Содержание метионина в плазме крови крыс в условиях недостаточного поступления триптофана

Кот Виктория Николаевна

Гродненский государственный медицинский университет, Гродно

Научный(-е) руководитель(-и) — кандидат медицинских наук, доцент **Наумов Александр Васильевич**, Гродненский государственный медицинский университет, Гродно

Введение

Триптофан (Тгр) – незаменимая ароматическая альфа-аминокислота. Содержание в $100 \, \Gamma$ продуктов питания: икра $-950 \, \text{мг}$; творог $-210 \, \text{мг}$; шоколад $-200 \, \text{мг}$; яйцо куриное – 200 мг; хлеб ржаной – 100 мг. Помимо участия в синтезе белка Тгр выполня-ет и другие функции: является предшественником серотонина и мелатонина; участвует в синтезе витамина В3-ниацина. Продукт обмена Тгр – кинуренин - выполняет разнообразные биологические функции, включая расширение кровеносных сосудов во время воспаления, регуляция иммунного ответа и способствует активации роста опухолей. Синтез кинуренина увеличивается при нейродегениративных процессах и сердечно-сосудистых заболеваниях. Норма потребления Тгр для человека составляет 5 мг/кг массы тела в сутки. Метионин (Met) – незаменимая, серосодержащая альфа-аминокислота. Суточная норма -19 мг/кг массы тела. Выполняет следующие функции: является инициирующей аминокислотой в синтезе белка, служит в качестве донора метильной группы в реакциях трансметилирования (формирование эпигенома); служит предшественником цистеина, таурина, глутатиона и токсичной аминокислоты – гомоцистеина. Таким образом, Тгр и Met – одни из самых важных аминокислот в организме человека. Было интересно узнать, есть ли взаимосвязь между данными аминокислотами при моделировании недостаточного потребления Тгр с пищей у крыс.

Цель исследования

Определение уровня Меt в плазме крови крыс в условиях недостаточного поступления Trp. Для этого была выбрана модель кормления животных кукурузной кашей в качестве единственного источника питания (содержание $Trp \sim 60 \text{ мг}/100 \text{г}$ каши).

Материалы и методы

Исследования проводились на белых беспородных крысах-самцах массой 180-220 г. Контрольная группа (десять особей) – получала нормальный рацион. Опытная группа (восемь крыс-самцов) в течение пяти недель в качестве единственного источника белка получали кукурузную кашу, вода - ad libidum. Крысы опытной и контрольной группы голодали в течение 12 часов до декапитации. Содержание аминокислот определяли в плазме крови методом высокоэффективной жидкостной хроматографии («Agilent — 1200») с предколоночной дериватизацией ортофталевым альдегидом и детектированием по флуоресценции.

Результаты

Были получены следующие результаты: - в контрольной группе уровень Меt составил 80.9 ± 2.6 мкмоль/литр; - в опытной группе -43.4 ± 3.6 мкмоль/литр; р меньше 0,05. Следовательно, при недостаточном поступлении Trp с пищей наблюдается статистически достоверное снижение Met в плазме крови. Возможно, недостаток незаменимой аминокислоты Trp влияет на профиль эпигенома, что увеличивает расход донора метильных групп. Это требует дальнейших исследований, например, измерение содержания гомоцистеина при недостатке Trp.

Выводы

Результаты исследования показывают, что в условиях недостаточного поступления Trp с пищей резко снижается уровень Met в плазме крови крыс, что требует дальнейших исследований.