ИЗУЧЕНИЕ ТЕХНОЛОГИЧЕСКИХ СВОЙСТВ МАГОНИИ ПАДУБОЛИСТНОЙ

Морус Д. В., Половко Н. П.

Национальный фармацевтический университет, кафедра аптечной технологии лекарств г.Харьков, Украина

Ключевые слова: магония падуболистная, технологические параметры, экстракция

Резюме Изучены технологические свойства корней магонии падуболистной Результаты определения числовых и технологических параметров растительного сырья были использованы при разработке технологии экстракта.

Summary: Technological properties of Mahonia roots were studied. The results of determining the numerical and technological parameters of plant raw materials were used in the development of technology of the extract.

Актуальность. При разработке технологии экстракционных препаратов, необходимо проведение определения технологических параметров ЛРС, на основании которых в дальнейшем подбираются оптимальные параметры проведения технологического процесса.

Цель: изучение технологических параметров корней магонии падуболистной.

Задачи исследования: определение основных числовых и технологических параметров растительного сырья (удельной, объемной и насыпной массы, пористости, порозности, свободного объема слоя, степень набухания сырья, коэффициента поглощения экстрагента и содержание экстрактивных веществ).

Материалы и методы. Для разработки технологии экстракта корней и корневищ магонии падуболистной нами были изучены и определены основные числовые и технологические параметры ЛРС, значения которых необходимы при выборе метода и условий проведения процесса экстракции.

Определение удельной массы. Около 5,0 г измельченного сырья загружали в пикнометр емкостью 100 мл, заливали водою очищенной на 2/3 объема и выдерживалина кипящей водяной бане в течение 1,5-2 часов, периодически перемешивая с целью полного удаления воздуха с сырья. После этого, пикнометр охлаждали до температуры 20 °C и доводили объем до метки водой очищенной. Определяли массу пикнометра с сырьем и водой очищенною, предварительно определив массу пикнометра с водой.

Удельную массу рассчитывали по формуле:

$$d_y = \frac{P \times d_{\infty}}{P + G - F}, r/c_M^3,$$

где, Р – масса абсолютно сухого измельченного сырья, г;

G – масса пикнометра с водой, г;

F – масса пикнометра с водой и сырьем, г;

 $d_{\rm w}$ – удельная масса воды, г/см³ ($d_{\rm w}$ = 0,9982 г/см³).

г;

Определение объемной массы. Около 10 г (точная навеска) измельченного сырья погружали в мерный цилиндр с водой очищенной и определяли объем. По разнице объемов в мерном цилиндре определяли объем занимаемый сырьем.

Объемную массу рассчитывали по формуле:

$$d_0 = \frac{P_0}{V_0}, \Gamma/cM^3,$$

где, P_o – масса измельченного сырья при естественной или заданной влажности, г;

 V_{o} – объем, занимаемый сырьем, см³.

<u>Определение насыпной массы.</u> В мерный цилиндр загружали измельченное сырье, слегка встряхивали для выравнивания сырья, и определяли полный объем, который оно занимает. После этого, сырье взвешивали.

Насыпную массу рассчитывали по формуле:

$$d = \frac{P_{H}}{V_{H}}, \Gamma/cM^{3},$$

где, $P_{\scriptscriptstyle H}$ – масса измельченного сырья при естественной или заданной влажности,

 $V_{\rm H}$ – объем занимаемый сырьем, см³.

Пористость сырья рассчитывали по формуле:

$$\Pi_{\rm c} = \frac{{\rm d}_{\rm y} - d_{\rm 0}}{{\rm d}_{\rm y}},$$
 (2.4),

где, d_y – удельная масса сырья, г/см³;

 d_{o} – объемная масса сырья, г/см³.

Порозность слоя рассчитывали по формуле:

$$\Pi_{cn} = \frac{\mathrm{d}_0 - d_{\scriptscriptstyle H}}{\mathrm{d}_0},$$

где, d_o – объемная масса сырья, г/см³;

dH - насыпная масса сырья, г/см³.

Свободный объем слоя рассчитывали по формуле:

$$V = \frac{d_y - d_{_H}}{d_{_V}},$$

где d_v – удельная масса сырья, г/см³;

 $d_{\rm H}$ – насыпная масса сырья, г/см³.

Определение выхода экстрактивных веществ (абсолютно сухого экстракта). Оп с экстрагированного сырья проводили по следующей методике: 1 г измельченного и просеянного сырья помещали в коническую колбу, добавляли 50 мл растворителя (70% этанола). Колбу закрывали пробкой, взвешивали с погрешностью не более 0,01 г и оставляют на 1 ч. Затем колбу соединяли с обратным холодильником, нагревали до кипения и поддерживали слабое кипение жидкости в течение 2 ч. Посте охлаждения колбу с содержимым вновь закрывали той же пробкой, взвешивали и потерю в массе дополняли тем же растворителем. Содержимое тщательно

взбалтывали и фильтровали через сухой бумажный фильтр в сухую колбу вместимостью 150-200 мл. 25 мл фильтрата переносили в фарфоровую чашку диаметром 7-9 см, предварительно высушенную при 100—105 °С до постоянной массы и взвешенную на аналитических весах, выпаривали на водяной бане досуха, сушили при температуре 100-105°С в течение 3 ч, затем охлаждали в эксикаторе и быстро взвешивали и рассчитывали содержание экстрактивных веществ в абсолютно сухом сырье.

Важным фактором процесса экстрагирования лекарственного сырья является коэффициент поглощения экстрагента, так как количество, которое добавляется к сырью перед настаиванием и соответствует коэффициенту поглощения, значительно улучшает условия извлечения биологически активных веществ, повышает их содержание в приготовленных извлечениях и обеспечивает получение номинального объема лекарственной формы. Для установления экспериментального значения коэффициента водопоглощения готовили водное извлечение из корней с соотношением сырья и экстрагента 1:10, по методике отвара по ГФ XI, вып. 2, стр. 147. Навеску заливали отмеренным количеством воды, нагревали в течение 30 минут на кипящей водяной бане, процеживали и далее, после охлаждения и отжатия сырья через марлю, измеряли объём извлечения.

Результаты и их обсуждение

Для разработки технологии экстракта корней и корневищ магонии падуболистной нами были изучены и определены основные числовые и технологические параметры растительного сырья, значения которых необходимы при выборе метода и условий проведения экстракции. Результаты определения числовых и технологических параметров корней приведены в таблице.

Таблица 1. Основные числовые и технологические параметры корней и корневищ магонии падуболистной (n=5)

магонии падуоолистнои (n=3)			
№ п/п	Параметры	Ед. изм.	Результаты
1.	Потеря в массе при высушивании	%	8,90±0,02
2.	Удельная масса, d _у	г/см ³	0,82±0,03
3.	Объемная масса, d ₀	г/см ³	0,54±0,03
4.	Насыпная масса, d _н	г/см ³	0,35±0,02
5.	Пористость, Π_c		0,37±0,03
6.	Порозность, Пш		0,39±0,02
7.	Свободный объем слоя, V		0,58±0,03
8.	Угол природного откоса	градус	21
9.	Степень набухания в этаноле 70 % (об/об)	cm ³ /r	0,34±0,04
10.	Коэффициент поглощения экстрагента ЛРС	мл/г	2,24±0,03
11.	Содержание экстрактивных веществ, экстрагируемых этанолом 70 % (об/об)	%	19,35±0,08

Результаты определения числовых и технологических параметров ЛРС были использованы при разработке технологии экстракта.

Фармацевтические науки

Литература

- 1. Минина С.А., Каухова И.Е. Химия и технология фитопрепаратов. М.: Гэотар-мед., 2004. 560 с.
- 2. Настойки, экстракты эликсиры и их стандартизация / Под. Ред. проф. В.Л. Багировой, проф. В.А.Северцева. СПб.: СпецЛит, 2001. 223 с.