Ксембаев С. С., Пермякова Н. Е., Салахов А. К., Халиуллина А. А. КЛИНИКО-ФУНКЦИОНАЛЬНОЕ ОБОСНОВАНИЕ НОВОГО ПОДХОДА К ПОВЫШЕНИЮ УРОВНЯ СТОМАТОЛОГИЧЕСКОГО ЗДОРОВЬЯ

Казанский государственный медицинский университет Министерства здравоохранения России, Казань Детская стоматологическая поликлиника №2, Ижевск ООО «Эстетик-стом», Казань

Резюме. Представлен новый подход к повышению уровня стоматологического здоровья включением в практику индивидуальной гигиены рта зубочелюстного тренинга. Для этого предложено авторское устройство — зубочелюстной тренажер.

Анализ полученных данных позволил авторам выработать обоснованные рекомендации по использованию зубочелюстного тренинга в стоматологической практике для улучшения стоматологического статуса и повышения уровня стоматологического здоровья пациентов.

Ключевые слова: индивидуальная гигиена рта; зубочелюстной тренажер; профилактика стоматологических заболеваний.

Ksembayev S. S., Permyakova N. E., Salakhov A. K., Khaliullina A. A. CLINICAL-FUNCTIONAL SUBSTANTIATION OF THE NEW APPROACH TO IMPROVE DENTAL HEALTH

Kazan State Medical University, Ministry of Health of Russia, Kazan Children's dental clinic №2, Izhevsk

LLC Esthetic-stom, Kazan

Summary. A new approach is presented to improve the level of dental health by including dental-jaw training in the practice of individual oral hygiene. To do this, the author proposed a device – dentition simulator.

The analysis of the obtained data allowed the authors to develop sound recommendations on the use of dental-jaw training in dental practice to improve dental status and improve the level of dental health of patients.

Keywords: personal hygiene of the mouth; dentition simulator; prevention of dental diseases.

Основные стоматологические заболевания (кариес зубов, пародонтит), поражающие в большей или меньшей степени практически каждого человека, глобализировались параллельно с ростом развились изменением характера питания и условий внешней среды. Поэтому их можно охарактеризовать как наиболее типичные «болезни цивилизации», созданные эволюцией человека, способностью изменить и приспособить к себе внешнюю среду, образ жизни, питания и даже саму внешнюю среду. При этом зубочелюстная система является одной ИЗ наиболее подверженных заболеваниям систем организма человека [3].

Ранее считалось, что высокий уровень распространенности и интенсивности стоматологических заболеваний связан, в первую очередь, с недостаточным уровнем индивидуальной гигиены рта при использовании зубной щетки.

В последнее время немаловажное значение отводится дефициту жевательной нагрузки, что требует нового подхода к решению данной проблемы. Еще Ф. А. Звержховский в начале XX века писал (цитируется дословно): «... у эскимосов порча зубов встречается всего в 2,5% случаев, у большинства малоцивилизованных народов она колеблется от 5 до 25%, у китайцев доходит до 40%, у народов высшей культуры более 80%. Я полагаю, эти данные говорят с полной очевидностью за ухудшение состояния жевательного аппарата культурного человека» [1].

зубов И пародонтит продолжают оставаться распространенными заболеваниями в мире. Их распространенность в Российской Федерации достигает 100% [2]. Периодически проводимые исследования свидетельствуют об отсутствии тенденции к их снижению. Столь высокий уровень стоматологической патологии, по мнению В. К. Леонтьева (2012), связан со следующими факторами: 1. особенности питания человека и вредные привычки; 2. состав питьевой воды и состояние окружающей среды; 3. редукция зубочелюстной системы как эпохальный процесс человечества [3].

факторы связаны, Первый И третий в основном, с дефицитом жевательной нагрузки. Например, первый фактор связан с бурным ростом научно-технического прогресса в последние столетия с развитием механизации, а затем и автоматизации производства. При этом резко уменьшились жевательные нагрузки вследствие искусственной обработки и измельчения пищи, что ведет к ненадобности зубов с их сверхпрочными свойствами твердых В настоящее функциональные время окклюзионные возникающие при жевании пищевых продуктов, меньше в 5–150 раз (!) максимальной окклюзионной силы, которую безболезненно могут выдерживать ткани пародонта. Это привело к развитию «жевательной не требующую стремлению выбирать пищу, длительной пищевой жевательной переработки, т.е. к дефициту жевательной нагрузки, который вызывает гипофункцию не только жевательного аппарата, но и других структур зубочелюстной системы, снижая их устойчивость к стоматологическим заболеваниям [4].

«Жевательная леность» особенно выражена у лиц с кариесом зубов и поражениями пародонта. Обращается особое внимание на то, что проблема преодоления «лености» очень актуальна в плане естественной тренировки зубочелюстного аппарата, увеличения его резистентности к действию неблагоприятных факторов полости рта [6].

Что касается третьего фактора, то о нем свидетельствует изучение функциональной морфологии черепа человека, которое позволило выявить

основную тенденцию его эволюции — постепенную редукцию размеров жевательного аппарата, включающего верхнюю, нижнюю челюсти и зубы — за последние 100 тысяч лет площадь жевательной поверхности зубов человека уменьшилась почти в 2 раза! [4]

Кроме того, наиболее явным, видимым и известным признаком являются изменения в закладке, развитии и прорезывании восьмых зубов (зубов «мудрости»). Редукция челюстей привела к тому, что у большинства населения зачатки 8-х зубов даже не обнаруживаются, у многих — они формируются внутри челюстей и не прорезываются. Наконец, если эти зубы прорезываются, то с большим трудом, либо удаляются из-за отсутствия места для их расположения. Следовательно, в перспективе мы обречены на полную потерю 8-х зубов, что является одним из основных результатов редукции зубочелюстной системы [3].

Следовательно, для решения главной проблемы в стоматологии — сохранении структуры тканей жевательного аппарата необходим поиск и создание новых средств гнатодинамотренинга с включением биологически обратной связи для индивидуального подбора дополнительных механических нагрузок [4]. Однако до настоящего времени работы в этом направлении ведутся только по разработке способов гнатодинамотренинга, причем с использованием жевательной резинки, не обладающей прямым очищающим эффектом и достаточным восполнением дефицита жевательной нагрузки.

На наш взгляд, зубочелюстной тренинг является тем недостающим звеном, которое позволит улучшить стоматологический статус на основе комплексного подхода.

Цель исследования. Определить эффективность зубочелюстного тренинга для повышения уровня стоматологического здоровья.

Материалы и методы. Методология работы была основана на совершенствовании стоматологического массажера — устройства для повышения эффективности индивидуальной гигиены рта [5]. Что касается названия устройства, на наш взгляд более подходящим является название «зубочелюстной тренажер», так как оно, в отличие от прототипа, более полно характеризует его назначение (рис. 1).

Рис. 1. Зубочелюстной тренажер

Электромиография (ЭМГ) жевательных мышц проведена у 25 человек (мужчин -10, женщин -15) в возрасте 18-35 лет.

Исследование состояния регионарного кровотока с помощью цветного дуплексного сканирования сосудов верхней и нижней челюсти проведено у 20 человек (мужчин – 12, женщин – 8) в возрасте 18–35 лет.

Состояние капиллярного кровотока определяли у 20 человек (мужчин -5, женщин -15) в возрасте 18-35 лет.

Параллельно проводилась оценка влияния зубочелюстного тренинга на скорость секреции слюны 45 человек (мужчин — 19, женщин — 26) в возрасте 35—44 лет, определение минерализующего потенциала слюны и функциональной резистентности эмали зубов 33 человек (мужчин — 14, женщин — 19) в возрасте 35—44 лет.

На последнем этапе клинического исследования (через 1 год) проведена индексная оценка редукции кариеса зубов по показателю прироста интенсивности кариеса зубов.

Оценка влияния зубочелюстного тренинга на стоматологический статус проведена у 89 лиц (мужчин -38, женщин -51) в возрасте 35–44 лет.

Результаты и обсуждение. При ЭМГ-исследованиях объектом являлся нервно-мышечный аппарат жевательных мышц. В ходе исследования нас интересовало состояние биопотенциалов жевательных мышц во проведения зубочелюстного зубочелюстного тренинга (использования регистрации электрических тренажера). Для амплитуды потенциалов жевательных мышц использовали интерференционный (поверхностный) метод электромиографии.

Проведение ЭМГ у испытуемых лиц показало, что зубочелюстной тренинг, оказывая функциональное воздействие на зубочелюстную систему, является оптимальным методом усиления нейромышечной активности жевательных мышц, что косвенно свидетельствует о получении зубочелюстной системой адекватных механических нагрузок, необходимых для нормального функционирования всех ее звеньев.

В этой связи особый интерес представляло изучение показателей регионарного кровотока для сопоставления их с показателями электромиографии.

При этом была установлена тенденция увеличения линейной скорости кровотока и соответствующего уменьшения сосудистого сопротивления, что свидетельствует об изменении (тренировке) регионарного сосудистого звена под воздействием зубочелюстного тренинга.

Результаты, полученные в ходе изучения влияния зубочелюстного тренинга на скорость секреции слюны, показали, что зубочелюстной тренинг сопровождается значительным усилением скорости секреции слюны, что, в свою очередь, благоприятно сказывается на стоматологическом статусе – слюна (ротовая жидкость) обладает очищающими и реминерализующими свойствами, а также поддерживает рН на уровне близком к нейтральному.

Показатели ТЭР-теста на базовой линии отсчета свидетельствовали о низкой резистентности эмали как у представителей основной группы (ОГ), так и группы сравнения (ГС).

Через 1 месяц показатели ТЭР-теста у лиц ОГ достоверно (p<0,05) снизились до $28,33\pm2,09\%$, что свидетельствовало о повышении уровня резистентности эмали до пределов границ практического отсутствия риска возникновения кариеса зубов. При этом у представителей ГС данные показатели практически не изменились (p>0,05).

В свою очередь, при исследовании минерализующего потенциала (МП) ротовой жидкости (РЖ) у лиц ОГ выявлена картина кристаллообразования: наличие древовидных кристаллов различного вида и контрастности. Показатель кристаллизации (ПК) в среднем составил 0.83 ± 0.06 , что свидетельствовало о высоком уровне минерализующей способности слюны. При этом у представителей ГС среднее значение ПК составило 0.51 ± 0.09 , что свидетельствовало о среднем уровне МП РЖ.

При сравнении показателей кристаллизации ОГ и ГС, установлено их статистически значимое различие (p<0,01).

Таким образом, можно отметить, что под влиянием зубочелюстного тренинга наблюдается улучшение показателей резистентности эмали зубов и повышение уровня минерализующей способности слюны.

Индекс эффективности гигиены рта PHP на базовой линии отсчета свидетельствовал о хорошем уровне гигиены рта у пациентов как ОГ, так и ГС, что подтверждало эффективность проведенной профессиональной гигиены рта до начала исследований.

В динамике исследования у пациентов ОГ имело место некоторое увеличение значений индекса, однако на всем протяжении периода наблюдения критического значения 0,6 балла. не достигали у пациентов ГС значения индекса также нарастали, при этом, несмотря на их увеличение, эффективность гигиены рта у лиц ГС оценивалась на первых трех хорошая, и этапах как лишь на двух последних этапах – как удовлетворительная при этом увеличение этих показателей достоверным (p<0,01), по сравнению с базовой линией отсчета.

Следовательно, можно считать, что зубочелюстной тренинг поддерживает хороший уровень индивидуальной гигиены рта.

В свою очередь, прирост интенсивности кариеса зубов у представителей ОГ составил 0.19 ± 0.02 , у лиц ГС -0.26 ± 0.03 . При этом разность показателей оказалась статистически значимой (p<0.05). Редукция прироста интенсивности кариеса зубов у пациентов ОГ составила 26.9%.

Полученные нами результаты исследования подтверждают мнения многих исследователей, что естественные жевательные нагрузки способствуют повышению минерализации твердых тканей интактных зубов жевательной группы, а также зубов с кариесом.

Заключение. Таким образом, высокий уровень распространенности и интенсивности стоматологических заболеваний требует поиска новых и совершенствования традиционных методов и средств, направленных на стабилизацию и снижение стоматологической заболеваемости. На наш взгляд, зубочелюстной тренинг является тем недостающим звеном, которое позволит поднять уровень стоматологического здоровья на основе комплексного подхода.

ЛИТЕРАТУРА

- 1. $3вержховский, \Phi. A.$ Зубы культурного человека / $\Phi.$ А. Звержховский // Основы дентиатрии: Руководство для врачей и студентов. Спб., 1909. С. 3–17.
- 2. *Кузьмина, Э. М.* Стоматологическая заболеваемость населения России. Состояние твердых тканей зубов. Распространенность зубочелюстных аномалий. Потребность в протезировании / Э. М. Кузьмина, И. Н. Кузьмина, С. А. Васина [и др.]. М., 2009. 220 с.
- 3. *Леонтьев*, *В. К.* Экологические и медико-социальные аспекты основных стоматологических заболеваний / В. К. Леонтьев // Биосфера. 2012. № 1. С. 45–49.
- 4. *Логинова*, *Н. К.* Исследование влияния жевательных нагрузок на твердые ткани зубов / Н. К. Логинова, А. Г. Колесник, М. Ю. Житков // Клиническая стоматология. 2009. № 2. С. 64–65.
- 5. *Ксембаев*, *С. С.* Обоснование необходимости использования зубочелюстного тренинга в стоматологической практике / С. С. Ксембаев, М. В. Яковлева, И. Н. Мусин // Стоматология XXI века: материалы Всерос. науч. -практ. конф. с междунар. участием. Чебоксары, 2015. С. 43–46.
- 6. Сунцов, В. Г. Стоматологическая профилактика у детей / В. Г. Сунцов, В. К. Леонтьев, В. А. Дистель, В. Д. Вагнер. М.: Мед. книга; Н. Новгород: Издво НГМА, 2001. 344 с.