Актуальные проблемы современной медицины и фармации - 2019

Костюкович У. Ю.

КОЛИЧЕСТВЕННАЯ ОЦЕНКА СООТВЕТСТВИЯ ЭЛЕМЕНТОВ СОДЕРЖАНИЯ КУРСА ОРГАНИЧЕСКОЙ ХИМИИ ОСНОВНЫМ ДИДАКТИЧЕСКИМ ПРИНЦИПАМ

Научный руководитель канд. хим. наук, доц. Лахвич Ф. Ф.Кафедра биоорганической химии

Белорусский государственный медицинский университет, г. Минск

Актуальность. Отбор содержания курса любой учебной дисциплины должен соответствовать ряду дидактических принципов. При этом учитываются и другие аспекты (практико-ориентированный подход, мотивация к изучению, преемственность, и пр.). Однако из-за отсутствия количественных методов оценки отбор содержания зачастую носит субъективный, и зачастую несистемный характер. Исходя из вышесказанного, разработка количественных критериев, которые позволяют оценить соответствие элементов содержания курса основным дидактическим принципам является актуальной и практически значимой задачей.

Цель. Отработать методы количественной оценки соответствия элементов содержания курса органической химии основным дидактическим принципам.

Материалы и методы. При проведении исследования использовали методики контент-анализа, структурно-графической трансформации химических объектов, элементы матричного анализа и теории графов. В качестве объекта исследований были выбраны реакции курса лекций по органической химии для студентов фармацевтического факультета БГМУ и учебника по органической химии (под ред. Н.А. Тюкавкиной).

Результаты и их обсуждение. На основе количественного метода была проведена оценка соответствия элементов содержания курса органической химии основным дидактическим принципам. В качестве основы была выбрана система частно-дидактических принципов структурности-функциональности-механистичности. В соответствии с ранее предложенной методикой все реакции разбиваются на элементарные акты присоединения и отщепления (замещение рассматривается как интегрированный процесс отщеплениеприсоединение). Классификацию процессов проводят согласно четырех критериев с введением новолексемы, как совокупности соответствующих символов. При этом определяющие символы "А" и "Е" (присоединение и отщепление) дополняются подстрочными индексами: "Е" или "N" -Электрофила (-фуга) или Нуклеафила (-фуга); "С" или "H" - к / от атома Углерода или Гетероатома); "1" и "2" - к / от «одинарной» или «кратной (двойной или тройной) связи». Так, символьная лексема A_{EH2} означает элементарный акт "присоединение электрофила к гетероатому, который связан через двойную связь (например, присоединение протона к атому кислорода карбонильной группы)", а E_{NC1} - "отщепление нуклеофила от атома углерода с разрывом одинарной связи (например, отщеплением воды от тетраэдрического атома)". Анализ набора реакций, которые изучаются в нескольких разделах курса органической химии, позволил построить матричную базу данных, которая отражает частотность элементарных актов в различных процессах и преемственность их изучения в курсе.

Выводы. Полученные результаты позволяют использовать количественные подходы при наполнении содержания курса органической химии, в частности для студентов фармацевтического факультета. При этом дидактическим критерием эффективности той или иной реакции для изучения курса является наличие часто повторяемых элементарных актов и преемственность встречаемости данных актов в различных разделах. Безусловно, помимо дидактического подхода, при формировании курса необходимо учитывать другие аспекты, в частности практико-ориентированную подготовку.