Боричевский Д. С. ФОТОРЕЦЕПТОРНЫЙ МЕХАНИЗМ ЗРЕНИЯ

Научный руководитель канд. мед. наук, проф. Романовский И. В. Кафедра биоорганической химии Белорусский государственный медицинский университет, г. Минск

Зрение является наиболее значимым чувством, которым обладает человек. По разным данным от органов зрения мы получаем около 90% информации об окружающих нас явлениях и объектах. Зрительное восприятие занимает центральное место в современном информационном мире. Механизм зрения и белок родопсин, являются главными объектами исследования.

Целью исследования является рассмотрение зрительного механизма, как каскада биохимических превращений, которые условно можно поделить на два ключевых этапа: фотоцикл родопсина, основанный на поглощении молекулой родопсина в «темновой» фазе видимого света; рецепция активированной излучением формы родопсина с G-белком — трансдуцином; показать, что в основе, так называемой фоторецепции(комбинация ключевых этапов) родопсина, лежит передача зрительного сигнала.

Следует отметить, что в данной работе сконцентрировано внимание на таких этапах фотоцикла, как природа фотохимических реакций, составляющих фотоизомеризацию цисформы ретиналя в полностью транс-форму, вследствие чего, родопсин подвергается конформационным перегруппировкам, характер и направление хода которых также представляет собой интерес исследования. Большое количество промежуточных неустойчивых состояний, обнаруживающихся в ходе конформационных перестроек, интересны особенностями своего строения, временем жизни и другими составляющими их характеристиками. Наконец, подробно обсуждается конечная устойчивая активированная форма, участвующая во втором ключевом процессе зрения — рецепторном взаимодействии с G-белком. Особое внимание уделено тому, что с G-белком в ходе рецепции взаимодействует димер рецептора, одна молекула в составе которого «активирована» и непосредственно взаимодействует с белком, а другая может быть неактивной (или даже быть другим GPCR-рецептором) и G-белок не активирует.

Исследование родопсина имеет не только фундаментальное значение, а также практическую необходимость для применения знаний в офтальмологии для лечения различных глазных заболеваний. К тому же родопсин является ярким и наиболее изученным представителем класса GPCR-рецепторов, и закономерности, полученные на примере родопсина можно применить к другим участникам этого семейства.