирования было установлено, что скорость кровотока в участке сосуда, расположенном дистальнее мостика (после искривления сосуда) и скорость сдвига на стенке сосуда увеличиваются, а градиент давления снижается (рисунок 2, 3).

Полученные методом математического моделирования данные можно объяснить тем, что струя крови, проходя в сосуде, имеющем изгиб (под мышечным мостиком), определяет градиент скорости на стенке сосуда, а значит и напряжение сдвига, возникающее вследствие вязких сил, что оказывает действие на внутреннюю оболочку сосуда (интиму). В результате этого возникает неоднородная деформация внутренней оболочки сосуда. При нарушении функции или структуры эндотелия резко меняется спектр выделяемых им веществ, что приводит к патологическим процессам, в том числе, к атерогенезу.

Кроме того, струя крови, ударяясь о стенку, вызывает еще большую деформацию стенки сосуда, повреждая интиму. Это может приводить к внедрению компонентов крови в интиму артерии, способствую увеличению протяженности бляшки со временем.

Рисунок 2 – Изменение скорости кровотока в геометрической модели

Рисунок 3 – Изменение давления крови в геометрической модели

Чем меньше диаметр в дистальной части участка венечной артерии, тем больше скорость кровотока и меньше статическое давление. Неравномерность (как по величине, так и по направлению) градиента перепада давления приводит к дополнительному внешнему давлению разного знака, что может вызывать дополнительную деформацию стенки сосуда.

Выводы:

- 1 Мышечные мостики чаще всего расположены в области передней межжелудочковой ветви, отходящей от левой венечной артерии.
 - 2 Диаметр венечной артерии до мостика (по ходу кровотока) больше, чем после.
- 3 Мышечный мостик в сердце человека приводит к сужению венечной артерии, что увеличивает скорость кровотока, снижает давление крови в участке, расположенном дистальнее мостика. Это может привести к повреждению внутренней оболочки сосуда (интимы) на участке после мостика и увеличению протяжённости бляшки, а также еще большему искривлению артерии.

Medushevskaya J. A.

MORPHOLOGICAL AND HEMODYNAMIC FEATURES OF SITES OF ARTERIES LOCATED UNDER THE MUSCULAR BRIDGES

Tutors: assistant professor Trushel N. A., assistant professor Mansurov V. A.

Department of normal anatomy

Belarusian State Medical University, Minsk

Литература

- 1. *Трушель, Н.А.* Роль морфологического и гемодинамического факторов в атерогенезе сосудов виллизиева круга / Н.А. Трушель, П.Г. Пивченко. Минск : БГМУ, 2013. 180 с.
- 2. Донцов, Ю. Γ . Морфология мышечных мостиков, покрывающих венечные сосуды сердца человека: автореф. дис. канд. мед. наук / Ю. Γ . Донцов, Н. И. Одноралов. Воронеж : ВГМИ, 1970. 19 с.
- 3. *Карташева*, *А. Н.* Мышечные мостики миокарда / А. Н. Карташева // MedicineReview.— 2008.— Vol. 1, № 1. С. 60-61.
- 4. *Лещенко*, *В*. Γ . Медицинская и биологическая физика: учеб.пособие / В. Γ . Лещенко, Γ . К. Ильич. Минск: Новое знание; М.: ИНФРА-М, 2012. С. 149-177.