Гундарова О.П., Федоров В.П., Кварацхелия А.Н., Маслов Н.В.

Радиационная гистохимия нуклеиновых кислот нейронов головного мозга

Воронежский государственный медицинский университет им. Н.Н. Бурденко, Воронеж, Российская Федерация

Важнейшей радиационной мишенью клеток являются нуклеиновые кислоты. Большинство работ по исследованию радиационно-индуцированных изменений нуклеиновых кислот выполнено на клетках крови, но в последние годы появились работы и по другим соматическим клеткам, в частности нейронам головного мозга. Полученных данных пока недостаточно для интерпретации роли нуклеиновых кислот в радиационном поражении мозга.

Целью работы явилось исследование радиационно-индуцированных изменений нуклеиновых кислот нейронов головного мозга после гамма облучения в малых дозах.

В радиобиологическом эксперименте использовали 150 белых крыс весом 210±10 г, облученных гамма квантами в суммарных дозах от 0,1 до 1,0 Гр и исследованных на всем пострадиационном периоде. Контрольных животных подвергали таким же манипуляциям только без облучения и исследовали в те же сроки что и экспериментальных. Материал (теменная кора больших полушарий и верхушка червя мозжечка) исследовали с помощью стандартных нейрогистологических и гистохимических методик. Для определения морфометрических показателей и содержания РНК в цитоплазме, а ДНК в ядрах нейронов использовали компьютерную программу «Ітаде J» с последующим определением для полученных показателей средних значений и доверительных интервалов при уровне значимости 95%, а также математическим моделированием и определением их состояния в различные временные интервалы пострадиационного периода.

Проведенные исследования показали, что при малых радиационных воздействиях в нейронах головного мозга на всем пострадиационном периоде наблюдаются фазные изменения как цитоплазматической РНК, так и ядерной ДНК с тенденцией к снижению к окончанию эксперимента. Изменения ДНК в ядрах больше связаны с изменениями их морфометрических показателей, а изменения цитоплазматической РНК, видимо отражает физиологический статус нейронов (покой, возбуждение, торможение) и соответствующую при этом структурнофункциональную перестройку нервных клеток. Через 24 мес. постра-

Республиканская конференция с международным участием, посвященная 80-летию со дня рождения Т. С. Морозкиной: ФИЗИКО-ХИМИЧЕСКАЯ БИОЛОГИЯ КАК ОСНОВА СОВРЕМЕННОЙ МЕДИЦИНЫ, Минск, 29 мая 2020 г.

диационного периода происходит гибель как экспериментальных, так и контрольных животных. Содержание цитоплазматической РНК и ядерной ДНК в нейронах значимо снижается во всех исследованных группах, но в большей степени у облученных животных. С помощью регрессионного анализа проведено математическое моделирование динамики изменений нуклеиновых кислот в нейронах головного мозга на протяжении всего пострадиационного период. Уравнение регрессии, описывающее радиационно-индуцированные изменения содержания ядерной ДНК в грушевидных нейронах мозжечка имеет вид: $\Pi H K = 0.872 - 0.179x - 1.994y + 4.979y^2 + 0.149x^3 - 3.241y^3$, где x- доза облучения, у- время после облучения. Диагностическая значимость математической модели для динамики изменений содержания ядерной ДНК высокая ($R^2=0.74$), но связь аргументов средняя (r=0.55). Из уравнения регрессии видно, что изменение исследуемого показателя (содержание ядерной ДНК) зависит от дозы радиационного воздействия и времени пострадиационного периода, но большее влияние оказывает прошедшее после облучения время. Для содержания цитоплазматической РНК как в нейронах мозжечка, так и теменной коры, а также содержания ДНК в ядрах нейронов теменной коры уравнения регрессии не получены, так как их динамика изменений достоверно зависела только от одного аргумента. В нейронах мозжечка показатель содержания цитоплазматической РНК зависел от времени прошедшего после облучения, т.е. от возраста животных. В теменной коре содержание ДНК в ядрах и РНК в цитоплазме нейронов больше зависело от дозы облучения, но возникающие изменения со временем репарируются. В то же время в отдельные сроки наблюдения изменения морфометрических показателей и содержания цитоплазматической РНК и ядерной ДНК в нейронах являются пограничными, когда уже не совсем норма, но еще и не патология. Вероятно, что при увеличении дозы облучения или действии сопутствующих вредных и опасных факторов среды изменения нуклеиновых кислот приобретут более выраженный и однонаправленный характер.

Таким образом, при всех изученных режимах облучения значимых радиационно-индуцированных изменений содержания и топохимии продуктов гистохимических реакций при выявлении нуклеиновых кислот в структурах нейронов головного мозга не выявлено. Однако в отдельные сроки наблюдения содержание нуклеиновых кислот в нейронах у облученных животных изменяется в большей степени, чем у животных возрастного контроля.