О. Л. ЖАРИКОВА, Л. Д. ЧАЙКА, Л. А. ДАВЫДОВА

КРАТКИЕ СВЕДЕНИЯ О ПРОВОДЯЩИХ ПУТЯХ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Минск БГМУ 2018

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА НОРМАЛЬНОЙ АНАТОМИИ

О. Л. ЖАРИКОВА, Л. Д. ЧАЙКА, Л. А. ДАВЫДОВА

КРАТКИЕ СВЕДЕНИЯ О ПРОВОДЯЩИХ ПУТЯХ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Учебно-методическое пособие

Минск БГМУ 2018

Рекомендовано Научно-методическим советом университета в качестве учебно-методического пособия 20.06.2018 г., протокол № 10

Рецензенты: канд. мед. наук, доц. В. А. Манулик; канд. мед. наук, доц. В. Г. Логинов

Жарикова, О. Л.

Ж34 Краткие сведения о проводящих путях центральной нервной системы : учебнометодическое пособие / О. Л. Жарикова, Л. Д. Чайка, Л. А. Давыдова. – Минск : БГМУ, 2018.-15 с.

ISBN 978-985-21-0127-1.

Изложены основные сведения о соматических проводящих путях центральной нервной системы. Предназначено для студентов 1–2-го курсов всех факультетов, изучающих дисциплину «Анатомия человека». Предлагаемые материалы могут быть использованы при изучении нервных болезней.

УДК 611.81(075.8) ББК 28.706я73

ISBN 978-985-21-0127-1

© Жарикова О. Л., Чайка Л. Д., Давыдова Л. А., 2018

© УО «Белорусский государственный медицинский университет», 2018

ОБЩАЯ ХАРАКТЕРИСТИКА ПРОВОДЯЩИХ ПУТЕЙ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Деятельность нервной системы основана на возникновении нервного импульса, его проведении по цепи нейронов и формировании ответной реакции организма. Реакция организма на раздражение (внешнее или внутреннее), осуществляемая при участии нервной системы, называется рефлексом. Морфологическим субстратом рефлекса является рефлекторная дуга. Большинство рефлекторных дуг включает: рецептор, афферентный (чувствительный) нейрон, один или несколько ассоциативных (вставочных) нейронов, эфферентный (двигательный) нейрон и нервное окончание. Рефлекторные дуги простых безусловных рефлексов, спинальных и стволовых, замыкаются соответственно в нервных центрах спинного мозга (в ядрах черепных нервов). Более сложные рефлекторные акты осуществляются с вовлечением корковых и подкорковых центров головного мозга.

Пути проведения нервного импульса от рецептора к центрам головного мозга, от этих центров к эффектору, а также между нервными центрами в самом головном мозге, составляют так называемые проводящие пути. В широком смысле, проводящий путь — это цепь нейронов, анатомически и функционально взаимосвязанных, обеспечивающих проведение одинаковых по характеру нервных импульсов в строго определенном направлении. Топографически одна часть этого пути включает образования периферической нервной системы — черепные и спинномозговые нервы с их корешками, узлами и ветвями. Другая часть, расположенная в пределах центральной нервной системы (ЦНС), представлена проводящими путями ЦНС, или «нервными трактами».

Проводящие пути ЦНС (тракты, tractus) — это группы нервных волокон, которые:

- соединяют функционально однородные участки ЦНС;
- занимают определенное положение в головном и спинном мозге;
- проводят однородную информацию.

По особенностям расположения в ЦНС выделяют три типа проводящих путей: ассоциативные, комиссуральные и проекционные.

Ассоциативные пути соединяют участки серого вещества в пределах одной половины спинного и головного мозга.

Комиссуральные пути соединяют между собой одноименные части правой и левой половин спинного и головного мозга.

Проекционные пути связывают центры, находящиеся на разных уровнях ЦНС.

По направлению проводимых импульсов проекционные пути делятся на две группы: восходящие — *афферентные*, или *чувствительные*, и нис-

ходящие — эфферентные, или двигательные. Афферентные пути обеспечивают поступление информации о состоянии внешней или внутренней среды организма в соответствующие отделы головного мозга. На основании анализа поступившей информации центры головного мозга через эфферентные пути организуют выполнение организмом адекватных реакций.

ВОСХОДЯЩИЕ ПРОЕКЦИОННЫЕ ПУТИ

По характеру проводимых сигналов восходящие проекционные пути (афферентные, чувствительные) подразделяются на четыре группы: экстероцептивные (поверхностной чувствительности), проприоцептивные (глубокой чувствительности), интероцептивные (висцеральной чувствительности) и пути специальной чувствительности (от органов чувств).

Проприоцептивные пути. Эти пути проводят информацию от рецепторов, заложенных в сухожилиях, мышцах, связках, капсулах суставов. Их подразделяют на пути мозжечкового направления (не осознанные) и коркового направления (осознанные).

Проприоцептивные пути мозжечкового направления включают задний и передний спиномозжечковые пути. Они проводят к мозжечку чувствительные импульсы от опорно-двигательного аппарата — туловища и конечностей. От мозжечка информация поступает к центрам экстрапирамидной системы, что обеспечивает тонус мышц, рефлекторную координацию движений, способствуя поддержанию равновесия в любом положении тела.

Задний спиномозжечковый путь (tractus spinocerebellaris posterior, путь Флексига) (рис. 1):

- **1-й нейрон** располагается в ganglion spinale. Его дендрит заканчивается рецептором в аппарате движения. Аксон вступает в спинной мозг в составе заднего корешка спинномозгового нерва и заканчивается в заднем роге спинного мозга;
- **2-й нейрон** расположен в заднем роге. Его аксон проходит в белом веществе бокового канатика своей стороны до продолговатого мозга и в составе нижних ножек мозжечка достигает коры червя.

Передний спиномозжечковый путь (tractus spinocerebellaris anterior, путь Γ оверса) (рис. 1):

- **1-й нейрон** располагается в ganglion spinale. Его дендрит заканчивается рецептором в аппарате движения. Аксон вступает в спинной мозг в составе заднего корешка и заканчивается на клетках заднего рога спинного мозга;
- **2-й нейрон** располагается в заднем роге. Его аксон на уровне спинного мозга переходит на противоположную сторону, вступает в боко-

вой канатик, проходит последовательно продолговатый мозг, мост и достигает верхнего мозгового паруса, где вновь переходит на противоположную сторону и в составе верхних ножек мозжечка достигает коры червя.

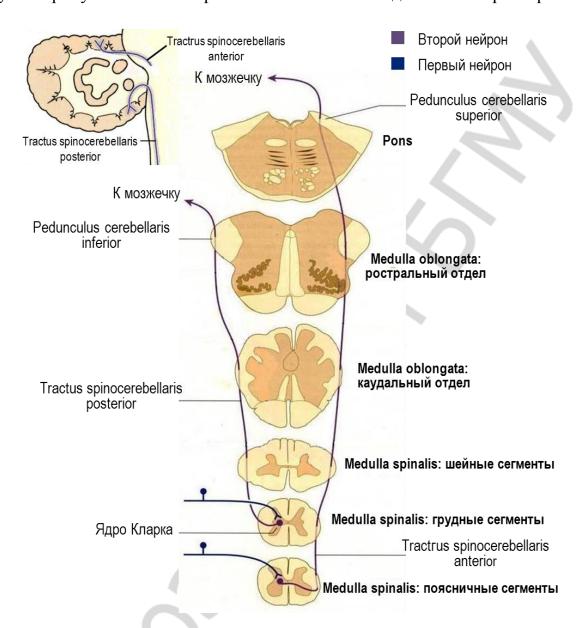
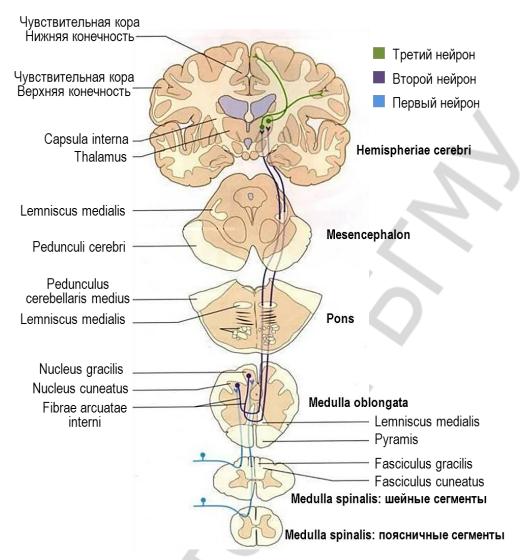



Рис. 1. Проприоцептивные пути к мозжечку

Проприоцептивные пути к коре головного мозга обеспечивают глубокую чувствительность (мышечно-суставное чувство, глубокую тактильную чувствительность, обусловленную давлением, вибрацией, узнавание предметов наощупь, способность к раздельному восприятию двух одновременно наносимых раздражений и т. д.).

Лемнисковый путь проводит импульсы от туловища и конечностей. Проприоцептивная чувствительность от мышц головы и височнонижнечелюстного сустава проводится к мозгу с участием черепных нервов.

Puc. 2. Тонкий и клиновидный пучки (tractus ganglio-bulbo-thalamo-corticalis)

Лемнисковый путь (tractus ganglio-bulbo-thalamo-corticalis, тонкий и клиновидный пучки, пути Голля и Бурдаха) (рис. 2):

- **1-й нейрон** располагается в ganglion spinale. Его дендрит заканчивается рецептором в аппарате движения, а также в коже туловища и конечностей. Центральный отросток в составе заднего корешка вступает в задний канатик спинного мозга. *Тонкий пучок* (fasciculus gracilis) располагается медиально и проводит чувствительность от нижней конечности и нижней половины туловища. *Клиновидный пучок* (fasciculus cuneatus) располагается латерально и проводит чувствительность от верхней конечности и верхней половины туловища. Оба пучка заканчиваются соответственно на клетках nucleus gracilis et nucleus cuneatus продолговатого мозга;
- **2-й нейрон** располагается в указанных выше ядрах. Аксоны вторых нейронов образуют *медиальную петлю* (lemniscus medialis) и на уровне нижнего угла ромбовидной ямки переходят на противоположную

сторону, образуя *перекрест петли* (decussacio lemniscorum). Медиальная петля проходит мост, ножки мозга и заканчивается в зрительном бугре;

— **3-й нейрон** располагается в ядрах зрительного бугра. Аксоны третьих нейронов проходят через заднюю ножку внутренней капсулы и в составе лучистого венца достигают постцентральной извилины.

Экстероцептивные пути несут информацию от рецепторов, заложенных в коже и слизистых оболочках. Они обеспечивают поверхностную (общую) чувствительность: болевую, температурную, тактильную. К ним относятся спиноталамические пути и пути проведения общей чувствительности от области головы с участием черепных нервов.

Спиноталамические пути проводят общую чувствительность от туловища и конечностей. Среди них различают латеральный — основной, проводит болевую и температурную чувствительность и передний — проводит тактильную чувствительность.

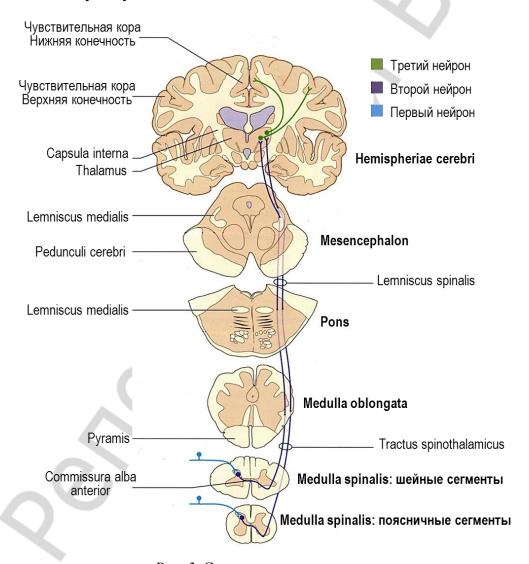


Рис. 3. Спиноталамические пути

Латеральный и передний спиноталамические пути (tractus spinothalamicus lateralis et anterior) (рис. 3):

- **1-й нейрон** располагается в ganglion spinale. Его периферический отросток заканчивается рецептором в коже и слизистых оболочках, а центральный отросток вступает в спинной мозг в составе заднего корешка и заканчивается на клетках заднего рога спинного мозга;
- **2-й нейрон** располагается в заднем роге. Аксоны вторых нейронов на уровне спинного мозга переходят на противоположную сторону и располагаются в *боковом* (tractus spinothalamicus lateralis) или *переднем* (tractus spinothalamicus anterior) *канатиках*. Затем они проходят продолговатый мозг, мост, ножки мозга и вместе с медиальной петлей достигают зрительного бугра;
- **3-й нейрон** располагается в ядрах зрительного бугра. Аксоны третьих нейронов проходят через заднюю ножку внутренней капсулы и заканчиваются в постцентральной извилине.

Общая чувствительность от кожи и слизистых оболочек головы проводится с участием черепных нервов (рис. 4). При этом **1-й нейрон** расположен в чувствительных узлах черепных нервов, **2-й нейрон** — в их чувствительных ядрах в стволе мозга (преимущественно в ядрах тройничного нерва) и **3-й нейрон**, достигающий коры постцентральной извилины, — в таламусе.

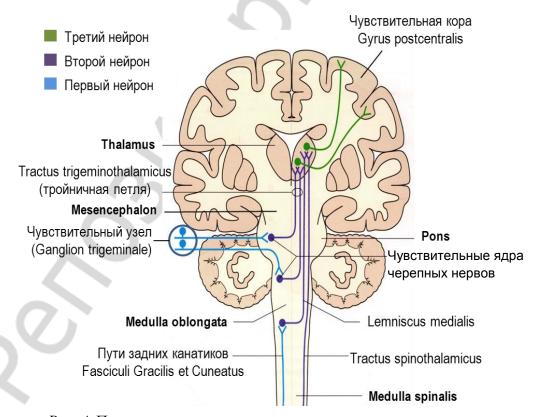


Рис. 4. Пути проведения чувствительности от головы и шеи

НИСХОДЯЩИЕ ПРОЕКЦИОННЫЕ ПУТИ

Нисходящие проекционные пути (эфферентные, двигательные) проводят импульсы от коры головного мозга или от подкорковых двигательных центров к двигательным ядрам черепных нервов, лежащим в мозговом стволе, и к ядрам передних рогов спинного мозга, а затем — к скелетным мышцам. Произвольные целенаправленные движения контролируются пирамидной системой, непроизвольные — экстрапирамидной системой.

Пирамидная система включает корковые двигательные центры и начинающиеся от них *пирамидные проводящие пути* — корково-ядерный, обеспечивающий сознательную двигательную активность мышц головы и шеи, и корково-спинномозговой, обеспечивающий двигательную активность мышц туловища и конечностей.

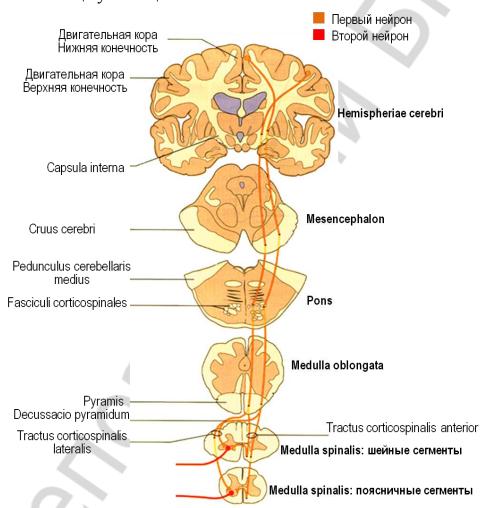


Рис. 5. Корково-спинномозговой путь

Корково-спинномозговой путь (tractus corticospinalis) (рис. 5):

1-й нейрон располагается преимущественно в коре предцентральной извилины (её верхней и средней трети). Аксоны первых нейронов

проходят через заднюю ножку внутренней капсулы, ножки мозга, мост, продолговатый мозг, где образуют пирамиды. В нижней части продолговатого мозга большая часть волокон переходит на противоположную сторону, образуя *перекрест пирамид* (decussatio pyramidum), затем спускается в боковом канатике спинного мозга под названием *tractus corticospinalis lateralis* и достигает мотонейронов передних рогов.

Оставшиеся волокна проходят в переднем канатике спинного мозга своей стороны, образуя *tractus corticospinalis anterior*. Большая часть этих волокон посегментно переходит на противоположную сторону и заканчивается на мотонейронах передних рогов. Оставшиеся волокна заканчиваются в двигательных ядрах своей стороны;

2-й нейрон располагается в двигательных ядрах передних рогов.
 Аксоны вторых нейронов выходят из спинного мозга в составе передних корешков и заканчиваются двигательными окончаниями в скелетных мышцах туловища и конечностей.

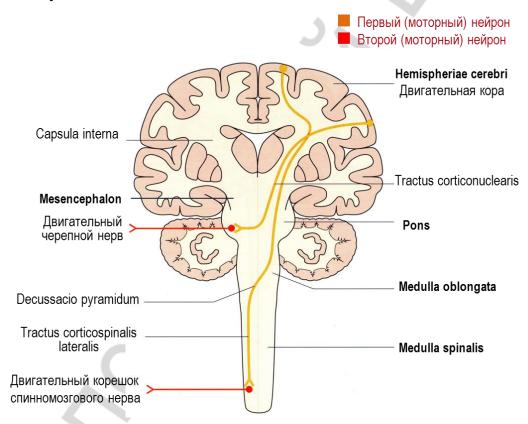


Рис. б. Корково-ядерный путь

Корково-ядерный путь (tractus corticonuclearis) (рис. 6):

— **1-й нейрон** представлен клетками, расположенными в коре предцентральной извилины (её нижней трети). Аксоны этих нейронов проходят через колено внутренней капсулы и в стволе мозга последовательно заканчиваются на двигательных ядрах черепных нервов (III—VII, IX—XII);

— **2-й нейрон** располагается в двигательных ядрах указанных черепных нервов. Аксоны вторых нейронов выходят из мозга и в составе черепных нервов направляются к скелетным мышцам головы и шеи, где заканчиваются двигательными окончаниями.

Экстрапирамидная система — совокупность образований, осуществляющих бессознательную регуляцию движений и мышечного тонуса. Включает подкорковые двигательные центры головного мозга и экстрапирамидные проводящие пути. Основными двигательными центрами экстрапирамидной системы являются: базальные ядра, субталамическое ядро Льюиса, медиальные ядра таламуса, ядерные образования мозгового ствола (красное ядро, ретикулярная формация и др.), ядра гипоталамуса и мозжечок.

Основными путями экстрапирамидной системы являются красноядерноспинномозговой (tractus rubrospinalis), ретикулоспинномозговой (tractus reticulospinalis), вестибулоспинномозговой (tractus vestibulospinalis). Первые нейроны этих путей располагаются в соответствующих ядрах (красном ядре, ядрах ретикулярной формации, вестибулярных ядрах), вторые нейроны — в двигательных ядрах передних рогов спинного мозга и черепных нервов.

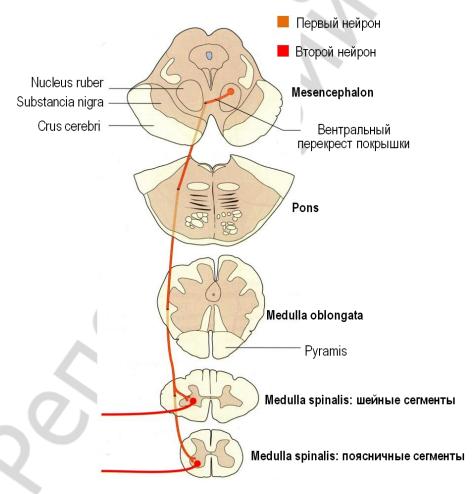


Рис. 7. Красноядерно-спинномозговой путь

Красноядерно-спинномозговой путь (tractus rubrospinalis, монаков путь) (рис. 7):

- **1-й нейрон** располагается в nucleus ruber. Аксоны первых нейронов на уровне среднего мозга переходят на противоположную сторону (перекрест Фореля). Часть волокон заканчивается на двигательных ядрах черепных нервов, часть проходит в боковых канатиках спинного мозга и заканчивается посегментно на клетках его передних рогов;
- 2-й нейрон располагается в двигательных ядрах черепных нервов или двигательных ядрах передних рогов спинного мозга. Аксоны вторых нейронов выходят из головного мозга в составе черепных нервов, из спинного мозга — в составе спинномозговых нервов и заканчиваются двигательными окончаниями в скелетных мышцах головы, шеи, туловища и конечностей.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. *Привес, М. Г.* Анатомия человека : учеб. / М. Г. Привес, Н. К. Лысенков, В. И. Бушкович. 12-е изд., перераб. и доп. Санкт-Петербург : Издат. дом СПбМАПО, 2011. 720 с.
- 2. *Нормальная* анатомия человека: учеб. для мед. вузов : в 2 т. / И. В. Гайворонский. 5-е изд., испр. и доп. Санкт-Петербург : СпецЛит, 2011. Т. 2. 423 с.
- 3. *Анатомия* человека : учеб. в 2 т. / М. Р. Сапин [и др.]. Москва : ГЭОТАР-Медиа, 2013. Т. 2. 456 с.
- 4. *Гусев*, *Е. И.* Неврология и нейрохирургия : учеб. : в 2 т. / Е. И. Гусев, А. Н. Коновалов, В. И. Скворцова. Т. 1. Неврология. 4-е изд., доп. Москва : ГЭОТАР-Медиа, 2015. $640 \, \mathrm{c}$.
- 5. *Гайворонский, И. В.* Анатомия центральной нервной системы и органов чувств: учеб. для бакалавров / И. В. Гайворонский, Г. И. Ничипорук, А. И. Гайворонский. Санкт-Петербург: Гос. ун-т; Москва: Юрайт, 2015. 293 с.
- 6. *Международная* анатомическая терминология / под ред. Л. Л. Колесникова. Москва : Медицина, 2003. 424 с.
- 7. *Snell*, *Richard S*. Clinical neuroanatomy / Richard S. *Snell*. 7th ed. Philadelphia : Lippincott Williams & Wilkins, 2010. 878 p.
- 8. *Fitzgerald, M. J.* T. Clinical neuroanatomy and neuroscience / M. J. T. Fitzgerald, G. Gruener, E. Mtui. 6th ed. Elsevier Limited, 2012. 417 p.
- 9. *Crossman*, A. R. Neuroanatomy: An illustrated colour text / A. R. Crossman, D. Neary. 5th ed. Elsevier Limited, 2015. 192 p.

ОГЛАВЛЕНИЕ

Общая характеристика проводящих путей	
центральной нервной системы	.3
Восходящие проекционные пути	.4
Нисходящие проекционные пути	.9
Список использованной литературы	13

Учебное издание

Жарикова Ольга Леонидовна **Чайка** Лидия Даниловна **Давыдова** Людмила Александровна

КРАТКИЕ СВЕДЕНИЯ О ПРОВОДЯЩИХ ПУТЯХ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Учебно-методическое пособие

Ответственная за выпуск Н. А. Трушель Редактор Ю. В. Киселёва Компьютерная верстка А. В. Янушкевич

Подписано в печать 03.09.18. Формат 60×84/16. Бумага писчая «Xerox office». Ризография. Гарнитура «Times». Усл. печ. л. 0,93. Уч.-изд. л. 0,56. Тираж 90 экз. Заказ 639.

Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный медицинский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/187 от 18.02.2014. Ул. Ленинградская, 6, 220006, Минск.