ФАРМАКОПЕЙНЫЙ АНАЛИЗ ЭНТЕРОСОРБЕНТОВ

Кухарчик Н. М., Лишай А. В. Научный руководитель м. ф. н., асс. Лишай А. В.

Белорусский государственный медицинский университет, кафедра фармацевтической химии г. Минск

Ключевые слова: энтеросорбент, активированный уголь, каолин, кросповидон.

Резюме: в статье проведен сравнительный анализ требований фармакопей различных стран к физико-химическим и адсорбционным свойствам выбранных для изучения примеров энтеросорбентов.

Resume: the article presents a comparative analysis of the requirements of pharmacopoeias of different countries to the physical, chemical and adsorption properties of enterosorbents selected for the study.

Актуальность. Энтеросорбенты широко применяются при различных патологических состояниях для детоксикации организма. На эффективность и безопасность применения энтеросорбентов в качестве лекарственных средств (ЛС) оказывает влияние ряд физико-химических свойств, среди которых химический состав, сорбционная емкость, размер частиц, удельная поверхность и другие их характеристики.

Цель: анализ требований фармакопей различных стран к углю активированному, каолину тяжелому, кросповидону.

Задача: провести сравнение требований фармакопей различных стран к физико-химическим свойствам изучаемых энтеросорбентов.

Материал и методы: теоретический анализ и обобщение данных статей фармакопей Республики Беларусь (ГФ РБ), Великобритании (ВР), Японии (ЈР), США (USP), Украины (ГФУ), Китая (СР), Казахстана (ГФ Казахстана), Европейской (ЕР) и Международной фармакопей (ІР) на субстанции угля активированного, каолина тяжелого и кросповидона.

Результаты и их обсуждение: Химическая чистота является важной характеристикой энтеросорбентов, определяющей их качество как готового лекарственного средства. Потеря в массе при высушивании характеризует содержание как воды (влажность), так и остаточных растворителей, которые могут использоваться при производстве энтеросорбента. Зольный остаток позволяет судить о наличии примесей, дающих минеральный остаток. Причиной увеличения зольного остатка может быть недостаточная очистка лекарственного вещества в процессе получения, нарушение условий хранения, присутствие подмешанных веществ и др. Определение насыпной плотности важно для правильных расчетов при создании готовой лекарственной формы энтеросорбента (оказывает влияние на распадаемость ЛФ в организме). Также ее значение может косвенно указывать на размер частиц сорбента. Набухание в воде является важной характеристикой энтеросорбента, так как характеризует его поведение при попадании в ЖКТ. Степень набухания

характеризует поглотительную способность сорбента и позволяет сделать предположение относительно его структуры и пористости.

Активированный уголь представляет собой черный легкий безвкусный порошок без комковатости [1, 2, 3, 4, 5, 8, 9]. Сравнительный анализ требований фармакопей к физико-химическим свойствам активированного угля приведен в таблице 1.

Таблица 1. Требования к субстанции угля активированного [1, 2, 3, 4, 5, 8, 9]

ГФ	IP	EP	U	ГФ	ГФУ	В			
РБ			SP	CCCP 11		P			
		Кислог	тность или	щелочность					
	+		+	+	+				
		Вещест	ва, растворі	имые в кислоте					
	не > 3%	/o	не > 3,5		не > 3 %				
			%						
	Окрашенные вещества, растворимые в щелочи								
+	7	+	-	-	+	+			
		Вещества,	растворим	ые в 96 % спирт	e				
	He > 0.5	%	-	-	He > 0.5 %				
		Флуо	ресцирующі	ие вещества					
	+		-	-		+			
_			Сульфи	ды					
	+								
	Медь								
не > 25 ppm	e > 25 ppm - не > 25 ppm			-	не >	> 25 ppm			
		1	Свине	ų	•				

. 10	1	10	1	<u> </u>		1.0		
не > 10 ppm	-	не > 10 ppm	-	-	не>	10 ppm		
Цинк								
не > 25 ppm	+	не > 25 ppm			не > 25 ppm			
Потеря в массе при высушивании								
	не	e > 15 %		не > 10 %	He > 15 %			
			Сульфатна	я зола				
	не > 5,0	%		-	не	> 5 %		
	•		Гяжелые ме	гталлы				
_	не > 100	_		не > 0,001 %		_		
	мкг/г		ppm					
	1	l	Циание	Эы				
_	+	_	+	4		_		
	·	Остан		рокаливания				
_	_	-	не > 4,0		_	_		
			%	110				
			Хлорид	ы				
_	_	_		не > 0,008 %	_	_		
			%	110 - 0,000 70				
			Сульфа	mы				
_	_	_		не > 0,02 %	_			
			%	110 - 0,02 70				
				ся вещества				
_	_		+	+		_		
_	Железо							
_	_	_	- Atesies	не > 0,06 %				
-	Железо металлическое							
_	не > 0,01 %			не > 0,01 %				
-	пс - 0,01 /0	-	- Мышы		-	-		
	не > 0,0001		1 V1 61 W 62	не > 0,0001 %				
-	% He > 0,0001		_	нс / 0,0001 70	-	-		
	70							

Таблица 2. Требования к субстанции каолина тяжелого [1, 2, 4, 5, 6, 7, 8, 9]

ГФ РБ	IP	EP	USP	JP	ГФ СССР	BP	CP	
					11			
	Кислотность или щелочность							
	+ - +							
			Органич	еские прил	меси			
+	-	+	-	_	•	-	-	
	Способность к набуханию							
	+		-	+	+	-	-	
		Вещества, р	астворим	ые в минеј	ральных кис л	iomax		
	нe > 1 %	Ó	не > 2,0	He > 1 %	-	-	He > 1 %	
			%					
			λ	Хлориды				
He > 250 ppm		не > 250			•	-	He > 0.03 %	
		ppm						
Сульфаты								
He > 0.1 %	-	He > 0.1 %				$_{\rm He} > 0,1 \%$		
			<u> </u>	Сальций				

		1				ı			1	1	
e > 250 pp	m	-	не	> 250		-		•	-		-
			ppn	n							
				211	01441	nasunvaui	10 14 0 2 10 0 7 1	10 1101111111			
	Экстрагируемые тяжелые металлы										
		He > 25	ppm			-	He > 50	He > 0.0025	-	не	> 0,001%
	ppm %										
							Железо				
-		+		-		+ He > 500 He > 0.06				> 0,06 %	
							ppm	%			
					1	Потери п	ри прокали	вании			
_	не	> 150		_	Н	e > 15,0 %				_	не > 15,0
	МГ				11.	0 15,0 70					%
	Свинец										
						не > 10					
		-							-		
						ppm	6	$\overline{}$			
						Ka	рбонаты				
		-)+				-
						N	Лышьяк		1		
			_				не > 2	не >			не >
						ppm	0,0001 %			0,0002 %	
	Посторонние примеси (песок)										
					110	cinoponni	по примеси	· (necony			
	- + -						+				
	Дисперсность										
								+			_
1								1			

Для анализа угля активированного проводятся следующие испытания: кислотность или щелочность; вещества, растворимые в кислоте; сульфиды, потеря в массе при высушивании. Также могут проводить испытания на содержание веществ, растворимых в 96 % спирте, флуоресцирующих веществ, отдельное содержание меди, свинца, цинка, а также определяют количество сульфатной золы. В случае определения тяжелых металлов в субстанции, не проводят испытания на свинец и медь. Испытание на цианиды проводится согласно Международной фармакопее и фармакопее США, но не имеется в ГФ РБ. Также в фармакопее США имеются испытания на хлориды, сульфаты, необугливающиеся вещества, кроме того определяется остаток после прокаливания в отличие от других рассмотренных действующих фармакопей. Адсорбционную способность угля согласно ГФ РБ, Европейской фармакопее, ГФ Великобритании и Украины определяют по сорбции феназона, согласно Международной фармакопее и фармакопее США — сульфата стрихнина и метиленового синего [1, 3, 4, 5, 8, 9].

Таблица 3. Требования к субстанции кросповидона [1, 4, 5, 6, 9]

ГФ РБ	EP	USP	JP	BP			
Пероксиды							
${\rm He} > 0.0400\%$ (400 ppm)- A; ${\rm He} > 0.1000\%$ (1000 ppm) - В							
Растворимые в воде вещества							

	не > 1,5 %							
	Примесь А							
	не > 10 ppm							
	Тяжелые металлы							
не > 10 ppm	не > 10 ppm - не > 10 ppm							
	Потеря в массе при высушивании							
	не > 5,0 %							
	Сульфатная зола							
не > 0,1 %	-	$_{\rm He} > 0.1 \%$						
	Количественное определение							
	не менее 11,0 % и не > 12,8 % азота							
	Потеря после прокаливания							
-	- не > 0,1 % -							

Каолин тяжелый – очищенный природный гидратированный силикат алюминия различного состава; мелкий белый или серовато-белый маслянистый на ощупь порошок [1, 7]. Сравнительный анализ требований фармакопей к физико-химическим свойствам субстанции приведен в таблице 2. В разных фармакопеях для контроля каолина тяжелого используются различные наборы показателей. Обычно каолин анализируется по способности к набуханию; содержанию веществ, растворимых в кислоте, тяжелых металлов, а также потерям в массе при прокаливании. Согласно Американской и Японской фармакопее для каолина тяжелого проводится испытание на «Карбонаты», что является важной характеристикой для энтеросорбента и может влиять на его эффективность. В целом нормы показателей в рассмотренных фармакопеях совпадают, за исключением нормы для показателя "Вещества, растворимые в минеральных кислотах" – в USP 36 допускается содержание веществ в два раза выше, и испытания «Хлориды» - Китайская фармакопея допускает большее содержание (0,03 %) в сравнении с другими фармакопеями (0,0250 %), а также по показателю «Экстрагируемые тяжелые металлы» JP 2017 допускает в два раза большее содержание. Адсорбционные свойства каолина тяжелого согласно ГФ РБ, ВР, ІР, ЕР изучаются по адсорбции метиленового синего [1, 4, 5, 8].

Кросповидон — поперечно-сшитый гомополимер 1-этенилпирролидин-2-она, представляет собой белый или желтовато-белый порошок или хлопья. В зависимости от размера частиц различают тип А и тип В [1, 4, 5, 6, 9]. Согласно всем рассмотренным фармакопеям контролируется содержание примеси А (1-винилпирролидин-2-он) По одинаковым методикам проводятся испытания на пероксиды, растворимые в воде вещества, а также количественное определение азота в субстанции. Допустимые пределы по всем показателям совпадают. Испытание «Потеря при прокаливании» не включено в ГФ РБ, но проводится согласно фармакопеям Америки и Японии.

Выводы: Такие физико-химические показатели, как химическая чистота, потеря в массе при высушивании, размер частиц определяются для всех рассмотренных энтеросорбентов. Зольность (общая, сульфатная, водорастворимая) измеряется для угольных сорбентов и кросповидона, насыпная плотность до и после и после усадки, на рабочее и сухое состояние – только для угольных сорбентов, рН водной вытяжки – для угля активированного и каолина тяжелого. Степень набухания

в воде определяют только для кросповидона, но следовало бы проводить данное испытание для всех энтеросорбентов, так как этот показатель в определенной степени характеризует их терапевтическую активность. Возможно стоит рассмотреть вопрос о включении испытаний субстанции угля активированного на цианиды, хлориды, сульфаты, необугливающиеся вещества, остаток после прокаливания в ГФ РБ.

Литература

- 1. Государственная фармакопея Республики Беларусь (ГФ РБ II): разработана на основе Европейской Фармакопеи. В 2 т. Т. 2. Контроль качества субстанций для фармацевтического использования и лекарственного растительного сырья / М-во здравоохр. Респ. Беларусь, УП «Центр экспертиз и испытаний в здравоохранении»; под общ. ред. С.И. Марченко. Молодечно: Типография «Победа», 2016. 1368 с.
- 2. Государственная фармакопея СССР: в 2 т. 11-е изд. Т. 1: М.: Медицина, 1987. 335 с.; Т. 2: М.: Медицина, 1990. 391 с.
- 3. Государственная фармакопея Украины (ГФУ 1.0) / М-во здравоохр. Украины, ГП «Украинский научный фармакопейный центр качества ЛС». Харьков, 2011.
- 4. British Pharmacopeia 2013, version 17.0 [Электронный ресурс]. Электрон. текстовые дан. и прогр. (4 Γ б). Norwich, 2012. 1 электрон. опт. диск (CD-ROM).
- 5. European pharmacopoeia: Published in accordance with the Convention on the elaboration of a European pharmacopoeia: Vol. 1-2. 8. ed. Strasbourg: Council of Europe, 2013. 3513 p.
- 6. Japanese Pharmacopeia / Society of Japanese Pharmacopoeia. 17th ed. Tokyo: Maruzen Company, 2016. 2629 p.
- 7. Pharmacopoeia of the People's Republic of China: Vol. 1-3 / Chinese Pharmacopoeia Commission. Beijing, 2005.
- 8. The International Pharmacopoeia [Электронный ресурс]. Seventh Edition, 2017. Адрес ресурса: http://apps.who.int/phint/2017/index.html#d/b.1. Дата доступа: 12.11.2017.
- 9. The United States Pharmacopeia (USP 36 NF 31) / The United States Pharmacopeial Convention. Rockville, 2013. 5612 p.