Ж.В. Антонович

Прогнозирование обострения бронхиальной астмы на основе исследования показателей клеточного иммунитета, апоптоза лимфоцитов периферической крови и концентрации цитокинов интерлейкина-4 и интерферона-у

Белорусский государственный медицинский университет

Статья посвящена разработке количественных критериев для определения периода бронхиальной астмы и прогнозирования обострения заболевания.

Ключевые слова: бронхиальная астма, прогнозирование, обострение, клеточный иммунитет, апоптоз, цитокины, дискриминантный анализ, регрессионный анализ.

Несмотря на значительные успехи в исследовании проблемы бронхиальной астмы (БА), до сих пор отсутствуют точные количественные диагностические критерии для определения периода БА и прогнозирования обострения заболевания. В настоящее время диагностика обострения и ремиссии БА основывается преимущественно на клинических проявлениях заболевания и данных анамнеза и зачастую носит субъективный характер, так как определенная часть больных БА плохо ощущает выраженность симптомов, и такие больные могут не жаловаться на ухудшение даже при значительном снижении функции легких, что чаще наблюдается у пациентов с угрожающими жизни обострениями БА в анамнезе и более распространено у мужчин [1]. С другой стороны, снижение пиковой скорости выдоха при обострении БА может появляться позже, чем увеличение выраженности симптомов БА [4]. Разработка количественных критериев для определения периода БА и прогнозирования обострения заболевания представляет научный и практический интерес, обострения БА отражают высокую активность воспалительного процесса в дыхательных путях, прогрессирование воспаления, исходом которого является бронхов с последующим ремоделирование морфологической структуры развитием хронической дыхательной недостаточности, а целью лечения БА является достижение ремиссии, поддержание контроля над заболеванием и предупреждение обострений.

С учетом вышесказанного, целью настоящего исследования было разработать количественные критерии для определения периода БА и прогнозирования обострения заболевания.

Материал и методы.

Объектом динамического исследования явились 75 больных БА, обследованные дважды с интервалом 2 месяца (в периоды обострения (до начала лечения в пульмонологическом стационаре) и ремиссии заболевания). Возраст больных БА составил 46 лет (от 31 до 54 лет). По полу больные БА распределились следующим образом: 29% (22) мужчин и 71% (53) женщин. Длительность БА составила 9 лет (от 2 до 16 лет). У 21% (16) больных была диагностирована аллергическая, у 12% (9) — неаллергическая и у 67% (50) — смешанная форма заболевания. Легкое течение БА наблюдалось у 25% (19), среднетяжелое — у 39% (29), тяжелое — у 36% (27) больных. Группу контроля

составили практически здоровые лица в количестве 34 человека (41% (14) мужчин и 59% (34) женщин). Средний возраст лиц контрольной группы был 43±2 года. Статистически значимых различий между группами больных БА и контрольной по полу и возрасту не было. Также отсутствовали статистически значимые различия между группами больных с обострением и ремиссией БА по приему базисной терапии.

Определение Т-лимфоцитов (CD3+), Т-лимфоцитов-хелперов (CD4+), цитотоксических Т-лимфоцитов (CD8+), естественных киллерных клеток (CD16+), естественных киллерных клеток с фенотипом Т-лимфоцитов (CD3+CD16+), активированных клеток (CD25+), естественных регуляторных Т-клеток (CD4+CD25hi) проводилось в периферической крови на проточном цитофлюориметре FACScan (Becton Dickinson, США) с моноклональными антителами фирмы Beckman Coulter (США) [2].

Для исследования апоптоза лимфоцитов периферической крови (Лф) использовали набор Annexin V Detection Kit фирмы «Beckman Coulter» (США), включающий аннексин, конъюгированный с флюорохромом (Annexin V-FITC), пропидиум йодид (РІ) и буфер для окрашивания. Апоптоз лимфоцитов оценивали на проточном цитофлюориметре FACScan (Becton Dickinson, США). содержание апоптотических клеток определяли свежевыделенных лимфоцитов и в 72-часовых культурах, нестимулированных и стимулированных ФГА (10 мкг/мл) лимфоцитов. При изложении результатов исследования клетки на ранней стадии апоптоза будут обозначаться как Annexin V+PI- (позитивны по Annexin V-FITC, негативны по PI), живые клетки – Annexin V-PI- (негативны по Annexin V-FITC и PI), клетки, находящиеся на поздней стадии апоптоза – Annexin V+PI+, (позитивны по Annexin V-FITC и PI), погибшие клетки – Annexin V-PI+ (негативны по Annexin V-FITC и позитивны по РІ) [5].

Концентрации цитокинов интерлейкина-4 (IL-4) и интерферона- γ (IFN- γ) определяли в сыворотке крови методом иммуноферментного анализа, согласно рекомендации фирмы-производителя с использованием тест-систем ЗАО «Вектор-Бест» (Россия).

Исследование показателей функции внешнего дыхания (ФВД), проводилось на компьютерном спирографе «МАС-1» (Беларусь).

Статистическую обработку данных выполняли с использованием пакета прикладных

программ Statistica 7,0 и Statistica 8,0. Применялись критерии Шапиро-Уилка, Стьюдента,

Вилкоксона, Манна-Уитни, Фишера, МакНемара, дискриминантный анализ, логистический регрессионный анализ. За критический уровень статистической значимости принимали вероятность безошибочного прогноза равную 95% (p<0,05) [3].

Результаты и обсуждение

Для выявления количественных признаков, имеющих наиболее существенные межгрупповые различия был проведен сравнительный анализ показателей клеточного иммунитета, апоптоза Лф и концентраций цитокинов

IFN-γ и IL-4, как важных составляющих в процессе воспаления при БА, а также показателей спирометрии.

Показатели ФВД у больных БА в периоды обострения и ремиссии заболевания и в группе практически здоровых лиц представлены в таблице 1.

Таблица 1 — Показатели функции внешнего дыхания у больных бронхиальной астмой в периоды обострения и ремиссии заболевания и в группе практически здоровых лиц.

	Группа				
Параметр	Больные БА в период обострения (n=75) М ± m или Ме (25%-75%)	Больные БА в период ремиссии (n=75) М ± m или Ме (25% - 75%)	Группа контроля (n=32) М±тили Ме (25% - 75%)		
ЖЕЛ %	83 ± 2 *	89±2	105 ± 2		
ФЖЕЛ, %	71±2	83 ± 2	105 ± 2		
ОФВ, %	58±3	71±3	106±2		
ОФВ₁/ЖЕЛ, %	56 (45 - 68)	65 (52 - 76)	80 (77 - 85)		
ОФВ,/ФЖЕЛ,%	68±2*	71±2	88±1		
ПОСвыд, %	57±3	68±3	94±3		
MOC25 %	42 (27 - 61)	56 (36 - 81)	98 (85 - 115)		
MOC _{50.} %	33 (22 - 51)	46 (27 - 66)	102 (89 - 110)		
MOC15 %	30 (21 - 46)	39 (24 - 57)	94 (81 - 110)		
COC2575, %	36 (23 - 55)	46 (27 - 74)	104 (100 - 119)		
МВЛ, %	33 (23 - 48) *	40 (27 - 54) **	54 (43 - 65)		

Примечания: Во всех сравнениях р<0,001, кроме

- 1. * p<0,05 по сравнению с ремиссией БА;
- 2. ** р<0,01 по сравнению с группой контроля.

Показатели клеточного иммунитета и концентрации цитокинов IFN-γ и IL-4 у практически

здоровых лиц и больных БА в периоды обострения и ремиссии заболевания представлены в таблице 2.

Таблица 2 – Показатели клеточного иммунитета и концентрации цитокинов IFNγ и IL-4 у практически здоровых лиц и больных БА в периоды обострения и ремиссии заболевания.

	Группа				
Показатель	Больные БА в	Больные БА в	Практически		
	период обострения	период ремиссии	здоровые лица		
	(n=48)	(n=48)	(n=30)		
	М ± m или	М ± m или	М ± m или		
	Ме (25% - 75%)	Ме (25% - 75%)	Ме (25% - 75%)		
Т-лимфоциты СD3*, %	66,73 (60,54 - 72,30)	67,99 (64,56 - 71,64)	68,49 (66,14 - 70,77)		
Т-лимфоциты CD3 ⁻ ,	1759,49 *	1508,73	1413,97		
кл/мкл	(1215,70 - 2292,28)	(1150,65-1955,03)	(1193,00 - 1659,04)		
Т-хелперы СD4*, %	38,19 (35,37 - 44,33)	39,23 (33,69 - 43,76)	40,08 (36,93 - 41,72)		
Т-хелперы CD4 ⁺ ,	1011,05 *	843,89	876,74		
кл/мкл	(756,10 - 1354,93)	(664,02 - 1146,83)	(676,56 - 960,27)		
Т-цитотоксические СD8*, %	20,41 ± 0,65 *	$23,29 \pm 0,73$	$23,19 \pm 0,62$		
Т-цитотоксические CD8 ⁺ ,	502,59	488,73	480,31		
кл/мкл	(360,38 - 767,91)	(387,69 - 654,73)	(394,57 - 582,52)		
Естественные киллеры	13,42	13,97	14,08		
CD16 ⁺ , %	(10,05 - 17,75)	(9,79 - 18,33)	(11,35 - 16,93)		
Естественные киллеры	299,21	312,29	286,21		
CD16 ⁻ , кп/мкл	(201,36 - 495,79)	(178,12 - 422,56)	(221,87 - 343,74)		
Т-клетки с киллерной активностью CD3*CD16*, %	7,01 (3,47 - 18,35)	7,33 (3,33 - 12,32)	5,06 (3,87 - 8,91)		
CD3*CD16*, кл/мкл	182,61	117,52	109,45		
	(73,32 - 382,99)	(71,10 - 357,06)	(67,87 - 195,94)		
Активированные клетки	10,22 ***	5,85	5,49		
CD25°, %	(4,92 - 13,09)	(4,14 - 7,83)	(3,69 - 6,01)		
CD25 ⁻ , кл/мкл	л/мкл 266,45 *** 134,80 112,00		112,06 (56,61 - 144,38)		
Естественные регуляторные	1,56 ***	5,90 **	7,40		
Т-клетки CD4°CD25°, %	(1,14 - 1,97)	(4,96 - 6,71)	(6,41 - 8,52)		
CD4*CD25**, кл/мкл	15,55 ***	51,16	59,30		
	(10,05 - 22,22)	(32,82 - 66,37)	(45,82 - 73,88)		
ИРИ	1,92 (1,67 - 2,26) *	1,69 (1,43 - 1,93)	1,74 (1,61 - 1,85)		
IFN-ү, пг/мл	7,88 *** (4,85-10,30)	12,73 ** (10,12-21,60)	2,35 (1,44-3,99)		
IL-4, пг/мл	332,39 § (231,82-401,90)	174,66 ** (97,69-267,33)	1,53 (0,96-1,99)		
IFN-γ/IL-4	0,026 *** (0,016-0,046)	0,092 ** (0,066-0,157)	1,44 (1,17-1,69)		

Примечания:

- 1. БА бронхиальная астма, ИРИ иммунорегуляторный индекс;
- 2. *- p<0,01 по сравнению с ремиссией и p<0,05 по сравнению с группой практически здоровых лиц;
- 3. **- р<0,001 по сравнению с группой практически здоровых лиц;
- 4. ***- р<0,001 по сравнению с ремиссией и группой практически здоровых лиц;
- 5. \S p<0,05 по сравнению с ремиссией и p<0,001 по сравнению с группой практически здоровых лиц.

Показатели апоптоза Лф у практически здоровых лиц и больных БА в периоды обострения и ремиссии заболевания представлены в таблице 3.

Таблица 3 – Показатели апоптоза Лф у практически здоровых лиц и больных БА в периоды обострения и ремиссии заболевания, процент клеток

Группа	Annexin V*PI* % клеток М±т	Annexin V'PI' % клеток Me (25%-75%)	Annexin V*PI* % клеток Ме (25%-75%)	Annexin VPI* % клеток Ме (25%-75%)	
	Спонтанный апоптоз свежевыделенных Лф			Ιф	
Больные БА в период обострения (n=25)	18,74±2,28	79,58 (68,68-86,06)	1,21 (0,78-1,85)	1,19 (0,8-1,66)	
Больные БА в период ремиссии (n=25)	23,66±2,73	70,96 (60,46-80,25)	2,06 (1,37-4,61)	1,27 (0,76-3,28)*	
Здоровые лица (n=20)	20,65 ± 1,22	77,28 (72,42-80,60)	1,38 (1,18-2,34)	0,89 (0,49-1,36)	
	Спонтанный апоптоз в 72-часовых культурах Лф				
Больные БА в период обострения (n=25)	18,62±1,81•	79,06 (67,63-85,20)•	2,65 (1,09-4,99)•	1,52 (0,87-2,21)	
Больные БА в период ремиссии (n=25)	23,67 ± 2,37	67,13 (57,68-74,86)*	5,32 (3,96-6,65)#	3,10 (1,32-9,93)§	
Здоровые лица (n=20)	26,60 ± 2,21	59,12 (49,62-61,53)	15,39 (6,73-19,32)	1,37 (0,64-2,23)	
Ů.	Индуцированный ФГА апоптоз в 72-часовых культурах Лф				
Больные БА в период обострения (n=25)	20,29±1,69••	70,39 • • (65,4-75,34)	4,52 • (2,87-7,76)	2,44 • (1,21-4,19)	
Больные БА в период ремиссии (n=25)	41,65±2,38	37,27 (28,27-50,51)	10,74 (4,54-16,62)	4,24 (1,3-11,22)#	
Здоровые лица (n=20)	43,02 ± 2,58	43,12 (37,79-51,22)	13,76 (5,55-18,26)	1,12 (0,59-1,81)	

Примечания:

- 1. БА бронхиальная астма, Лф лимфоциты периферической крови.
- 2. * p<0,05 по сравнению с группой здоровых лиц.
- 3. - p<0,05 по сравнению с ремиссией и p<0,01 по сравнению с группой здоровых лиц.
- 4. • p<0,001 по сравнению с ремиссией и группой здоровых лиц.
- 5. # p<0,001 по сравнению с группой здоровых лиц.
- 6. \S p<0,01 по сравнению с обострением и p<0,05 по сравнению с группой здоровых лиц.

С целью выявления наиболее информативных для дифференциации двух (обострение, ремиссия) количественных признаков дискриминантный анализ. В качестве группирующей переменной выступал качественный признак, определяющий принадлежность пациента к одной из двух групп: 1 – «обострение», 2 – «ремиссия». К независимым были отнесены признаки, имеющие наиболее существенные межгрупповые различия по результатам t-критерия Стьюдента или критерия Вилкоксона: ОВФ1 (%), показатели процентного содержания в крови CD25+-, CD4+CD25hi-клеток, CD8+-лимфоцитов, показатель процентного содержания лимфоцитов, находящихся на ранней стадии индуцированного ФГА апоптоза в 72-часовых культурах лимфоцитов (апоптоз), показатель соотношения концентраций цитокинов IFN-у/IL-4.

В процессе анализа использовалась процедура проведения пошагового дискриминантного анализа с опцией «Casewise» (построчное удаление пропущенных значений). Таким образом, общее число наблюдений, принятых к рассмотрению, составило 45 пациентов. Малая величина p<0,001 свидетельствует о достаточной адекватности выбранной модели. При анализе матрицы классификации установлено, что все 45 пациентов были правильно

отнесены к соответствующим группам. Модель обеспечивает качество распознавания на уровне 100% в каждой из исследуемых групп и является эффективной. В результате канонического анализа были получены стандартизованные коэффициенты для каждой переменной дискриминантной функции (таблица 4).

Таблица 4 – Стандартизованные коэффициенты дискриминантной функции

Признак	Стандартизованные коэффициенты	
CD4*CD25**	1,037479	
Апоптоз	0,711745	
IFN/IL-4	-0,458103	
CD25	0,195293	
Собственное значение	5,583795	

Определив признаки, которые вносят наибольший вклад в дискриминацию объектов, мы использовали их для построения и анализа уравнений регрессии в целях прогнозирования состояния будущих пациентов. Для прогнозирования вероятности наступления обострения БА использовался логистический регрессионный анализ, поскольку зависимым признаком являлся качественный бинарный признак (имеет только два возможных значения): 1 (наличие обострения) и 0 (отсутствие обострения). Независимыми (объясняющими) признаками являлись показатели процентного содержания в крови CD25+-, CD4+CD25hi-клеток, CD8+-лимфоцитов, показатель процентного содержания лимфоцитов, находящихся на ранней стадии индуцированного ФГА апоптоза в 72-часовых культурах лимфоцитов (апоптоз), показатель соотношения концентраций цитокинов IFN-у/IL-4, а также показатель ОФВ1 (%).

Исходя из взаимной коррелированности ряда признаков, установленной при анализе матрицы корреляций, было принято решение построить несколько моделей логит-регрессии с последующей их оценкой на предмет качества классификации объектов. Построены 5 моделей логит-регрессии со следующими непрерывными переменными: 1) CD4+CD25hi; 2) Апоптоз; 3) IFN-γ/IL-4, СД25+; 4) СД25+, CD8+; 5) ОФВ1.

Модель 1. Независимый признак «CD4+CD25hi». Высокое значение $\chi 2=133,61$ и малая величина p<0,001 свидетельствуют о достаточной адекватности выбранной модели. Получены коэффициенты регрессии b0=9,78298 и b1 =-2,8484.

Регрессионное уравнение

$$Y = \frac{\exp(9,78298 - 2,8484X)}{1 + \exp(9,78298 - 2,8484X)},$$

где X – значение признака «CD4+CD25hi».

Графическое представление логит-регрессии для признака «CD4+CD25hi» представлено на рисунке 1.

Рисунок 1 – Графическое представление логит-регрессии для признака «CD4+CD25hi»

В данной и последующих логит-моделях значению 1 соответствует группа пациентов в

состоянии обострения БА, значению 0-в состоянии ремиссии. Если отклик регрессионного уравнения (вероятность) для предсказанного наблюдения $Y \le 0.5$, то объект относится к группе больных в состоянии ремиссии, если Y > 0.5-в состоянии обострения.

При анализе матрицы классификации наблюдений по признаку «CD4+CD25hi» установлено, что общий процент верных предсказаний составил 96,36%.

Модель 2. Независимый признак «Апоптоз». Значение $\chi 2=38,539$ и малая величина p<0,001, свидетельствуют о достаточной адекватности выбранной модели. Получены коэффициенты регрессии b0 = 5,83559 и b1 = -0,19374.

Регрессионное уравнение

где X – значение признака «Апоптоз».

Общий процент верных предсказаний составил 88,68%.

Модель 3. Независимые признаки «IFN- γ /IL-4» и «СД25+». Критерий χ 2 = 38,516, p<0,001, что говорит о достаточной адекватности модели. Коэффициенты регрессии b0 =1,40005,

b1 = 0,107702 и b2 = -54,223.

Регрессионное уравнение
$$Y = \frac{\exp(5,83559 - 0,19374X)}{1 + \exp(5,83559 - 0,19374X)}$$

где X - значение признака «Апоптоз».

Общий процент верных предсказаний составил 88,68%.

Модель 3. Независимые признаки «IFN- γ /IL-4» и «СД25⁺». Критерий χ^2 = 38,516, р<0,001, что говорит о достаточной адекватности модели. Коэффициенты регрессии b_0 =1,40005, b_1 = 0,107702 и b_2 = -54,223.

Регрессионное уравнение
$$Z = \frac{\exp(1,40005 + 0,107702X - 54,223Y)}{1 + \exp(1,40005 + 0,107702X - 54,223Y)}$$

где X – значение признака «IFN-y/IL-4», а Y – значение признака «СД25⁺».

Общий процент верных предсказаний составил 88,89%.

Модель 4. Независимые признаки «СД25⁺» и «СD8⁺». Значение χ^2 =38,016 и малая величина р<0,001, свидетельствуют о достаточной адекватности выбранной модели; р<0,001 для признака «СД25⁺» и р<0,001 для признака «СD8⁺». Коэффициенты регрессии b_0 = 2,05909, b_1 = 0,280831 и b_2 = -0,20392.

Регрессионное уравнение
$$Z = \frac{\exp(2,05909 + 0,280831 X - 0,20392Y)}{1 + \exp(2,05909 + 0,280831 X - 0,20392Y)}$$

где X – значение признака «СД25+», а Y – значение признака «CD8+».

Общий процент верных предсказаний составил 80,91%.

Модель 5. Независимый признак «ОФВ₁». Модель является достаточно адекватной: $\chi^2 = 10,70548$, p<0,01. Коэффициенты регрессии b₀ = -1,51050 и b₁ = 0,023035.

Регрессионное уравнение
$$Y = \frac{\exp(-1,5105+0,023035X)}{1+\exp(-1,5105+0,023035X)}$$
,

где X – значение признака «ОФВ₁».

Общий процент верных предсказаний составил 60,81%.

Таким образом, наилучшим образом прогнозирование обострения БА у пациента может быть выполнено по признаку «процентное содержание в крови CD4+CD25hi-клеток», который обеспечивает вероятность верной классификации на уровне 96%. Использование же в качестве переменной только показателя ОФВ1 (%) обеспечивает неудовлетворительное качество прогноза — общий процент верных предсказаний 61%. Остальные рассмотренные признаки также могут быть использованы для прогнозирования, как обеспечивающие достаточный уровень верной классификации (81-89%).

Выволы

- 1. Период обострения БА характеризуется повышением абсолютного количества CD3+, CD4+-лимфоцитов и снижением относительного количества CD8+-лимфоцитов, в результате чего повышается ИРИ; снижением относительного и абсолютного количества естественных регуляторных Т-клеток (CD4+CD25hi) и повышением относительного и абсолютного количества активированных клеток (CD25+), что сопровождается повышением концентрации IL-4 и снижением концентрации IFN-ү, а также соотношения IFN-ү/IL-4; снижением процента Лф, находящихся на ранней и поздней стадиях спонтанного и индуцированного ФГА апоптоза в 72-часовых культурах Лф, а также снижением показателей ФВД. Для периода ремиссии БА по сравнению с группой практически здоровых лиц характерно снижение процентного содержания CD4+CD25hi-клеток, что сопровождается повышением концентраций IL-4 и IFN-ү и снижением соотношения IFN-ү/IL-4; снижение процента лимфоцитов, находящихся на поздней стадии спонтанного апоптоза в 72-часовых культурах Лф, а также снижение показателей ФВД.
- 2. критериями БА Количественными для определения периода И прогнозирования обострения заболевания являются показатель процентного содержания в крови естественных регуляторных Т-клеток (CD4+CD25hi) (вероятность верной классификации 96%), показатель процентного содержания лимфоцитов, находящихся на ранней стадии индуцированного ФГА апоптоза в 72-часовых культурах лимфоцитов (вероятность верной классификации 89%), показатели «IFN-у/IL-4 и СД25+» (вероятность верной классификации 89%), показатели «СД8+ и СД25+» (вероятность верной классификации 81%), тогда как использование всех вышеперечисленных показателей обеспечивает качество распознавания на уровне 100%. Использование же только показателя ОФВ1 обеспечивает неудовлетворительное качество прогноза (общий процент верных предсказаний 61%).

Литература

- 1. Глобальная стратегия лечения и профилактики бронхиальной астмы (GINA). Пересмотр 2006 г. / под ред. А. Г. Чучалина. М.: «Атмосфера», 2007. 104 с.
- 2. Применение проточной цитометрии для оценки функциональной активности иммунной системы человека: пособие для врачей-лаборантов / Б. В. Пинегин [и др.]. М., 2001. 53 с.

- 3. Реброва, О. Ю. Статистический анализ медицинских данных. Применение пакета прикладных программ Statistica / О. Ю. Реброва. М.: Медиасфера, 2002. 312 с.
- 4. Chan-Yeung, M. Changes in peak flow, symptom score and the use of medications during acute exacerbations of asthma / M. Chan-Yeung [et al.] // Am. J. Respir. Crit. Care Med. 1996. Vol. 154. P. 889–893.
- 5. Melis, M. Fluticasone induces apoptosis in peripheral T-lymphocytes: a comparison between asthmatic and normal subjects / M. Melis [et al.] // Eur Respir J. 2002. Vol. 19. P. 257–266.