М.В. Григораш, М.А. Мурашко

ОЦЕНКА КЛИНИКО-ЛАБОРАТОРНЫХ И НЕЙРОФИЗИОЛОГИЧЕСКИХ ИЗМЕНЕНИЙ У ПАЦИЕНТОВ С ОСТРОЙ ВОСПАЛИТЕЛЬНОЙ ДЕМИЕЛИНИЗИРУЮЩЕЙ ПОЛИНЕВРОПАТИЕЙ, АССОЦИИРОВАННОЙ С COVID-19 ИНФЕКЦИЕЙ

Научный руководитель: канд. мед. наук, доц. А.Г. Байда

Кафедра неврологии и нейрохирургических болезней Белорусский государственный медицинский университет, г. Минск

M.V. Grigorash, M.A. Murashko

EVALUATION OF CLINICAL, LABORATORY AND NEUROPHYSIOLOGICAL CHANGES IN PATIENTS WITH ACUTE INFLAMMATORY DEMYELINATING POLYNEUROPATHIES ASSOCIATED WITH COVID-19 INFECTION

Tutor: PhD, associate professor A.G. Baida Department of Neurology and Neurosurgery Belarusian State Medical University, Minsk

Резюме. В ходе исследования были проанализированы клинические симптомы, лабораторные и нейрофизиологические изменения при поражении периферической нервной системы после перенесенной COVID-19 инфекции. Было установлено, что у пациентов с ковид-ассоциированной острой демиелинизирующей полиневропатией на электронейромиографии отмечено снижение скорости моторного и сенсорного ответов, а также вторичное снижение амплитуды М-ответа до 3,1 ± 1,97 мВ (демиелинизирующий характер поражения периферических нервов), в ликворе определялся синдром белково-клеточной диссоциации.

Ключевые слова: коронавирусная инфекция, острая воспалительная демиелинизирующая полиневропатия, электронейромиографияя

Resume. Clinical symptoms, laboratory analysis and neurophysiological changes in patients with damaged peripheral nervous system after COVID-19 infection were examined. Patients after COVID-19 infection with acute demyelinating polyneuropathy have decreased speed of motor and sensor neurons and secondary decrease of muscle respond till 3,1 \pm 1,97 mV at the EMG (demyelinating damage of peripheral nerves took place), protein cellular syndrome has been determined in liquor.

Keywords: coronavirus infection, EMG, AIDP.

Актуальность. По данным ВОЗ на сегодняшний день в мире зарегистрировано более 618 млн. подтвержденных случаев COVID-19. Установлено, что входными воротами возбудителя является эпителий верхних дыхательных путей и эпителиоциты желудка и кишечника. Несмотря на множество публикаций о проблеме поражения периферической нервной системы (ПНС) у пациентов с COVID-19 инфекцией, новым вариантам течения заболевания, изучению механизмов развития поражения нервной системы и поиску оптимальных направлений лечения, многие аспекты проблемы требуют дальнейшего изучения [2].

Неврологические осложнения COVID-19 многообразны по своей симптоматике и тяжести клинических проявлений. Поражение периферической нервной системы при COVID-19 может быть представлено множественной краниальной невропатией, полиневропатией, невропатиями отдельных черепных и периферических нервов, которые нередко сочетаются друг с другом [3, 5]. Острые поражения периферической

ISBN 978-985-21-1117-1 УДК 61:615.1(0.034.44)(06)(476) ББК 5:52.8 И 66

нервной системы при COVID-19 - это аносмия и агевзия, синдром Гийена - Барре, синдром Миллера Фишера, краниальный полиневрит [4, 6, 7].

В патогенезе неврологических расстройств можно выделить несколько потенциальных механизмов: прямое вирус-индуцированное поражение нервной ткани, гипоксия, параинфекционные иммуноопосредованные механизмы и нарушения со стороны других органов и систем, из-за активации системного воспаления [1].

В соответствии с имеющимися экспериментальными и клиническими данными, патогенез острой воспалительной демиелинизирующей полиневропатии (ОВДП; синдром Гийена - Барре - СГБ) обусловлен не прямым невропатическим действием инфекционного агента, а иммунным ответом на предшествующую инфекцию с перекрестным реагированием с компонентами периферических нервов по механизму молекулярной мимикрии. Иммунный ответ может быть направлен на миелин или аксоны периферических нервов, что приводит к демиелинизирующей и аксональной формам СГБ.

Цель: оценить клинико-лабораторные и нейрофизиологические изменения при ОВДП после перенесенной COVID-19 инфекции.

Задачи:

- 1. Провести анализ неврологических симптомов, результатов биохимического анализа крови, гемостазиограммы и анализа цереброспинальной жидкости у пациентов с ОВДП после перенесенной COVID-19 инфекции;
- 2. Выделить возможные особенности данных электронейромиографии (ЭНМГ) у пациентов с ОВДП после перенесенной Covid-19 инфекции.

Материалы и методы. Проведен анализ историй болезни 18 пациентов с поражением периферической нервной системы с диагнозом ОВДП, которые проходили лечение на базе неврологического отделения ГУ «Минский научно-практический центр хирургии, трансплантологии и гематологии»

Пациенты были подразделены на две подгруппы: 1-я - 6 пациентов с ОВДП ковид-ассоциированной, и 2-я контрольная группа - 12 пациентов с диагнозом ОВДП, не связанной по анамнезу с перенесенной коронавирусной инфекцией.

Методы исследования: анализ жалоб и неврологического статуса, лабораторные анализы, результаты исследования цереброспинальной жидкости, данные ЭНМГ, такие как скорости моторного и сенсорного ответов (СРВ).

Результаты и их обсуждение. Возраст пациентов в 1-ой группе варьировал от 28 до 72 лет (средний возраст $52,3\pm5,5$); во 2-ой от 30 до 75 лет (средний возраст $50,7\pm5,3$). Интервал от появления первых симптомов COVID-19 инфекции до манифестации ОВДП составил от 13 до 30 дней, таким образом схож с периодом при ОВДП, возникающей после других инфекций.

При сравнении лабораторных показателей цереброспинальной жидкости между 1 и 2 группами в 50% случаев в 1 группе наблюдалось повышение белка (среднее значение 0.76 ± 0.29 г/л), содержание глюкозы в 1 и 2 группах было нормальным в 100% случаев (среднее значение 3.56 ± 0.19 ммоль/л), понижение хлора наблюдалось в 1 группе в 22% случаев (среднее значение 120.2 ± 31.6 ммоль/л)

По данным ЭНМГ в 1-ой группе выявлены признаки поражения моторных волокон в 33% случаев, поражение периферических нервов - в 5%. Моторная СРВ составила $28,3\pm5,5$ м/с, сенсорная - $42,1\pm5,0$ м/с. При этом не выявлены статистически значимые различия между двумя подгруппами (p<0,05). В таблице 1 представлены скорости моторного и сенсорного ответов у пациентов с ковид-ассоциированной ОВДП.

Табл. 1. Скорость моторного и сенсорного ответов у пациентов с ковид-ассоциированной острой демиелинизирующей полиневропатией

1 7	±
n=6	
нижние конечности	скорость проведения
CPB моторная (n.tibialis), м/с	28,3±5,5 [21,4; 35,2]
CPB сенсорная (n.suralis), м/с	42,1±5,0 [38,4; 44,1]

Выводы:

- 1. В группе исследования у пациентов с ОВДП, ассоциированной с COVID-19 инфекцией, в 50% случаев отмечены изменения в ликворе в виде синдрома белково-клеточной диссоциации;
- 2. У пациентов с ковид-ассоциированной ОВДП по данным ЭНМГ отмечается снижение скорости моторного и сенсорного ответов, а также вторичное снижение амплитуды М-ответа до 3.1 ± 1.97 мВ (отмечен демиелинизирующий характер поражения периферических нервов);
- 3. Пациентам с поражением ПНС после перенесенной короновирусной инфекции необходимы программа индивидуальной реабилитации и планирование подходов к фармакологической терапии, которая может включать внутривенные иммуноглобулины либо среднеобъёмный плазмаферез.

Литература

- 1. Гусев, Е.И. Новая коронавирусная инфекция (COVID-19) и поражение нервной системы: механизмы неврологических расстройств, клинические проявления, организация неврологической помощи / Е.И. Гусев, М.Ю. Мартынов, А.Н. Бойко и др. // Журнал неврологии и психиатрии им. С.С. Корсакова. 2020. -Т.120, №6. С 7 16.
- 2. Громова, О. А. О прямых и косвенных неврологических проявлениях COVID-19 / О.А. Громова, И.Ю. Торшин, В.А. Семенов и др. // Журнал неврологии и психиатрии им. С.С. Корсакова. -2020. T.120, №11. -C. 11 21.
- 3. Камчатнов, П.Р. Поражение периферической нервной системы при коронавирусной инфекции COVID-19 / П.Р. Камчатов, М.А. Евзельман, А.В. Чугунов // Русский медицинский журнал. 2021. №5 С.30 34.
- 4. Максимова, М.Ю., Груша, Я.О., Фетцер, Е.И. Множественная невропатия краниальных нервов, ассоциированная с COVID-19 // Неврология, нейропсихиатрия, психосоматика. 2022. Т.14, №1. С. 99 103.
- 5. Andalib, S. Peripheral Nervous System Manifestations Associ-ated with COVID-19 / S. Andalib, J. Biller, M. Di Napoli et al // Curr Neurol Neurosci Rep. 2021, Feb 14;21 (3):9.

ISBN 978-985-21-1117-1 УДК 61:615.1(0.034.44)(06)(476) ББК 5:52.8 И 66

- 6. Caress, J.B. COVID-19-Associated Guillain-Barre Syndrome: The Early Pandemic Experience / J.B Caress, R.J. Castoro, Z.Simmons. et al // Muscle Nerve. 2020. №62 (4). P. 485 491.
- 7. Nersesjan, V. Central and peripheral nervous system complications of COVID-19: a prospective tertiary center cohort with 3-month follow-up / V. Nersesjan, A. Moshgan, A.M.Lebech et al // J. Neurol. 2021. №13. P. 1 19.