MEDICAL BIOLOGY

PRACTICAL BOOK

FOR THE FIRST-YEAR STUDENTS STUDYING IN THE SPECIALTY «DENTISTRY»

Minsk BSMU 2023

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА БИОЛОГИИ

МЕДИЦИНСКАЯ БИОЛОГИЯ MEDICAL BIOLOGY

Практикум для студентов, обучающихся на английском языке по специальности «Стоматология»

2-е издание, исправленное

Минск БГМУ 2023

УДК 57:61(076.5)(075.8)-054.6 ББК 28.0я73 M42

Рекомендовано Научно-методическим советом университета в качестве практикума 15.03.2023 г., протокол № 3

А в т о р ы: В. В. Григорович, В. В. Давыдов, Ю. И. Корбут, Е. А. Черноус, В. Э. Бутвиловский

Рецензенты: канд. мед. наук, доц. О. Н. Ринейская; каф. общей химии

Медицинская биология = Medical Biology : практикум для студентов, M42 обучающихся на английском языке по специальности «Стоматология» /

В. В. Григорович [и др.]. – 2-е изд., испр. – Минск : БГМУ, 2023. – 68 с.

ISBN 978-985-21-1285-7.

Включены контрольные вопросы 37 тем практических занятий, основные термины и понятия, тесты, задачи, схемы биологических процессов, контуры рисунков изучаемых препаратов, экзаменационные вопросы. Первое издание вышло в 2022 году.

Предназначен для студентов 1-го курса, обучающихся по специальности «Стоматология» на английском языке.

> УДК 57:61(076.5)(075.8)-054.6 ББК 28.0я73

Учебное издание

Григорович Виктор Васильевич Давыдов Владимир Витольдович Корбут Юлия Игоревна и др.

МЕДИЦИНСКАЯ БИОЛОГИЯ

MEDICAL BIOLOGY

Практикум для студентов, обучающихся на английском языке по специальности «Стоматология»

2-е издание, исправленное

На английском языке

Ответственный за выпуск В. В. Давыдов Переводчики В. В. Григорович, Ю. И. Корбут

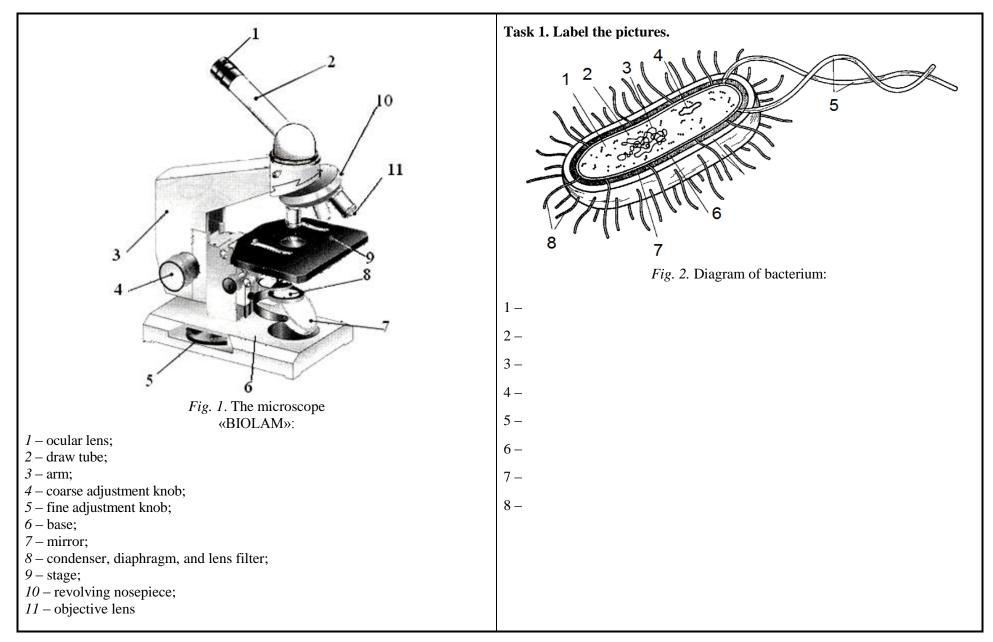
Подписано в печать 13.05.23. Формат 60×84/8. Бумага «Svetocopy». Ризография. Гарнитура «Times». Усл. печ. л. 7,9. Уч.-изд. л. 3,05. Тираж 52 экз. Заказ 217.

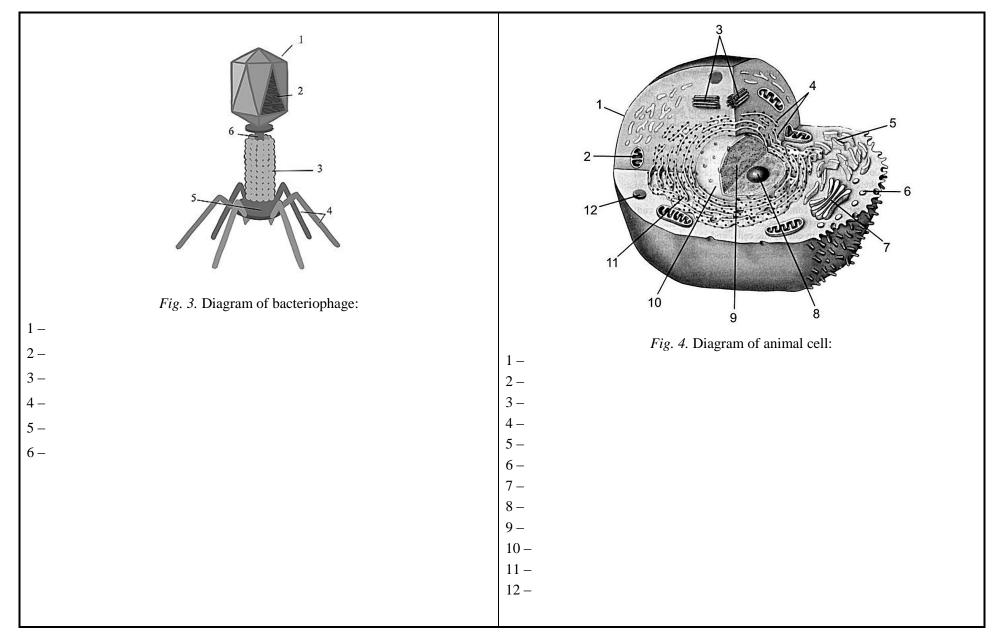
Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный медицинский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/187 от 18.02.2014. Ул. Ленинградская, 6, 220006, Минск.

ISBN 978-985-21-1285-7

© УО «Белорусский государственный медицинский университет», 2023

PLAN OF THE COURSE

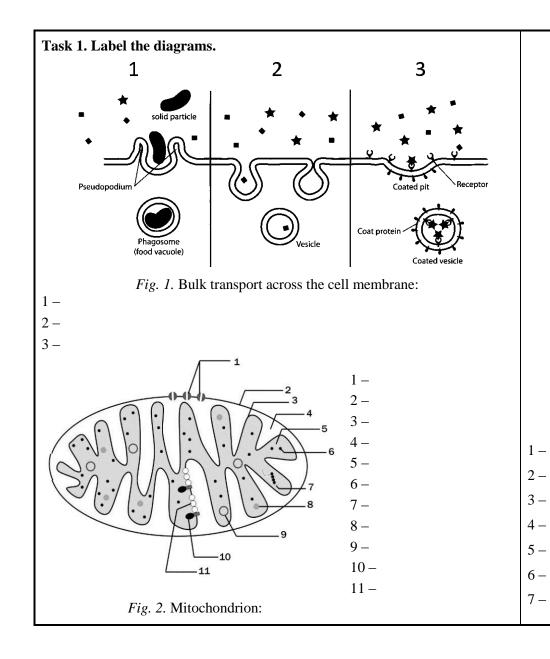

Na	me Group
Week number	Торіс
1.	Medical biology and its role in medical education. Subject, tasks, and methods of cytology
2.	Structural and functional organization of the cell
3.	Structural organization of the genome
4.	Cell cycle
5.	The flow of genetic information in the cell
6.	Regulation of gene expression
7.	Genomics. Techniques of molecular genetics
8.	Genetic engineering
9.	Basic laws of inheritance
10.	Genetic linkage. Genetics of sex
11.	Variation. Mutagenesis. Carcinogenesis
12.	Population genetics
13.	Human genetics
14.	COLLOQUIUM
15.	Reproduction of living matter
16.	Fundamentals of ontogenesis
17.	General parasitology
18.	Parasites of human I
19.	Parasites of human II

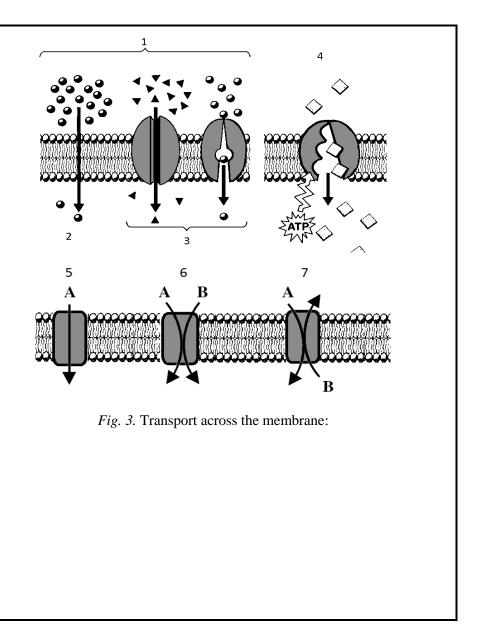

CRITERIA FOR ACADEMIC PROGRESS ASSESSMENT OF STUDENTS IN THE BELARUSIAN STATE MEDICAL UNIVERSITY The decree of the Ministry of education of the Republic of Belarus № 53 from 29.05.2012 «Rules for attestation of students, cadets, listeners for mastering the content of educational programs of higher education» 10 (ten), passed: comprehended, profound and full knowledge of the material of all the sec- tions of the educational program and good knowledge of main issues beyond the educational program; accurate usage of scientific terminology (including terms in foreign lan- guages), competent, logically correct presentation of answers to questions, abil- ity to generalize and make logical and accurate conclusions; mastery skills of work with tools and instruments necessary for the disci- pline, the ability to efficiently use them for setting objectives and solving scien- tific and professional cases: the remarkable ability of individual creative solutions to problems in uncon- ventional situations; a full and profound comprehension of information from basic and recom- mended additional literature in the discipline; ability to orient in theories, concepts, and issues of the studied discipline and analytically estimate them; creative individual work in practical and laboratory classes, active and crea- tive participation in group discussions, and a high cultural level of solutions to questions. 9 (nine), passed: comprehended, profound and full knowledge of the material of all the sec- tions of the educational program; accurate usage of scientific terminology (including terms in foreign lan- guages), competent, logically correct presentation of answers to questions; skills of work with tools and instruments necessary for the discipline, ability to use them for setting objectives and solving scientific and professional cases; the ability for individual creative solutions to problems in unconventional situations of the discipline; full comprehension of information from basic and recommended additional <td>ability to orient in theories, concepts, and issues of the studied discipline and analytically estimate them; regular active individual work in practical and la- boratory classes, active and creative participation in group discussions, and a high cultural level of solutions to questions. 8 (eight), passed: comprehended, profound and full knowledge of the material of all the sec- tions of the educational program; usage of scientific terminology (including terms in foreign languages), logi- cally correct presentation of answers to questions; skills of work with tools and instruments necessary for the discipline, ability to use them for solving scientific and professional cases; the ability of the individual solution of problems in the educational disci- pline; comprehension of information from basic and recommended additional liter- ature in the discipline; ability to orient in theories, concepts, and issues of the studied discipline and analytically estimate them; active individual work in practical and laboratory classes, regular and active participation in group discussions, and a high cultural level of solutions to ques- tions. 7 (seven), passed: comprehended, profound and full knowledge of the material of all the sec- tions of the educational program; usage of scientific terminology (including terms in foreign languages), logi- cally correct presentation of answers to questions; skills of work with tools and instruments necessary for the discipline, ability to use them for solving scientific and professional cases; the ability for the individual solution of problems in the educational disci- pline using typical methods; comprehension of information from basic and recommended additional liter- ature in the discipline; ability to orient in theories, concepts and issues of the studied discipline and analytically estimate them; individual work in practical and laboratory classes, participation in group discussions, and a high cultural level of solutions to questions.</td>	ability to orient in theories, concepts, and issues of the studied discipline and analytically estimate them; regular active individual work in practical and la- boratory classes, active and creative participation in group discussions, and a high cultural level of solutions to questions. 8 (eight), passed: comprehended, profound and full knowledge of the material of all the sec- tions of the educational program; usage of scientific terminology (including terms in foreign languages), logi- cally correct presentation of answers to questions; skills of work with tools and instruments necessary for the discipline, ability to use them for solving scientific and professional cases; the ability of the individual solution of problems in the educational disci- pline; comprehension of information from basic and recommended additional liter- ature in the discipline; ability to orient in theories, concepts, and issues of the studied discipline and analytically estimate them; active individual work in practical and laboratory classes, regular and active participation in group discussions, and a high cultural level of solutions to ques- tions. 7 (seven), passed: comprehended, profound and full knowledge of the material of all the sec- tions of the educational program; usage of scientific terminology (including terms in foreign languages), logi- cally correct presentation of answers to questions; skills of work with tools and instruments necessary for the discipline, ability to use them for solving scientific and professional cases; the ability for the individual solution of problems in the educational disci- pline using typical methods; comprehension of information from basic and recommended additional liter- ature in the discipline; ability to orient in theories, concepts and issues of the studied discipline and analytically estimate them; individual work in practical and laboratory classes, participation in group discussions, and a high cultural level of solutions to questions.
literature in the discipline;	

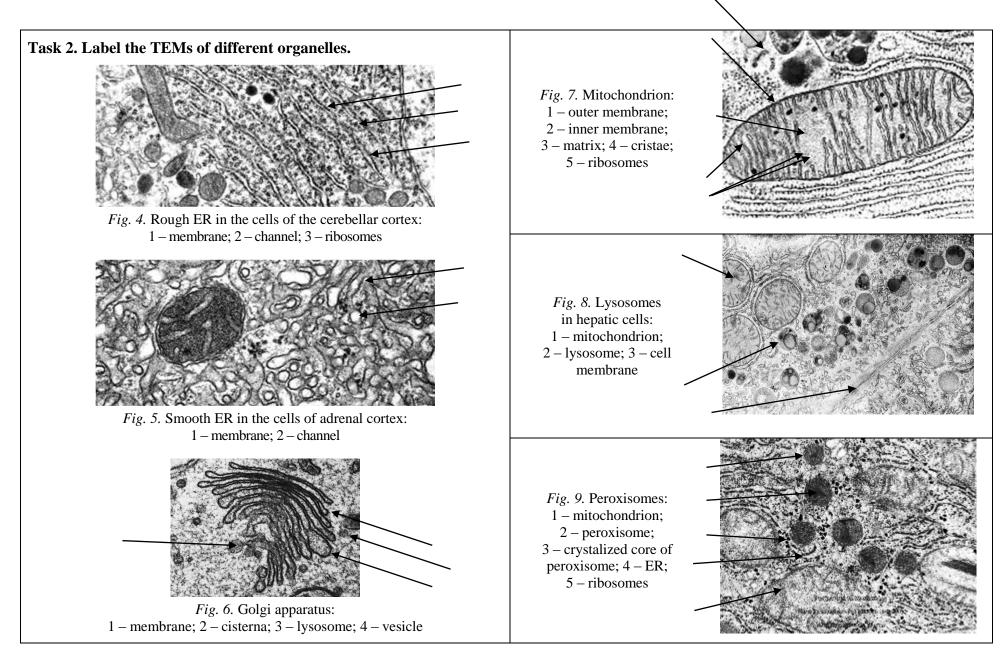
 <u>6 (six), passed:</u> full knowledge of the material of all the sections of the educational program; usage of necessary scientific terminology, logically correct presentation of answers to questions; skills of work with tools and instruments necessary for the discipline, ability to use them for solving scientific and professional cases; the ability for the individual solution of problems in the educational discipline using typical methods; comprehension of information from basic literature in the discipline; ability to orient in basic theories, concepts and issues of the studied discipline and analytically estimate them; active individual work in practical and laboratory classes, periodic participation in group discussions, and a high cultural level of solutions to questions. <u>5 (five), passed:</u> enough knowledge in the material of the educational program; usage of necessary scientific and professional cases; the ability for the individual solution of problems in the educational discipline, ability to use them for solving scientific and professional cases; the ability for the individual solution of problems in the educational discipline using typical methods; comprehension of information from basic literature in the discipline; ability to orient in basic theories, concepts, and issues of the studied discipline and analytically estimate them: active individual work in practical and laboratory classes, partial participation in group discussions, enough cultural level of solutions to questions. 	skills of work with tools and instruments necessary for the discipline, ability to use them for solving typical professional cases; ability to solve standard cases under the commands of a lecturer; ability to orient in basic theories, concepts, and issues of the studied disci- pline and analytically estimate them; work at practical and laboratory classes under the commands of a lecturer, the acceptable cultural level of solutions to questions. <u>3 (three)</u> , not passed: not enough knowledge in the material of educational programs required for higher education: comprehension of some information from basic literature in the discipline; usage of scientific terminology, presentation of answers to questions with considerable mistakes; not enough skills to work with tools and instruments necessary for the disci- pline, incapacity to use them for solving typical professional cases; incapacity to orient in basic theories, concepts, and issues of the studied discipline and analytically estimate them: passiveness in practical and laboratory classes, low cultural level of solu- tions to questions. <u>2 (two)</u> , not passed: very low knowledge of the material of educational programs required for higher education; knowledge of some basic literature in the discipline; inability to use scientific terminology, presentation of answers to with serious mistakes; passiveness in practical and laboratory classes, low cultural level of solu- tions to questions. <u>1 (one)</u> , not passed: absence of knowledge in the material of educational program required for higher education, refuse to answer, unjustified absence.
--	--

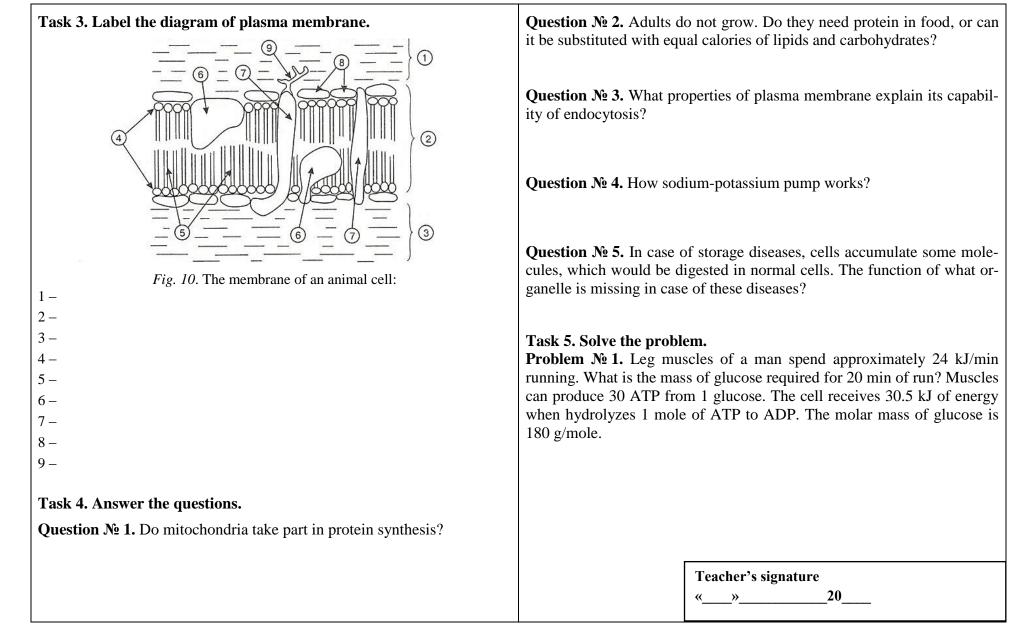
Class #1. Topic: MEDICAL BIOLOGY AND ITS ROLE IN MEDICAL EDUCATION. SUBJECT, TASKS, AND METHODS OF CYTOLOGY

CONTENTS OF THE TOPIC	6. Differential centrifugation –
 The nature of life, and the role of proteins and nucleic acids in the organization of living systems. Organization levels of living matter. The cell theory. Prokaryotes and eukaryotes. 	7. Autoradiography –
 5. Human as a biological and social being. 6. The role of biology in medical education. 7. Subject, objectives, and methods of cytology (light, electron, and fluores- cent microscopy, histochemistry and immunohistochemistry, differential cen- trifugation, autoradiography, morphometry, etc.). 	8. Cell culture –
8. The method of light microscopy. The structure of a light microscope. The rules of work with a microscope.	9. Histochemistry –
GLOSSARY 1. Life –	10. Fluorescent dye –
2. Biopolymer –	11. Resolving power of a microscope –
3. Bacteriophage (phage) –	12. Eukaryotes –
4. Virion –	
5. Capsid –	13. Prokaryotes –

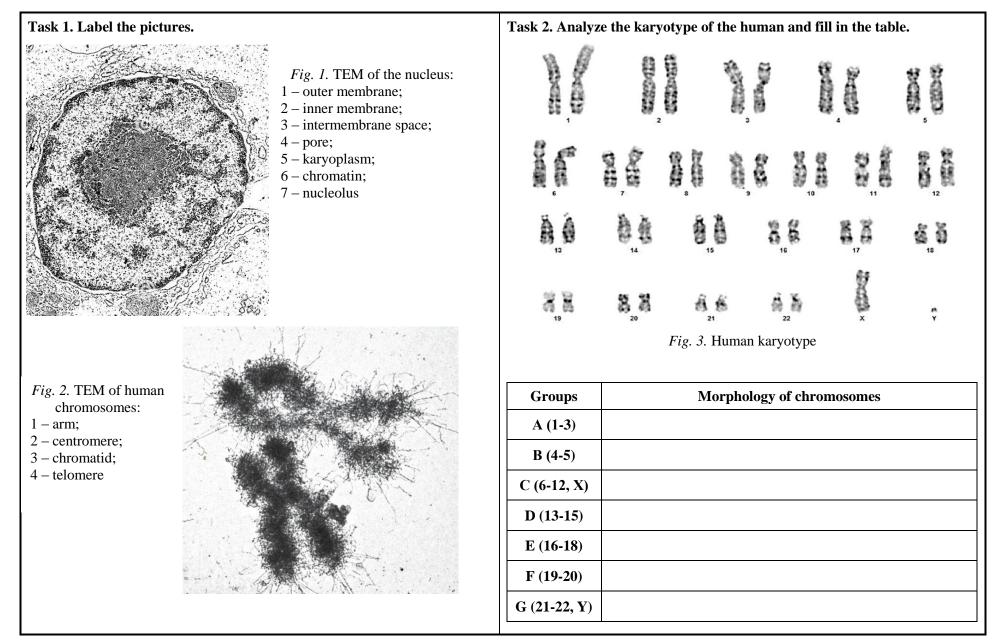



A – Common light microscopy; B – Fluorescent microscopy;			Т	echniqu	ıe				Descr	ription	
C – Transmission electron microscopy (TEM); D – Scanning electron microscopy (SEM).		1. Removal of cell organelles and their trans- plantation to other cells						A. Light microscopy			
		Tracking o e metabolic				s in		B. Tra micro		ion elec	ctron
		Separation centrifuge	of cellı	ılar con	nponen	ts by		C. Differential centrifuga-			
		Obtaining visible ligh		image l	based o	n the u	sage	tion			
1. Nucleus 2. Nucleus and		Assessmen ells and chei								nistry a chemis	
6. Locating cell macromolecules using specific dyes or antibodies bound with dyes					cific	E. X-ray crystallography					
		7. Determination of spatial arrangement and physical properties of atoms in biological mole-				F. Cell culture					
	cui	cules 8. Analysis of biological objects stained with the				G. Cell microsurgery					
3. Cilia 4. C	Cilia dy	dyes which fluoresce when exposed to light					H. Scanning electron microscopyI. Biochemical methods				
JUST CA	nu nu	9. Growing cells of multicellular organisms on nutrient media under sterile conditions				ods					
	ba	10. Obtaining the images of the cell components based on the usage of electrons as a source of illumination									
		11. Obtaining a tridimensional image of the surface of a biological object					K. Fluorescent microscopy				
5. Anaphase 6. Chromosomes					0	6	7	0	0	10	11
1 2 3 4 5	5 6	1 2	3	4	5	6	7	8	9	10	11

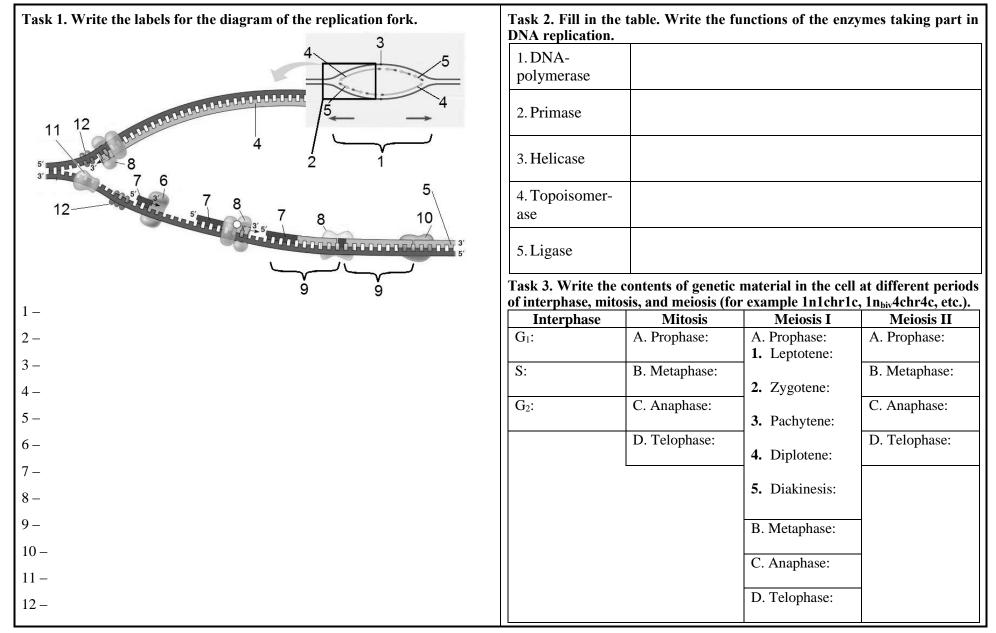

Task 4. Fill in the table comparing prokaryotes and eukaryotes. Explain the difference or write «present» / «absent».							
Characteristics	Prokaryotes		Eukaryotes				
Kingdoms of organisms							
Nucleus (+/-)							
Membrane-bound organelles (+/-)							
Ribosomes (+/-)							
Plasma membrane (+/-)							
Cytoskeleton (+/-)							
Multicellular organisms (+/-)							
Common sizes							
Metabolism							
Organization of DNA							
Ploidy							
Transcription occurs in							
Capability of phagocytosis (+/-)							
Types of cell division							
Sexual reproduction (+/-)							
			Teacher's signature «»20				


Class #2. Topic: STRUCTURAL AND FUNCTIONAL ORGANIZATION OF THE CELL

CONTENTS OF THE TOPIC	6. Dynein –
 The structure of the plasma membrane. Transport across the membrane: passive transport (simple diffusion, facilitated diffusion, osmosis), active transport, endocytosis, exocytosis. Cytosol. Cytoskeleton: microtubules, intermediate filaments, microfilaments. 	7. Osmosis –
 4. Intracellular transport of substances. 5. Assimilation. Ribosomes. 6. Endomembrane system (nuclear envelope, endoplasmic reticulum, Golgi body, lysosomes, peroxisomes, endosomes, vesicles). 7. Dissimilation. Mitochondria. 8. Lysosomal and peroxisomal disorders. 	8. Peptidoglycan –
GLOSSARY	9. Pili –
1. Antiport – 2. Anabolism –	10. Plasma membrane –
3. Glycolysis –	11. Simple diffusion –
4. Concentration gradient –	12. Cytosol –
5. Dictyosome –	13. Endocytosis –



Class #3. Topic: STRUCTURAL ORGANIZATION OF THE GENOME

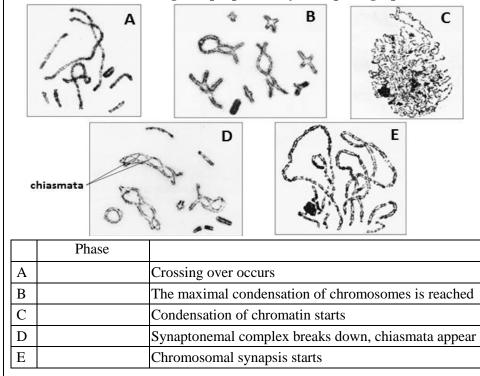

CONTENTS OF THE TOPIC	6. Chromatin remodeling –
 Evolution of the gene concept. Evidence that DNA is the genetic material. Structure and functions of DNA. Genetic material of viruses and bacteria. The structure and functions of the cell nucleus. 	7. Nuclear localization signal –
 Gene, chromosome, and genome levels of eukaryotic genetic material. DNA condensation. Remodeling of chromatin. The structure of metaphase chromosomes. Euchromatin and heterochromatin. Types of chromosomes. Rules of chromosomes. 	8. Nuclear speckles –
9. Karyotype and idiogram. Methods for studying the human karyotype. Classifications of human chromosomes.10. Cytoplasmic inheritance.	9. Telomeres –
GLOSSARY 1. Genome –	10. Transduction –
2. Karyotype –	11. Centromere index (CI) –
3. Lamins –	12. Nucleolar organizer region –
4. Nucleoid –	13. Nucleosome –
5. Nucleotide –	14. Plasmagenes –

 Task 3. Solve the problems. Problem № 1. Write the complementary strands for the following ones: a. CTGATCTGTATCAACTA 	Problem No 5. Adenine makes 16 %, guanine -28 %, and thymine -34 % of a DNA strand. Determine the percentage of pyrimidine bases in the complementary strand.
b. 3'ACTGATCTGTATCAACT5'	
c. 5'GTACTAGCTAGCTAGCCAT3'	Problem № 6. A strand of DNA fragment contains 1200 bases. 25 % is adenine, 10 % is thymine, and 30 % is guanine. How many guanines would be in the complementary strand?
Problem № 2. In a DNA molecule, cytosine is 18 %. What is the percentage of other nucleotides in this DNA?	
Problem No 3. If a DNA molecule has 56 % of GC pairs, what would be the percentage of A, G, C, and T, respectively?	Problem № 7. A DNA fragment has the following sequence in one of its two strands: GAATCAGTAAGTAT. What is the percentage of each base type in this DNA fragment? What is the length of this DNA fragment? What is the (A+T)/(G+C) ratio in that DNA fragment?
Problem № 4. 950 cytosines make up 20 % of the total number of bases in DNA. How many adenine, thymine, and guanine are contained in the DNA fragment?	Problem № 8: DNA was isolated from a bacteriophage. The bases of its genome are A – 25 %, T – 33 %, G – 24 %, and C – 18 %. How can this result be explained?

CONTENTS OF THE TOPIC 7. Hayflick's limit -1. Cell cycle. Interphase. 2. Semi-conservative mechanism of DNA replication. Replicon. 3. Cell cycle regulators (cyclins and cyclin-dependent kinases). 8. Necrosis – 4. Types of cell division: mitosis, amitosis, endomitosis. Binary division of bacteria. 5. Mitosis: characteristics of phases, distribution of genetic material, biological 9. Primase – significance. 6. Meiosis as a type of mitosis: characteristic of phases, distribution of genetic material, biological significance. 7. Cell proliferation and cell death. Necrosis and apoptosis. Caspases. 10. Replisome -**GLOSSARY** 1. Apoptosis – 11. Synaptonemal complex -2. Bivalent – 12. Topoisomerase -3. Caspases – 13. Origin of replication – 4. Kinetochore – 14. Okazaki fragment -5. Cohesins -15. Chiasmata – 16. Cyclins – 6. Crossing-over -

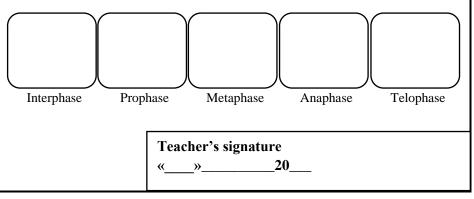
Class #4. Topic: **CELL CYCLE**

Task 4. Match the characteristics of proteins in the left column with their functions in the right one.

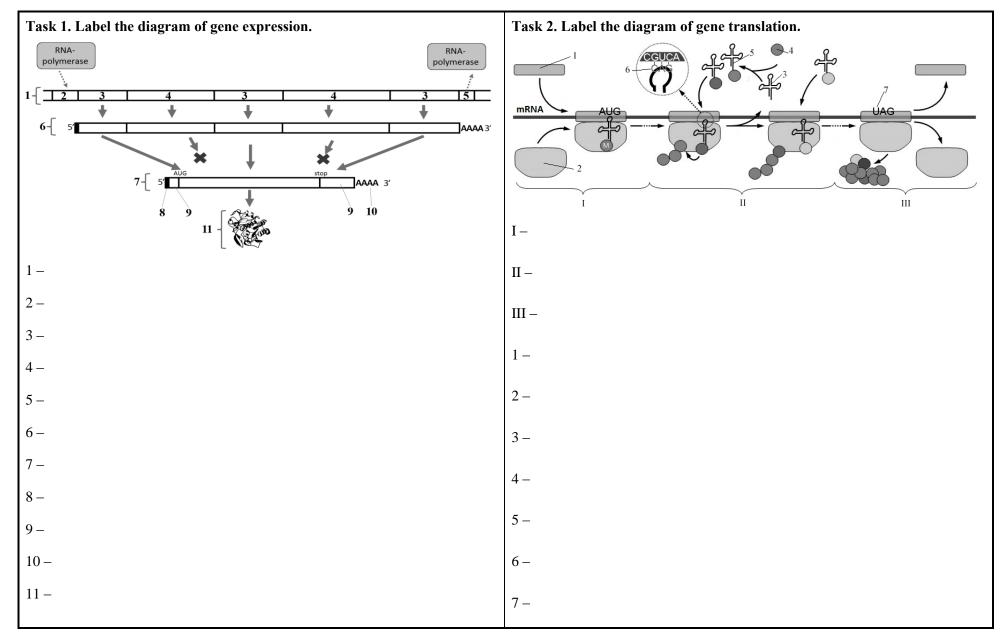

1. Form nuclear pore complex						A. Caspases				
2. Form	nucleos	omes			B. Cyclins					
3. Phosphorylate other proteins to activate or inactivate them					C. Col	C. Cohesins				
4. Take	part in p	rogramn	ned cell d	leath	D. His	stones				
5. Form nuclear lamina					E. Kir	ases				
6. Bind homologous chromosomes to- gether in meiosis					F. Condensins					
7. Bind sister chromatids together					G. La	G. Lamins				
8. Regulate cell cycle					H. Nucleoporins					
9. Form the central scaffold of a meta- phase chromosome					I. Syna	aptonema	al comple	ex		
1	2	3	4	5	6	7	8	9		

Task 5. Solve the case problems.

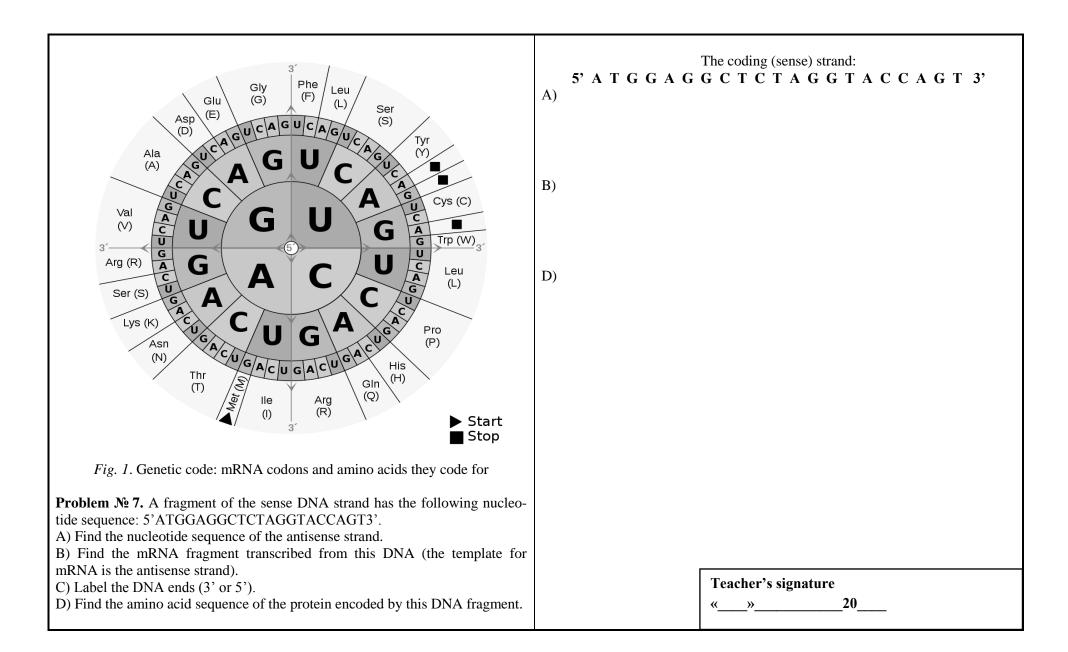
Case #1. The haploid cells 1 and 2 mutated and became unable to replicate their DNA. In cell 1 the mutations happened during the G1 phase while in cell 2 they happened during G2. What is the theoretical chance that the cells transmit their mutations to at least one of their daughter cells?


Case #2. The same gene mutated in cells 1 and 2 during interphase. After mitosis cell 1 transmitted the mutation to only one daughter cell and cell 2 -to both of them. How can this be explained?

Case #3. There is a protein with an unknown function. Its concentration in the cell is low and increases only during G2. How the inactivation of the gene coding for this protein could affect mitosis? Suggest your theories.

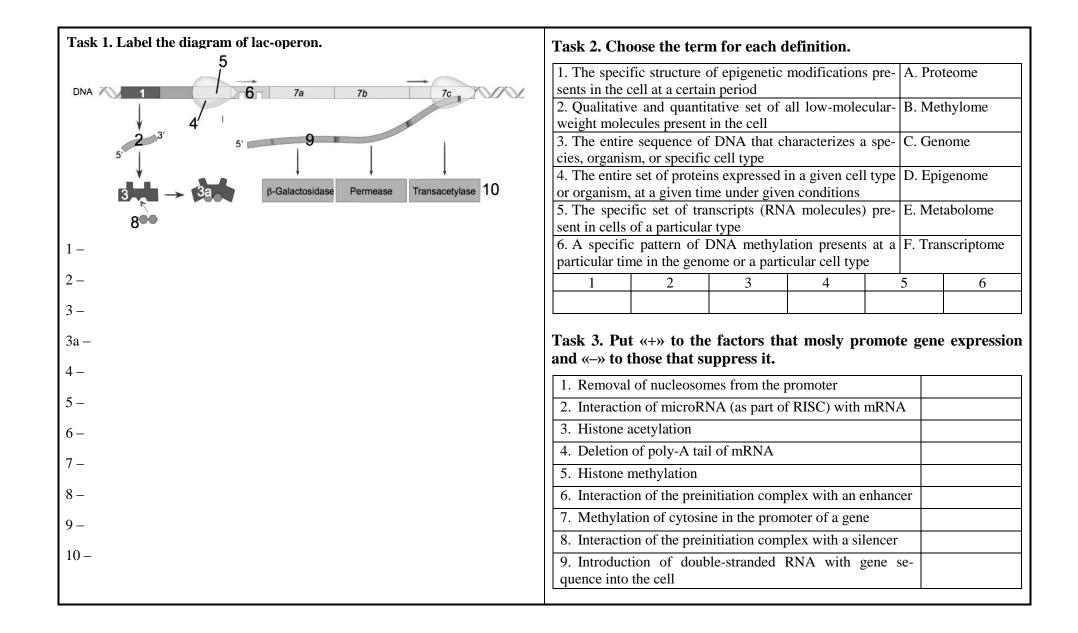

Task 6. Determine the stages of prophase I by their photographs.

Task 7. Draw the cells undergoing different phases of mitosis.



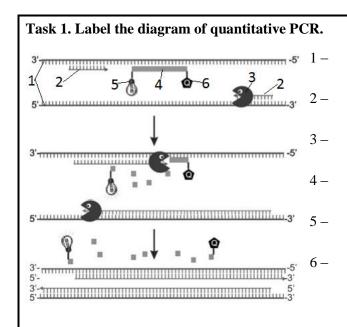
Class #5. Topic: THE FLOW OF GENETIC INFORMATION IN THE CELL

CONTENTS OF THE TOPIC	6. Penetrance –
 The Central Dogma of Molecular Biology. The concept of the gene. Properties and functions of genes. Ribonucleic acid, its types. The functions of RNA. Genetic code and its properties. Transcription. Transcription factors. Production of mRNA in eukaryotes: primary transcript and its processing. 	7. Transcription factors –
6. Recognition. Translation: initiation, elongation, and termination.7. Posttranslational modifications of proteins, folding of proteins. Chaperones.	8 Decement of constinued
GLOSSARY	8. Degeneracy of genetic code –
1. Promoter –	9. Aminoacyl-tRNA synthetase –
2. Intron –	10. Capping –
3. Spliceosome –	11. Protein folding –
4. Terminator –	12. Chaperone –
5. Poly-A tail –	13. Proteasome –



Task 3. Solve the problems. Problem № 1. A fragment of the human insulin gene contains 2,764 base pairs (bp). Three exons of the gene contain 42, 204, and 205 bp. The entire first exon, the first 17 bp of the second one, and the last 62 pairs of the third one code for untranslated regions of mRNA. The 72 bp of the second exon code for a signaling sequence of amino acids that is removed from insulin. The last 25 bp and the first 80 bp of the second and third exons code for C-peptide, which is also removed from the insulin. How many amino acids does the ulti- mate insulin molecule contain? What is the percent of base pairs coding for that molecule in the gene fragment?	 Problem № 4. Here is a diagram showing the exons (white) and introns (black) of the <i>HBB</i> gene encoding β-globin, a subunit of human hemoglobin. The numbers indicate the lengths of introns and exons in base pairs. 142 113 223 856 263 A. How many nucleotides does this gene's mRNA contain? B. The non-translated regions located at the 5' and 3' ends of this mRNA contain 50 and 134 nucleotides (the stop codon is not included). How many amino acids does beta-globin contain?
Problem № 2. A fragment of adrenocorticotropic hormone (ACTH) produced by the anterior pituitary lobe has the structure: ser-ser-met-glu-his-phe-arg. What are the theoretically possible tRNA anticodon variants involved in the biosynthesis of the ACTH fragment?	Problem No 5. The average molar mass of a nucleotide is near 300 g/mole. There is a single-strand DNA of a bacteriophage and its molar mass is approximately 10^7 g/mole. The average number of amino acids in each protein of this phage is near 400. How many protein-coding genes can be in this DNA? The non-coding regions can be ignored for the simplicity of calculations.
Problem N_{2} 3. The distance between adjacent base pairs in DNA is 3.4×10^{-10} m. What is the length of the DNA region coding for 200 amino acids (without stop-codons)?	Problem № 6. Each turn of the DNA double helix is 3.4 nm long and contains 10 pairs of nucleotides. The protein fragment consists of 30 amino acid residues. What is the length in nm of the DNA region that encodes this protein fragment?

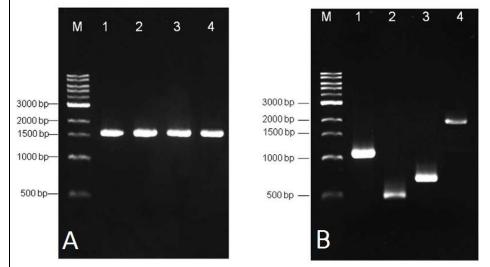
Class #6. Topic: **REGULATION OF GENE EXPRESSION**


CONTENTS OF THE TOPIC	5. Housekeeping genes –
1. Human genome: protein-coding genes, RNA genes, non-coding sequences (repeats, introns, junk DNA). DNA transposons and retrotransposons. Tran-	
scriptome. Proteome. Metabolome.	6. Chromatin remodeling –
 Genome redundancy, its significance. Projects Human genome, ENCODE, Roadmap. 	
 Projects Human genome, ENCODE, Roadmap. Classification of genes (structural and functional genes, housekeeping, and 	
tissue-specific genes).	7. Satellite DNA –
5. Operon. Lac- and trp-operons. Polycistronic RNA.	
6. Regulation of transcription in eukaryotes: preinitiation complex. Enhancers,	
silencers. 7. Epigenetics: histone modifications, cytosine methylation, CpG-islands.	8. Enhancer –
 8. Regulation of gene expression by non-coding RNAs. 	
GLOSSARY	9. Epigenetics –
	- P-Bereiter
1. Gene expression –	
	10. Proteomics –
2. Retrotransposon –	
	11. RNA interference –
3. Single nucleotide polymorphism –	12 Comment to a straight the for the straight
	12. Common transcription factors –
4 DNA methylation	13. CpG-island –
4. DNA methylation –	

Task 4. Solve the problems. Problem № 1. Researchers studied the expression of a particular gene and dis- covered that deleting a DNA region located 50,000 upstream from the promoter of the gene significantly reduces the production of protein encoded by the gene. Deleting neighboring regions had no such effect. How can this be explained?	Problem № 4. The distance between the promoter and terminator of a gene is 2700 bp. The gene codes for a protein having the mass 22 000 Da (the mass of one amino acid is approximately 110 Da). What is approximate percent of exons in the gene?
Problem № 2. Researchers performed experiments with two groups of mice: in the first group the color of the coat was yellow. In the second group, it was dark. These traits were inherited. However, it was found that adding folic acid to the diet of pregnant yellow-colored mice makes the color of little mice dark. How could this be explained?	Problem № 5 . Let's take a hypothetic operon where each promoter, operator, and terminator contain 10 base pairs. This operon has 3 structural genes, each code for a protein consisting of 50 amino acids. What is the number of nucleo-tides in this operon? Any other regions can be ignored for simplicity.
Problem № 3. One of the operons of a certain bacterium contains five genes. Gene A , which is closest to the promoter, and gene B , which is farthest from the promoter, are approximately equal in length. However, it was found that the protein encoded by gene A commonly appears in the cell earlier than the protein encoded by gene B. How can this difference be explained?	Teacher's signature «20

Class #7. Topic: GENOMICS. TECHNIQUES OF MOLECULAR GENETICS

CONTENTS OF THE TOPIC Methods of nucleic acids isolation. DNA research methods: gel electrophoresis, restriction analysis, nucleic 	7. Restriction analysis –
 2. DNA research methods: get electrophoresis, restriction analysis, nucleic acid hybridization, DNA microarrays, PCR, sequencing. 3. PCR and its types: quantitative PCR, reverse transcription PCR, multiplex PCR. 4. Genome sequencing methods (Sanger sequencing, pyrosequencing, nanopore sequencing, bisulfite sequencing). 	8. Nucleic acid hybridization –
GLOSSARY 1. Gel electrophoresis –	9. Polymerase chain reaction –
2. Restriction endonuclease –	10. DNA microarray –
3. DNA probe –	11. Bisulfite sequencing –
4. DNA sequencing –	12. Quantitative PCR –
5. Sanger sequencing –	
6. Dideoxynucleotide –	13. Intercalating dye –

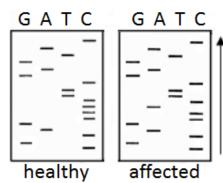


Task 2. Match the sequencing method with its characteristic (write the correct letter in the table): a) Sanger sequencing; b) pyrosequencing; c) nanopore sequencing; d) bisulfite sequencing.

Uses nucleotides lacking a 3' OH group	
Known as the chain termination method	
Based on the measurement of ion current through a non-conductive membrane	
The nucleotide sequence is determined by chemiluminescence	
Uses a nanopore in a special membrane	
Reveals methylated cytosine in the DNA	
Nucleotide sequencing is determined by differences in the length of synthesized DNA fragments	

Task 3. Solve the problems.

Problem No 1. The photograph shows an agarose gel in which DNA is visualized after electrophoresis. Using a length marker (labeled as (M)), determine the approximate length of the presented fragments in base pairs.

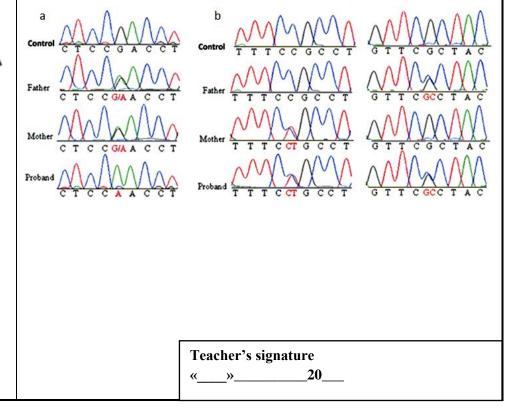


Problem № 2. Restriction endonuclease *Hind*III recognizes and cuts the site 5' AAGCTT3'. What is the chance of finding this nucleotide combination in a random DNA? What is the expected average length of the fragments formed when the DNA is cut by *Hind*III?

Problem № 3. Theoretically, after each PCR cycle, the amount of DNA is dou-**Problem No 5.** Mutations in the *PAH* gene cause phenylketonuria. The disease bled. How many minutes would it take to obtain one million copies from one molecule? The denaturing, annealing, and extension last 15, 30, and 90 seconds.

Problem № 4. The gene *RHO* encodes the protein called rhodopsin. Various mutations in this gene cause a hereditary disorder retinitis pigmentosa that causes loss of vision.

Sanger sequencing was performed. The diagram shows a fragment of the coding strand from the RHO gene (bases encoding 21st-27th amino acids). Read the codons from the first nucleotide at the bottom of the figure. Which mutation occurred in the sick person? What is the change in the amino acid sequence in the protein?

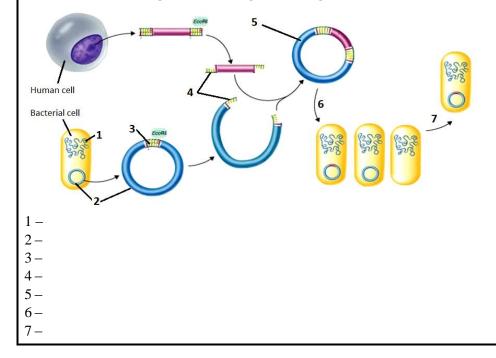


is autosomal recessive (develops when the gene PAH is altered in both chromosomes). Here are the results of Sanger sequencing of the PAH gene for two families.

In family A, both parents have a c.728G>A mutation in exon 7, i.e., replacing the 728^{th} G nucleotide with A.

In family B, one parent has the mutation c.721C>T (replacing CD with T) and the other has the mutation c.1238G>C (replacing G with CD).

Examine the data in the figure and conclude whether children in both families have the disease or not. Explanation: control is the gene regions of other individuals without mutations that are needed for comparison; G, C, A, T are the Latin notations for G, C, A, and T shown by the software that processes the sequencing data.


 CONTENTS OF THE TOPIC Genetic engineering: goals, objectives, and stages. Methods for obtaining genes for transgenesis. Recombinant DNA. Construction of vectors, their types. Introduction of recombinant DNA into a recipient cell. Selection of transformed cells. Selective and reporter genes. 	6. Selectable marker genes – 7. Shuttle vector –
 5. Biotechnology, its importance for medicine. Genetically modified organisms. Food products containing GMOs. 6. Applications of genetic engineering in medicine: production of protein products, mono- and polyclonal antibodies, recombinant proteins, DNA probes. 7. Genome editing tools: CRISPR/Cas 9, TALEN. Prospects for use in medicine and bioethical problems of genomic editing. Gene therapy. 	8. Lipofection – 9. Electroporation –
GLOSSARY 1. Vector –	10. Transformation –
2. Recombinant DNA –	11. Sticky ends –
3. Transgenesis –	12. DNA cloning –
4. Polylinker –	13. Biolistics –
5. Reporter genes –	14. Phagemids –

Class #8. Topic: GENETIC ENGINEERING

Task 1. Match	the method	of introducing	recombinant	DNA into) a cell
with its name.		_			

	d is based on the nolecules from a	•	eria to	A. T	ransduction
2. Delivery of DNA into a cell in a vesicle with one or more bilipid layers				B. E	lectroporation
3. Transfer of recombinant DNA into a bacterial cell using a bacteriophage				C. Lipofection	
4. Direct introduction of DNA into the nucleus with a thin needle			D. Transformation		
5. Formation of temporary channels in the mem- brane by electric impulses			E. Microinjection		
1	2	3	4 5		5

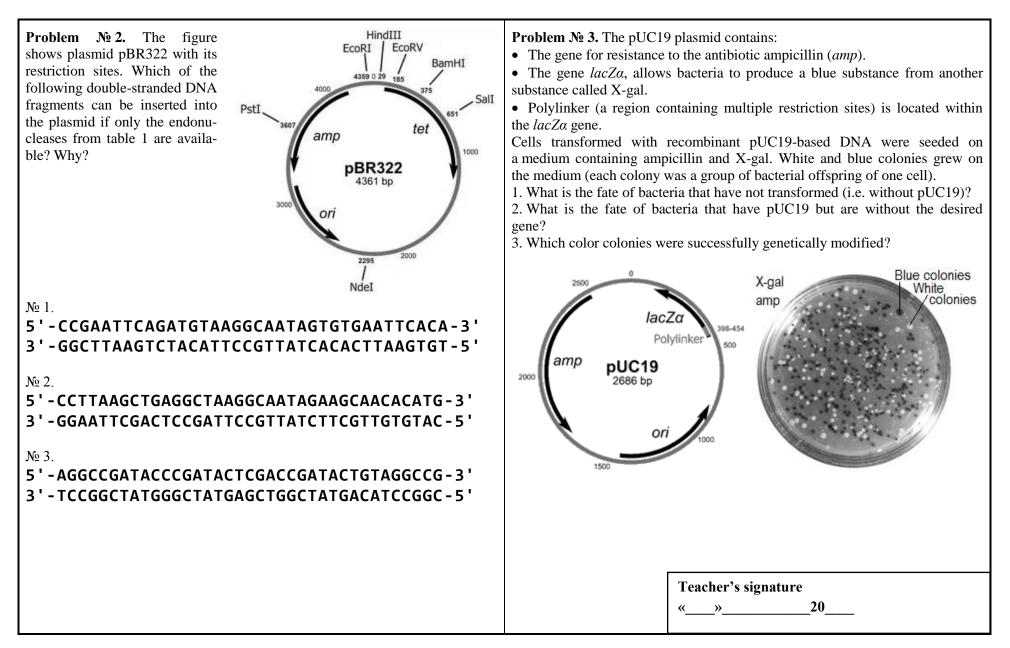
Task 2. Label the diagram of cloning a human gene in a bacterial cell.

		on endonucleases and their restriction sites
#	Restriction endonuclease	Restriction sites and cut points
1	BalI	5 ' − T G G♥C C A − 3 ' 3 ' − A C C≰G G T − 5 '
2	BamHI	5 ' – G♥G A T C C – 3 ' 3 ' – C C T A G₄G – 5 '
3	EcoRI	5 ' − GŧA A T T C − 3 ' 3 ' − C T T A A₄G − 5 '
4	HindIII	5 ' – A♥A G C T T – 3 ' 3 ' – T T C G A₄A – 5 '
5	SalI	5 ' − G♥T C G A C − 3 ' 3 ' − C A G C T 4 G − 5 '
6	XbaI	5 ' – T♥C T A G A – 3 ' 3 ' – A G A T C▲T – 5 '
7	HaeIII	5 ' – G G ^V C C – 3 ' 3 ' – C C≰G G – 5 '

Table 1

• .

Task 3. Solve the problems.


a

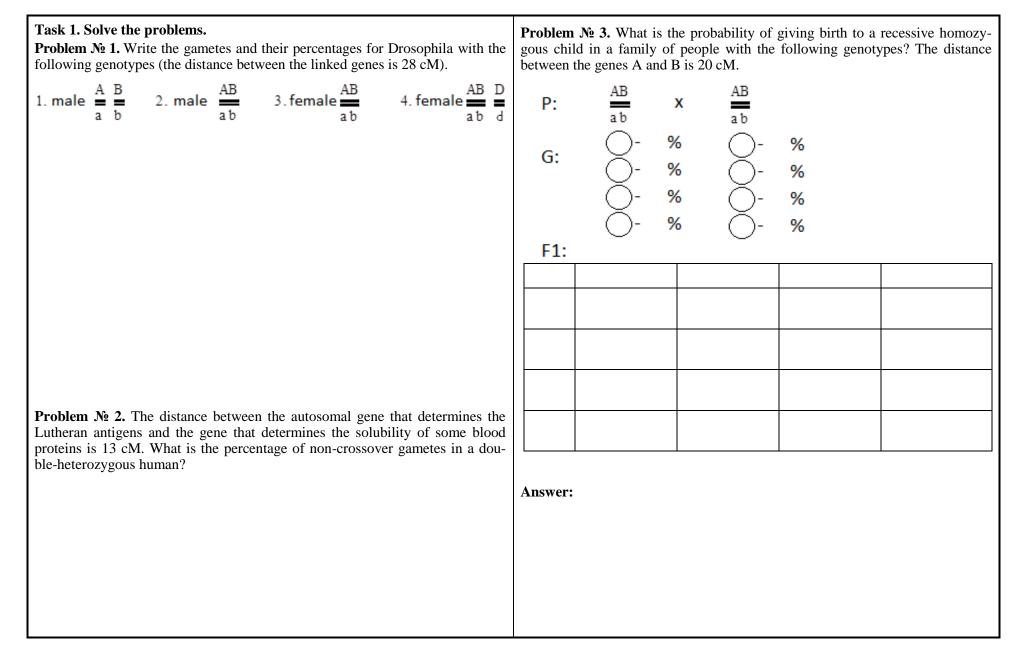
Problem № 1. There is a 27-bp DNA fragment:

5'-CTGAATTAGGATCCAGGCAATAGTGTG-3' 3'-GACTTAATCCTAGGTCCGTTATCACAC-5'

What endonuclease from the table can cut this DNA? How many fragments will be formed?

32

CONTENTS OF THE TOPIC	5. Phenotype –
 Genetics as a science. Hybridological analysis. Laws of inheritance in a monohybrid cross. Law of purity of gametes. Test- cross. Backcrossing. Laws of inheritance in polyhybrid cross. 	6. Polymeric gene action –
 Limitations of Mendel's laws. Pleiotropy. Intraallelic gene interactions (complete and incomplete dominance, super- dominance, codominance, and allelic exclusion). Multiple alleles. Inheritance of blood groups in the ABO system. Inheritance 	7. Codominance –
of MN blood groups and Rh factor.8. Interallelic interaction of genes (complementary, inhibitory, polymeric gene action). Bombay blood group as an example of recessive epistasis in humans.	8. Genotype –
GLOSSARY 1. Allele –	9. Backcrossing –
2. Complementation –	10. Epistasis –
	11. Intraallelic interactions –
3. Superdominance –	12. Allelic exclusion –
4. Testcross –	13. Pure lines –


Class #9. Topic: BASIC LAWS OF INHERITANCE

Task 1. Solve the problems.	Problem № 4. A woman has blood groups O,	Phenotype Gene Genotype	
Problem № 1. How many and what types of gametes could be formed by organ-	Rh-, MN. Her husband has groups AB, Rh+ System AB0		
isms with the following genotypes?	(homozygote), and N. What combinations of	Group 0 (I) I ⁰ I ⁰ I ⁰	
P: AaBbDd AAbbCCddRR	blood groups can their children have?	Group A (II) I ^A I ^A I ^A , I ^A I ⁰	
		$\begin{array}{c c} \hline Group B (III) & I^B & I^B I^B, I^B I^0 \\ \hline \end{array}$	
		$ Group AB (IV) I^A + I^B I^A I^B $	
		System MN	
		Group M L ^M L ^M L ^M	
		Group N L ^N L ^N L ^N	
Problem № 2. A blue-eyed male married a brown-eyed female. Her father was		Group MN $L^{M}+L^{N}$ $L^{M}L^{N}$	
blue-eyed and her mother was brown-eyed. It's known that the allele of brown		System Rh	
eyes is dominant. What phenotypes of children could be expected in this family		Rh+ D DD, Dd	
and what is their chance?		Rh- d dd	
Problem № 3. In humans, brown eyes and dextrality (right-handedness) are determined by the dominant alleles of two different genes. The blue eyes and sinistrality (left-handedness) are determined by their recessive alleles. A browned-eyed right-hander man married a blue-eyed left-hander woman. What traits could be expected in children if the man is double-heterozygous?	Problem № 5. In humans, congenital deafner alleles of two different genes (d and e). Nor alleles of both the genes (D and E). There is a while all their seven children have normal heari genotypes of all members in this family?	mal hearing requires dominant family where parents are deaf	

Problem № 6. Healthy parents have got two children. The older one was healthy, but the younger one has two autosomal recessive disorders: cystic fibrosis and galactosemia. What is the chance that the healthy child is a carrier of at least one of these diseases? What is the chance of giving birth to a child sick with at least one of the diseases in the family?	Problem No 7. In «Fleur» begonia, leaf variegation is caused by a recessive allele of the gene f , and in «Sank» begonia by a recessive allele of the gene (genes are in different chromosomes). When two dihomozygous variegate plants of these varieties are crossed, all resulting hybrids have green leave How many begonias (in %) among plants with green leaves (F2) will carry only one (any) variegated leaf gene?
	Teacher's signature «»20

CONTENTS OF THE TOPIC 5. Genetic map of chromosome -1. Experiments of T. Morgan. Complete and partial genetic linkage. Linkage groups. 2. Crossing-over. 6. Primary sexual characteristics -3. Chromosomal theory of inheritance. 4. Genetic and cytological chromosome maps. 5. Sex as a biological trait. Sex-influenced and sex-limited traits. X and 7. Heterogametic sex -Y linked traits. 6. Definition, differentiation, and redefinition of sex in ontogeny. Genetic regulation of gonadogenesis in humans. 7. Peculiarities of sex determination in humans: physical, intermediate and so-8. Barr body cio-psychological determinants. 8. Disorders of sex development in humans. Ethical and legal aspects of morphological and civil sex changes. 9. Mosaicism -9. X-inactivation. M. Lyon's hypothesis of female mosaicism by sex chromosomes. **GLOSSARY** 10. Androgen insensitivity syndrome -1. Linked genes -11. Holandric traits -2. Sex-linked genes -12. Hemizygosity -3. Crossover gametes -13. Genetic sex – 4. Chromosomal theory of sex determination -

Class #10. Topic: GENETIC LINKAGE. GENETICS OF SEX

Problem No 4. Two patients, 15 and 18 years old with a female phenotype, have primary amenorrhea. Clinical examination revealed underdevelopment of primary sex characteristics. Barr body was not detected. The karyotype was determined to be 46, XY. Male sex hormone levels were not elevated, but closer to the upper limit of the normal range. Sequencing of the <i>AR</i> gene was performed to verify one of the suspected causes of the disease, which revealed a nonsense mutation c.2657T>A - codon TAA instead of TAT. As result, the protein encoded by this gene is not being produced. What diagnosis was confirmed by sequencing of the <i>AR</i> gene? What does this gene encode?	Problem № 6. Hemophilia and color blindness are caused by the recessive alleles of two different genes (h and d). The genes are situated in the X chromosome at a distance of 10 cM. A woman whose father had both the diseases and mother had no such recessive alleles married a healthy man. What is the probability of giving birth to a child: 1) with both diseases; 2) with one disease; 3) phenotypically healthy?
Problem № 5. Elliptocytosis and blood group Rh+ are determined by the dominant alleles of genes El and D respectively. Both the genes are situated in the same chromosome at a distance of 3 cM. There is a man who is heterozygous for both genes. He inherited Rh+ from his mother and elliptocytosis from his father. His wife has blood group Rh- and normal erythrocytes. What phenotypes can their children have and what is their chance in percent?	
	Teacher's signature «20

Class #11. Topic: VARIATION. MUTAGENESIS. CARCINOGENESIS

CONTENTS OF THE TOPIC	6. Phenocopies –
1. Variation and its types. Phenotypic plasticity.	
 Combinative variation. Mutations. Causes of mutations: DNA copying errors, unequal crossing 	7. Anaphase lag –
over, mutagens. 4. Physical, chemical, and biological mutagenic factors. Genetic hazards of	
environmental pollution by mutagens.5. Classifications of mutations.	8. Non-homologous end joining –
6. Stability and repair of genetic material.7. Types of DNA repair. Excision repair, repair of double-stranded breaks.	
Photoreactivation. Role of repair disorders in human pathology.	9. Oncogene –
8. Carcinogenesis. Oncogenes and tumor suppressor genes.	-
GLOSSARY	
1. Mutation –	10. Tumor suppressor genes –
2. Unequal crossing over –	11. Reciprocal translocation –
3. Reparation of genetic material –	12. Combinative variability –
4. Insertion –	13. Transversion –
	14. Missense mutation –
5. Reading frameshift –	

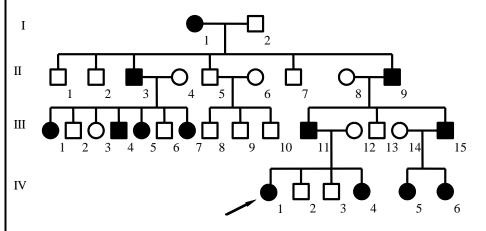
Task 1. Label the figure of nucleotide	e excision repair and explain its mech-	Task 2. Match	h the DNA	repair mecha	anism with it	s name.	
anism.		1. Error-pror stranded brea		sm for joining	double-	A. Direct	reversal
Damaged DNA	1 –	2. Single nuc		eplaced		B. Nucleo sion repai	
⁵ ' _{3'} ^{3'} _{5'}		3. Method by nated in huma		imidine dime	rs are elimi-	C. Base ex repair	
0		4. Damage is ment		vithout nucleo	tide replace-	D. Nonhomologous end joining	
	2	5. Repair inv nuclease activ				E. Repara	tion by ho- recombina-
		in the DNA s	trand with	DNA-polyme	rase	tion	
		6. Use of the some or sister breaks				F. Mismat	tch repair
	3 -	1	2	3	4	5	6
	4 –	Task 3. Mode Initial mRNA Peptide Silent mutatio Peptide Missense mut Peptide Nonsense mut Peptide	ation 5'	AUGACC AUGACC AUGCCC	GACCCG GACCCC GACCCG	AAAGG AAAGG AAAGG	G A C C 3' G A C C 3' G A C C 3' G A C C 3'
		Frameshift mut Peptide	tation 5'	AUGACC	GACGCC	GAAAGG	GACC3'

Task 4. Solve the problems. Problem № 1. Some cells of a person have a normal karyotype, others 1 47 or 45 chromosomes. What is the name of this phenomenon? What is mechanism of its origination?	Is known to develop because of an increase in the derivity of the C^{-}
Problem № 2. A man has got brown eyes, his wife has got blue eyes and daughter has one blue and the other brown eyes. How can it be explained?	b) translocation of a p-arm fragment from chromosome 2 to the q-arm of the
Problem № 3. Aged spouses got a son who is heterozygous in the causing mophilia. What conclusion about his karyotype can be drawn?	he- chromosome 8; c) translocation of the q-arm region from chromosome 8 to the q-arm of chro- mosome 22.
nopinia. What conclusion about his karyotype can be drawn.	Is one of these mutations present in the chromosomes shown in the photograph? Explain your answer.
Problem Nº 4. Every day in every human cell about 200 cytosines per haploid genome are converted to uracil by spontaneous deamination. What is the consequence of H_2 H_2 H_2 H_2 H_3 H_3 H_2 H_2 H_3 H_2 H_2 H_3 H_3 H_2 H_3 H_3 H_2 H_3 $H_$	
deamination of methylated cytosine?	i is number n
N <o< th=""> N<o< th=""> cytosine uracil NH2 0</o<></o<>	
H ₃ C H ₃ C H ₃ C H ₃ C H ₁ C	19 20 21 22 X Y Teacher's signature «»20

 CONTENTS OF THE TOPIC 1. Population. Characteristics of a population. Gene pool. 2. Ideal population. Hardy-Weinberg equilibrium. 3. Factors disturbing Hardy-Weinberg equilibrium: natural selection, genetic drift, mutations, migration, non-random mating. 4. Human genetic polymorphism, its biological, medical, and social aspects. 	 5. Immigration – 6. Founder effect –
 A. Human genetic polyholphism, its biological, medical, and social aspects. Distinctive features of the human population. Types of marriages. Inbreeding. Mating assortativity. Inbreeding coefficient. Large and small populations. Peculiarities of the gene pool of isolates. Founder and bottleneck effects. Effects of elementary evolutionary factors on human populations. Genetic load, its biological essence, and medical significance. 	7. Inbreeding –
GLOSSARY 1. Population –	- 8. Genetic load –
2. Gene pool –	9. Inbreeding coefficient –
3. Natural selection –	10. Assortative mating –
4. Genetic drift –	11. Bottleneck effect –

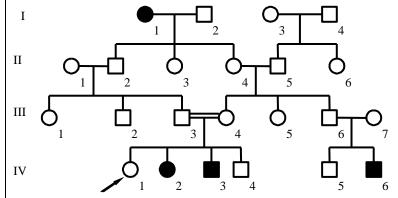
Class #12. Topic: **POPULATION GENETICS**

Task 1. Solve the problems. Problem № 1. In a study of 4,300 individuals from a certain population, it was found that 3,009 of them could feel the bitter taste of phenylthiocarbamide (PTC), while 1,291 could not. The ability to taste PTC is determined by the dominant allele of an autosomal gene. Based on these data, calculate the fre- quencies of the dominant and recessive alleles and the frequencies of the geno- types that should be observed in this population.	Problem № 3. Cystic fibrosis is an autosomal recessive disorder. The incidence of this disease in the Republic of Belarus is about 1:8000. Based on these data, calculate the probability to carry this allele (frequency of heterozygotes) for the people living in Belarus. Taking these data into account, determine what is the probability of giving birth to a child with cystic fibrosis in a family where the mother is heterozygous and the father is phenotypically healthy, but his exact genotype is not known.
Problem № 2. Sickle cell anemia is an autosomal recessive disorder. Heterozy- gous carriers of the disease have increased protection against severe forms of malaria. The incidence of sickle cell anemia in some African countries (e.g. Nigeria) is about 2 %. Calculate the percentage of people who have an in- creased protection against severe forms of malaria in these countries.	Problem № 4. Phenylketonuria (PKU) is inherited in an autosomal recessive manner. The incidence of PKU in Belarus is about 1:6000. Calculate the probable number of heterozygous carriers of the disease in Belarus (in thousands) assuming the population is 9408.4 thousand.

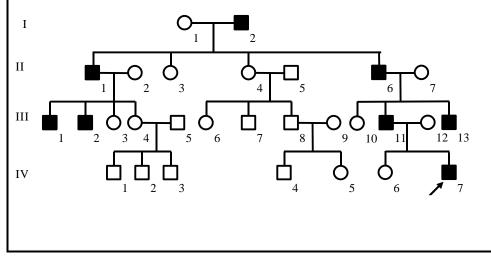

Problem № 5. In a population, the incidence of X-linked recessive color blindness among women is about 0.5 %. What is the incidence of the disease in males of this population?	Problem No 7. Assume there is a disease with an autosomal dominant pattern of inheritance and incidence 1:50. This disease occurs only in males and the penetrance of the gene is 20 % (in females it is 0 %). Taking the ratio of males to females as 1 : 1, determine the genetic structure of the population according to the analyzed trait.
Problem № 6. Congenital dislocation of the hip may be caused by the dominant allele of an autosomal gene with an average penetrance of 25 %. According to one research (Efroimson et al., 1968), the frequency of this pathology is 6:10000. What is the frequency of recessive homozygotes in the studied population?	
	Teacher's signature «»20

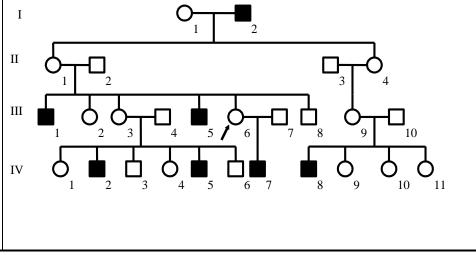
CONTENTS OF THE TOPIC	5. Rapid diagnostic methods –
1. Humans as a specific object of genetic analysis.	
2. Methods of human genetics: genealogical analysis, twin study, biochemical	
tests, molecular-genetic methods. 3. Methods of diagnosing human chromosomal diseases: standard karyotyping,	6. Holzinger's formula –
SKY, FISH, and single-nucleotide polymorphism array karyotyping.	
4. Rapid diagnostic methods: microbiological tests, detection of X- and Y-sex	
chromatin, biochemical tests, genetic dermatoglyphics.	7. Spectral karyotyping –
5. Stages of genetic counseling: clinical examination, risk calculation, evalua-	
tion of consequences, prognosis.Genetic risk calculation. Laws of addition and multiplication.	
7. Prenatal diagnostic tests for hereditary disorders (alpha-fetoprotein evalua-	8. Pedigree –
tion, ultrasonography, chorionic villus sampling, amniocentesis, cordocentesis,	
and fetoscopy).	
8. Neonatal screening of monogenic disorders.	9. Fluorescence in situ hybridization –
GLOSSARY	7. Fluorescence in situ hybridization –
1. Karyotyping –	
	10 Samaaning
	10. Screening –
2. DNA probe –	
	11. Propositus –
2 Dronotal diagnosis	
3. Prenatal diagnosis –	
	12. Single transverse palmar crease –
4. Concordance of twins –	
	13. Medical Genetics –
	1

Class #13. Topic: HUMAN GENETICS

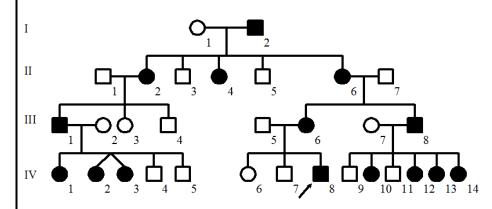

Task 1. Solve the problems.

Problem № 1. What is the pattern of inheritance of the trait from the pedigree? What are the genotypes of all pedigree members?

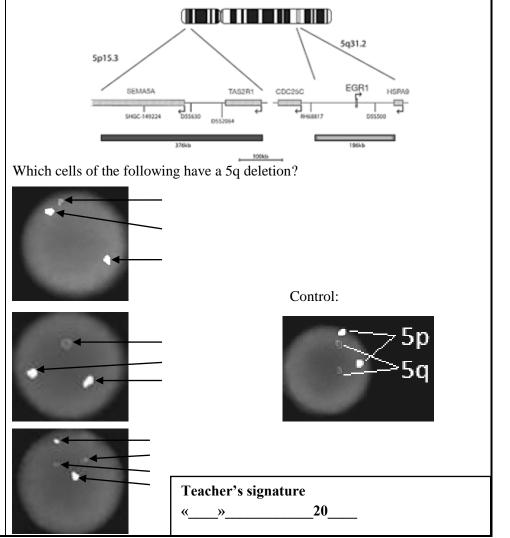



Problem № 2. What is the pattern of inheritance of the trait from the pedigree? What are the genotypes of all pedigree members?

Problem № 3. What is the pattern of inheritance of the trait from the pedigree? What are the genotypes of all pedigree members?



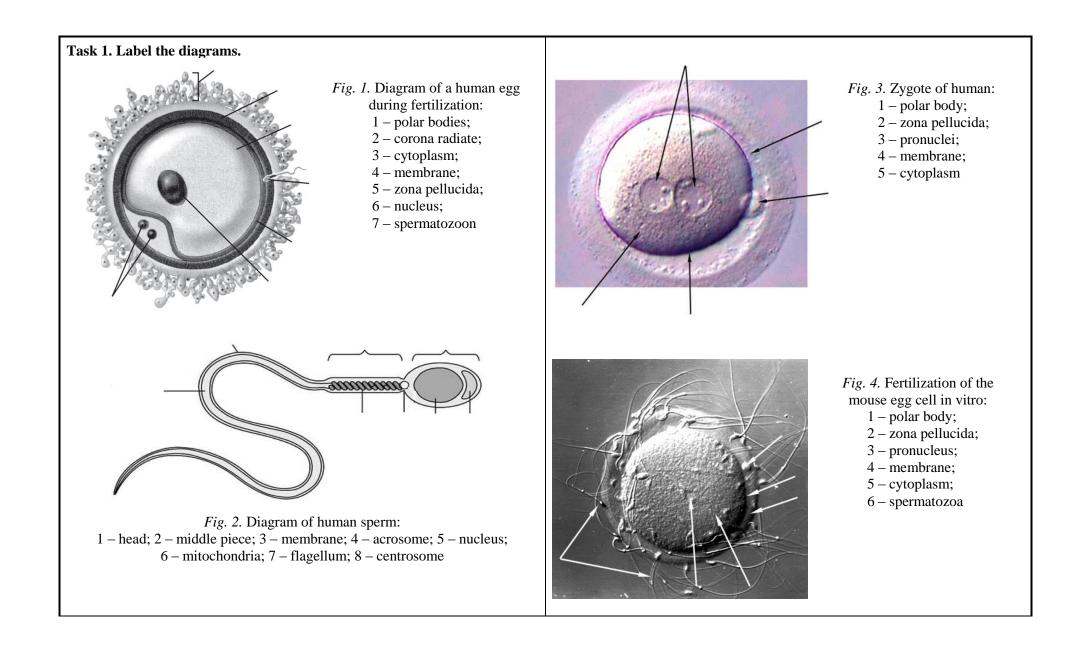
Problem № 4. What is the pattern of inheritance of the trait from the pedigree? What are the genotypes of all pedigree members?

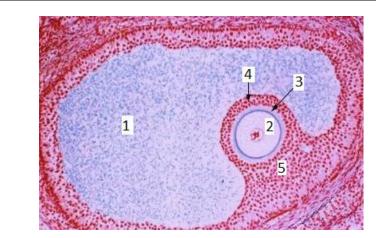

Problem № 5. What is the pattern of inheritance of the trait from the pedigree? What are the genotypes of all pedigree members?

Problem Nº 6. The concordance of monozygotic and dizygotic twins in body mass is 80 % and 30 %. What is the degree of genetic determination of body mass? What is the influence of the environment on this trait?

Problem № 7. To determine the degree of genetic determination of bronchial asthma, 44 pairs of monozygotic and 120 pairs of dizygotic twins were studied. Twenty-three pairs of monozygotic twins and six pairs of dizygotic twins were concordant. Estimate the role of hereditary and environmental factors in the formation of this trait?

Problem No 8. FISH was used to detect a deletion in the long arm of the fifth chromosome. The signals from the probes to the p- and q-arms of this chromosome are green and red, respectively (in the black and white photo – white and gray).


Class #14. COLLOQUIUM


 CONTENTS 1. The nature of life, and the role of proteins and nucleic acids in the organization of living systems. Organization levels of living matter. The cell theory. 2. Prokaryotes and eukaryotes. 3. Human as a biological and social being. 4. The role of biology in medical education. 5. Subject, objectives, and methods of cytology (light, electron, and fluorescent microscopy, histochemistry and immunohistochemistry, differential centrifugation, autoradiography, morphometry, etc.). 6. The method of light microscopy. The structure of a light microscope. The rules of work with a microscope. 7. The structure of the plasma membrane. 8. Transport across the membrane: passive transport (simple diffusion, facilitated diffusion, osmosis), active transport, endocytosis, exocytosis. 9. Cytosol. Cytoskeleton: microtubules, intermediate filaments, microfilaments. Intracellular transport of substances. 10. Assimilation. Ribosomes.Endomembrane system (nuclear envelope, endoplasmic reticulum, Golgi body, lysosomal and peroxisomal disorders. 12. Evolution of the gene concept. Evidence that DNA is the genetic material. 13. Structure and functions of DNA. Genetic material of viruses and bacteria. 14. The structure and functions of the cell nucleus. 15. Gene, chromosome, and genome levels of eukaryotic genetic material. 16. DNA condensation. Remodeling of chromatin. 17. The structure of metaphase chromosomes. Euchromatin and heterochromatin. Types of chromosomes. Rules of chromosomes. 18. Karyotype and idiogram. Methods for studying the human karyotype. Classifications of human chromosomes. 19. Cytoplasmic inheritance. 20. Cell cycle. Interphase. 21. Semi-conservative mechanism of DNA replication. Replicon. 22. Cell cycle regulators (cyclins and cyclin-dependent kinases). 23. Types of cell division: mitosis, amitosis, endomi	 Cell proliferation and cell death. Necrosis and apoptosis. Caspases. The Central Dogma of Molecular Biology. The concept of the gene. Properties and functions of genes. Ribonucleic acid, its types, functions. Genetic code and its properties. Transcription. Transcription factors. Production of mRNA / mRNA synthesis in eukaryotes: primary transcript and its processing. Recognition. Translation: initiation, elongation, and termination. Posttranslational proteins modifications, protein folding, chaperones. Human genome: protein-coding genes, RNA genes, non-coding sequences (repeats, introns, junk DNA). DNA transposons and retrotransposons. Transcriptome. Proteome. Metabolome. Genome redundancy, its significance. Projects Human genome, ENCODE, Roadmap. Classification of genes. Operon. Lac- and trp-operons. Polycistronic RNA. Regulation of transcription in eukaryotes: preinitiation complex. Enhancers, silencers. Feigenetics: histone modifications, cytosine methylation, CpG-islands, Regulation of gene expression by non-coding RNAs. Methods of nucleic acids isolation. DNA microarrays. PCR and its types: quantitative PCR, reverse transcription PCR, multiplex PCR. Genome sequencing methods (Sanger sequencing, pyrosequencing, nanopore sequencing, bisulfite sequencing). Genetic engineering: goals, objectives, and stages. Methods for obtaining genes for transgenesis. Recombinant DNA. Construction of vectors, their types. Introduction of recombinant DNA into a recipient cell. Selection of transformed cells. Selective and reporter genes. Biotechnology, its importance for medicine. Genetically modified organisms. Food products containing GMOs. Genetics as a science. Hybridological analysis. Laws of inheritance in a monohybrid cross. Law of purity of gametes. Testcross. Backcrossing. L
--	--

 46. Bombay blood group as an example of recessive epistasis in humans. 47. Experiments of T. Morgan. Complete and partial genetic linkage. Linkage groups. 48. Chromosomal theory of inheritance. Crossing-over. Genetic and cytological chromosome maps. 49. Sex. Sex-influenced and sex-limited traits. X and Y linked traits. 50. Definition, differentiation, and redefinition of sex in ontogeny. Genetic regulation of gonadogenesis in humans. Peculiarities of sex determination in humans: physical, intermediate and socio-psychological determinants. Disorders of sex development in humans. Ethical and legal aspects of morphological and civil sex changes. 51. X-inactivation. M. Lyon's hypothesis of female mosaicism by sex chromosomes. 52. Variation and its types. Phenotypic plasticity. Combinative variation. 53. Mutations. Causes of mutations: DNA copying errors, unequal crossing over, mutagens. 54. Physical, chemical, and biological mutagenic factors. Genetic hazards of environmental pollution by mutagens. Classifications of mutations. Stability and repair of genetic material. Types of DNA repair. Excision repair, repair of double-stranded breaks. Photoreactivation. Role of repair disorders in human pathology. 55. Carcinogenesis. Oncogenes and tumor suppressor genes. 56. Population. Characteristics of a population. Gene pool. 57. Ideal population. Hardy-Weinberg equilibrium. 58. Factors disturbing Hardy-Weinberg equilibrium: natural selection, genetic drift, mutations, migration, non-random mating. 59. Human genetic polymorphism, its biological, medical, and social aspects. Distinctive features of the human population. Types of marriages. Inbreeding. Mating assortativity. Inbreeding coefficient. Large and small populations. Peculiarities of the gene pool of isolates. Founder and bottleneck effects. 60. Effects of elementary evolutionary factors on human populations. 61. Genetic loa	 65. Rapid diagnostic methods: microbiological tests, detection of X- and Y-sex chromatin, biochemical tests, genetic dermatoglyphics. 66. Neonatal screening of monogenic disorders. 67. Etiology and pathogenesis of human hereditary diseases. Classification of human hereditary diseases. 68. Monogenic and polygenic diseases: disorders of amino acid, carbohydrate, lipid, nucleic acid, mineral metabolism, disorders of blood clotting, and hemoglobin structure. 69. Human chromosome disorders caused by changes in the structure and number of autosomes, full and partial monosomies and trisomies. 70. Mitochondrial diseases. 71. Multifactorial diseases. 72. Principles of treatment of human hereditary pathology. 73. Genetic counseling and its tasks. Indications for directing a family to genetic counseling. 74. Stages of genetic counseling: clinical examination, risk calculation, evaluation of consequences, prognosis. 75. Genetic risk calculation. Laws of addition and multiplication, Bayes' theorem, calculation of posterior probability. 76. Prenatal diagnostic tests for hereditary disorders (alpha-fetoprotein evaluation, ultrasonography, chorionic villus sampling, amniocentesis, cordocentesis, and fetoscopy). 77. Moral and ethical aspects of prenatal diagnosis. Induced termination of pregnancy. 78. Ethical and legal problems of genetic consulting.
61. Genetic load, its biological essence, and medical significance.62. Humans as a specific object of genetic analysis.	
63. Methods of human genetics: genealogical analysis, twin study, biochemical tests, molecular-genetic methods.64. Methods of diagnosing human chromosomal diseases: standard karyotyp-	
ing, SKY, FISH, and single-nucleotide polymorphism array karyotyping.	

Class #15. Topic: **REPRODUCTION OF LIVING MATTER**

5. Hermaphrodites –
6. Asexual reproduction –
7. In vitro fertilization –
8. Infertility –
9. Zona pellucida –
10. Spermatogenesis –
11. Parthenogenesis –
12. Acrosome –
13. Lateral gene transfer –

- Fig. 5. Graafian follicle:
- secondary ovocyte;
- cumulus oophorus;
- corona radiate;
- follicular cavity;
- zona pellucida

Task 2. Solve the problems.

Problem No 1. In the case of parthenogenesis unfertilized ovum gives rise to a new organism. Why can't a spermatozoon do the same?

Problem N_2 2. Planarians can multiply asexually and sexually by self-fertilization. Is the genotype of the progeny produced by self-fertilization the same as that of the progeny produced by asexual reproduction? Explain your answer?

Problem No 3. Semen analysis of persons A and B revealed that their spermatozoa have normal morphology, but the spermatozoa of A are immovable and the spermatozoa of B stay on the surface of the egg cell and do not pass inside. What structures of sperms may not perform their normal functions in these cases?

Problem № 4. Autopsy of 22-year-old dead women revealed that her ovaries contained:

Left ovary (smaller)	Right ovary (bigger)
17 000 follicles	25 000 follicles
26 corpora albicantia	48 corpora albicantia

If one follicle forms one corpus luteum, then at what approximate age did ovulations begin in this woman?

Teacher's signature

«____»____20___

Class #16. Topic: FUNDAMENTALS OF PRENATAL ONTOGENESIS

CONTENTS OF THE TOPIC	4. Teratology –
1. Ontogenesis. Periodization of prenatal ontogenesis.	
2. Prezygotic period. Prenatal period: zygote, cleavage, gastrulation, histogen-	
esis, and organogenesis.	
3. Extraembryonic membranes of chordates.	5. Gastrulation –
4. Regulation of embryonic development.	
5. Critical periods of human intrauterine development, teratogenic factors.	
6. Genomic imprinting. Diseases of genomic imprinting.	
7. Periods of postnatal ontogenesis.	6. Germ layers –
8. Growth and development of the human body and its regulation. Accelera-	
tion.	
9. Human constitution and habitus, their medical significance.	
10. Critical periods of postnatal ontogenesis.	7. Blastocyst –
11. Biological aspects of ageing. The concepts of gerontology, geriatrics, and	
valeology. Molecular and genetic aspects of aging.	
12. Clinical and biological death. Resuscitation and its biological aspects. Moral and ethical problems of euthanasia.	
and ethical problems of euthanasia.	8. Ageing –
GLOSSARY	
1. Ontogenesis –	
I. Ontogenesis	9. Clinical death –
	9. Clinical death –
2. Blastomere –	10. Telomeres –
	10. Telomeres –
3. Cleavage –	11. Valeology –
	11. Valcology –

Task 1. Label the diagrams.					0			umn wit	th corres	ponding
	A PARA	tissues, organs, or body parts in the right column. A. General 1. Liver 2. Brain 3. Spleen								
		B. Cere	B. Cerebral			4. Fallopian tubes5. Prostate6. Tonsils				
		C. Lym	phoid		 7. Eyes 8. Skeleton 9. Thymus 					
<i>Fig. 1.</i> Cleavage of frog's zygote: 1 – blastomeres	<i>Fig. 2.</i> Blastula of frog: 1 – blastomeres; 2 – blastocoel	D. Rep	oductive	;	11.0	varies uscles	1			
					B menon i	n the lef	C T colum	n with a	D hallmar	k of age-
		ing in the right column.1. Aging-associated accumulation of point mutations, translocations, chromosomal gains, losses, etc2. Shortening of terminal regions of chromosomes				funct B. Ep	function B. Epigenetic Altera-			
Fig. 3. Gastrula of frog:	<i>Fig. 4.</i> Neurula of frog (7x8):	3. Anat 4. Alter	olic sign ations in	ability for aling is a DNA me chromati	ssociated ethylation	l with age		a- D. Al	elomere A tered Inte municatio	ercellular
1 – dorsal lip of blastopore; 2 – ventral lip of blastopore	1 – ectoderm; 2 – neural fold; 3 – notochord; 4 – endoderm	5. Char degrada	iges in bi tion of pi	ogenesis,	folding,	trafficki	C .	E. Ste tion	em Cell F	Exhaus-
		7. Phen division	omenon	character	ized by t	he cessat	ion of ce	^{ll} G. Lo	oss of Pro	teostasis
		able to p	produce r	ne numbe new specia gnals tran	alized ce	lls		ent-se	eregulate ensing llular Sen	
		1	2	3	4	5	6	7	8	9

Task 4. Match the germ layer in the left column with the tissues they
produce in the right column.Task 6. Match the concepts in the left column with their names in the right
column.

1. Brain
2. Epidermis
3. Epithelial lining of the pancreas
4. Bones
5. Epithelial lining of the bronchial tree
6. Dermis
7. Blood vessels
8. Epithelial lining of the small intestine
9. Pituitary gland

А	В	С

Task 5. Match the concepts in the left column with their names in the right column.

1. Participates in the feeding of the embryo; the first hematopoietic organ	A. Yolk sac
2. The outgrowth of the posterior region of the gut, par- ticipates in the formation of the placenta in mammals	B. Amnion
3. A sac with fluid that forms an aquatic environment for the embryo and fetus, protects it from drying out and injury	C. Chorion
4. External covering contacting with the mother's tis- sues; participates in formation of placenta	D. Allantois

1	2	3	4

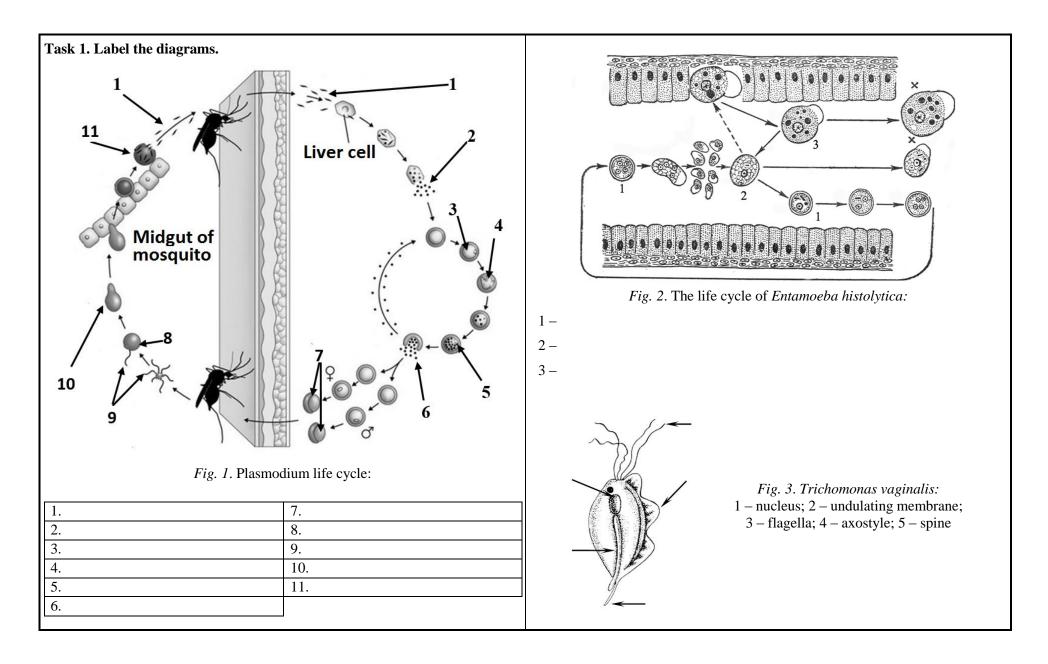
column.	-				C			
1. The process ing tissue, directed cells			ositional in- ation of the					
2. Signaling molecule that acts over long distances to induce responses in cells based on the concentration of these molecules B. Morphogenesis								
3. The coordinate system associated with concentra- tion gradients of signaling molecules C. Induction								
4. The process comes specialized	D. M	orphogen						
5. The develop organs acquire tion	E. Di	fferentiation						
1	2	3	4		5			

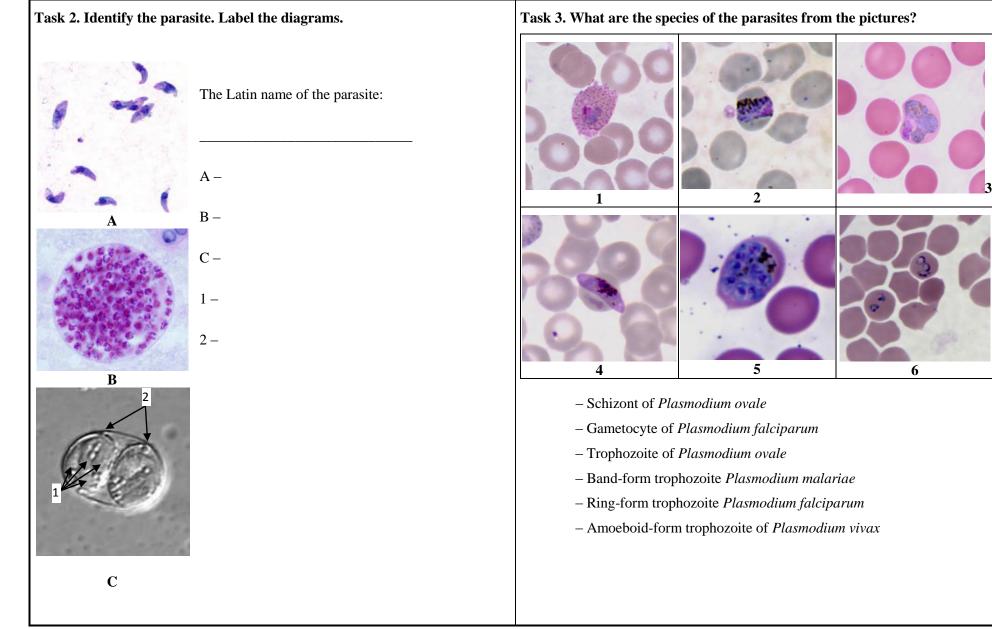
Task 7. The twinned tadpole of the frog shown was made in an experiment demonstrating embryonic induction. How such an experiment can be conducted?

Teacher's signature

«____»____20_

CONTENTS OF THE TOPIC	6. Obligate parasite –
 Parasitism. Criteria for parasitism. Medical parasitology, its goals and objectives. Parasite-host system. Parasitic system. Classification of parasites and their hosts. Transmission routes of parasites. 	7. Molecular mimicry –
 5. Pathogenic action and specificity of parasites. 6. Morphophysiological and biological adaptations of parasites. 7. Response of the host organism to the introduction of parasites. 8. Classification of parasitic diseases. 	8. Definitive host –
GLOSSARY 1. Symbiosis –	9. Intermediate host –
2. Parasite –	10. Transmission route of a parasite –
3. Host of a parasite –	11. Biological vector –
4. Ectoparasite –	12. Pathogenicity –
5. Temporary parasite –	13. Host specificity –

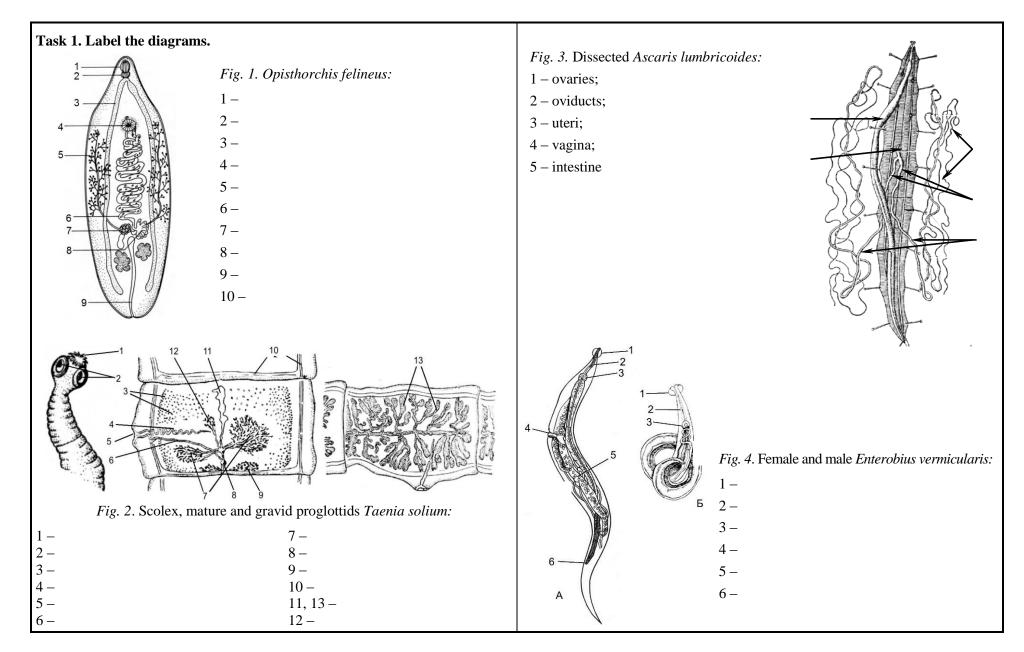

Class #17. Topic: GENERAL PARASITOLOGY

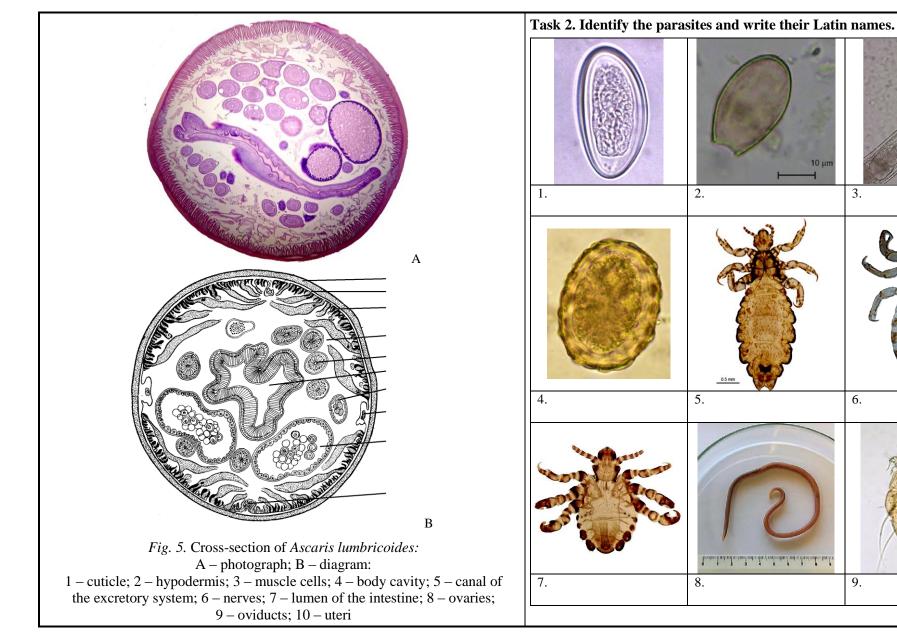

Parasite	Description	Based on in- teraction with	Based on location	Based on du- ration of in-	according to its life cycle stage. Fertilized eggs of the parasite are excreted from the human body (1) with feed
rarastie	Description	the host:	in the host:	teraction with the host:	In the water, a larva (coracidium) hatches from the egg and is swallowed a freshwater crustacean (2) .
	Permanently resides in the outer layer of the skin. Infec-				The next larval stage (procercoid) is formed in the crustacean's gut. When the crustacean is swallowed by a small fish (3) , the procercoid beco a plerocercoid in its muscles and genital organs. Predatory fish (4) can eat the affected fish, accumulating plerocercoids.
Sarcoptes scabiei	through direct contact with patients or their bedlinen, etc.				Infection of humans (1) occurs when small or big fish are eaten. Scolex of plerocerooid attaches to intestinal mucosa and adult grows in small intestine of human
Head louse	Spends its entire life on the hu- man scalp and feeds exclusive- ly on human blood				Eaten by humans in raw or insufficiently cooked freshwater fish Human Human Water
Entamoeba histolytica	The parasite may exist in the host's intestine for months or years and not cause any symp- toms. Can't multiply outside the host				Pleroceroid in muscle and viscera Eaten by carnivorous fish (paratenic host)
Ixodid tick	Lives by feeding on the blood. Contact with the host lasts from several hours to several days				Pleroceroid Which hosts are the organisms with the numbers? 1 - 2 - 3 - 3

	ask 3. Match the transmission route of the parasite in the left col- mn with its name in the right column:							«Adaptations to parasitism»
	. Pathogens pass from the pregnant woman to the fetus luring the period of intrauterine development			A. Cont	tact			
	2. Pathogens are localized on the mucosa of the respirato- ry tract and pass to the susceptible organism through the				B. Sexu	ıal		
membrane	s, from whe	lized on the ere they can ontact with t	get on the s		C. Vertical			
4. Transm sucking art		thogens is n	nediated by	blood-	D. Resp	oiratory		
tract and p	5. Pathogens are mainly localized in the gastrointestinal tract and pass from the infected organism with feces. Infection occurs when the parasite is ingested		E. Fecal-oral					
	hogen is tra ual intercou	insmitted to	the suscept	ible person	F. Iatrogenic		Regressive morphologica	al and physiological adaptations of parasites:
7. Infection blood trans		ring medica	ıl procedure	es, such as	G. Vector-borne			
1	2	3	4	5	6	7	Biological adaptations of	parasites:
							ц 	
								Teacher's signature «»20

CONTENTS OF THE TOPIC	5. Hypnozoites –
1. General characteristics of the kingdom Protista.	
2.Life cycle of malaria pathogens (<i>Plasmodium spp</i> .). Species of plasmodia and their morphological characteristics in a thin blood smear. The symptoms, and diagnosis of malaria. Prevention of malaria.	6. Sporozoite –
3. <i>Toxoplasma gondii</i> : morphology, life cycle, routes of transmission, pathogen- ic action. Diagnosis and prevention of toxoplasmosis.	
4. <i>Entamoeba histolytica</i> . Morphology, life cycle, routes of transmission, patho- genic action. Symptoms, diagnosis, and prevention of amebiasis. Entamoeba gingivalis.	7. Merozoite –
5. <i>Trichomonas vaginalis</i> : morphology, life cycle, routes of transmission, pathogenic action. Symptoms, diagnosis, and prevention of the diseases caused by the parasite.	8. Sporogony –
GLOSSARY	
1. Trophozoite –	9. Schizogony –
2. Cyst –	10. Congenital toxoplasmosis –
3. Exoerythrocytic cycle –	11. Oocyst –
4. Schizont –	12. Tissue cyst –

Class #18. Topic: **PARASITES OF HUMAN (I)**





Task 4. Make a diagnosis in the following cases. Case № 1. A patient was hospitalized with complaints of fever, headache and muscle ache, weakness. The patient said that the disease began 4 days ago. The first symptoms were chill which changed to a fever of 40 °C in two hours. In several hours, the temperature lowered to 35 °C, and profuse sweating occurred. The patient recently came back from a business trip in Africa. What disease should be supposed?	Case № 4. A case of miscarriage happened in a 22-year-old woman in the 5 th month of pregnancy. Histological tests of the placenta, fetal membranes, and organs of the fetus revealed aggregations of protists of crescent shape 4–7 micrometers in size. The nucleus is clearly stained in red and the cytoplasm in blue color. The woman likes animals and has two cats and a guinea pig. What disease should be supposed?
Case No 2. Unicellular parasites $4-7 \times 2-4 \mu m$ in size were found in the cerebrospinal fluid of the patient. Cells were crescent-shaped, one end of the cell is tapered, and the other one is rounded. Identify the parasite.	Case No 5. Four-nucleated round cysts 8–16 μ m in diameter were found in the stool test of a kindergartner. What parasite do the cysts belong to? Is it possible to admit the kindergartner to work?
Case № 3 . Peripheral blood of the patient has red blood cells with ring-shaped trophozoites, multiply infected cells are common. There are crescent-shaped gametocytes. Schizonts contain from 12 to 24 nuclei. Identify the parasite.	Case № 6. A woman sought medical help from a doctor with complaints of itching, burning, redness of the genitals, and yellowish foul-smelling vaginal discharge. A native smear prepared from freshly collected secretions revealed mobile pear-shaped protists, 15–30 microns in size, 4 flagella, and an undulating membrane at the anterior end. What parasitic disease can be supposed?
	Teacher's signature «»20г

Class #19. Topic: PARASITES OF HUMAN (II)

CONTENTS OF THE TOPIC	4. Metacercaria –
 General characteristics and classification of flatworms. <i>Opisthorchis felineus</i> and <i>Taenia solium</i>: morphology, life cycle, routes of transmission, pathogenic action. Symptoms, diagnosis, and prevention of opisthorchiasis, taeniasis, and cysticercosis. General characteristics and classification of nematodes. <i>Ascaris lumbri-</i> 	5. Miracidium –
<i>coides</i> and <i>Enterobius vermicularis</i> : morphology, life cycle, routes of transmission, pathogenic action. Symptoms, diagnosis, and prevention of ascariasis and enterobiasis.	6. Strobila –
3. General characteristics and classification of arthropods. <i>Sarcoptes scabiei</i> : morphology, life cycle, routes of transmission, pathogenic action. Symptoms, diagnosis, and prevention of scabies.	7. Oncosphere –
4. <i>Pediculus humanus</i> and <i>Pthirus pubis</i> : morphology, life cycle, routes of transmission, pathogenic action, medical significance. Symptoms, diagnosis, and prevention of pediculosis capitis, pediculosis corporis, and pthiriasis.	8. Nymph –
GLOSSARY	
1. Esophageal bulb –	9. Imago –
2. Cephalic alae –	10. Scolex –
3. Geohelminths –	11. Proglottid –

Task 3. Make a diagnosis in the following cases.	Case № 5. A woman found white helminths in the pants of her child and deliv-
Case № 1. During endoscopic examination of the duodenum, a small yellowish helminth measuring 1 cm in length was found. What is the species of the parasite?	ered them to the laboratory. The helminths are up to 1 cm long. Identify the parasite.
Case № 2. A 45-year-old patient was admitted to a neurological department of a hospital complaining of frequent headaches and seizures. 5 years ago the patient had taeniasis. What parasitic disease can be supposed?	Case No 6. During the regular medical examination of kindergarten staff, eggs were found in stool samples of one of the kindergarteners. The eggs were $50-60 \times 26-30 \ \mu m$ in size, colorless, oval, and slightly flattened on one side. What disease should be supposed?
Case № 3. Proglottids of a tapeworm were delivered to the laboratory. Microscopy reveals 7 to 12 lateral branches of the uterus on each side. Identify the parasite.	Case № 7. A patient has itching between the fingers, wrists, and lower part of the abdomen. The affected area has a pimple-like skin rash. What parasitic disease can be supposed?
	Case № 8. A 9-year-old boy complains of severe itching in the scalp. Examination of his head revealed coarsening and pigmentation of the skin. What disease should the boy be tested for?
Case № 4. A 40-year-old man with symptoms of intestinal obstruction was hospitalized. During surgery, 9 white-pink worms, 22–38 cm long were found in the intestine. Identify the parasite.	
	Teacher's signature «»20

LITERATURE 1. Bekish, O.-Y. L. Medical biology : textbook for student of higher educational establishments / O.-Y. L. Bekish. Vitebsk : VSMU Press, 2003. 346 p. 2. Медицинская генетика и паразитология для студентов, обучающихся по специальности «Лечебное дело» = Medical Genetics and Parasitology for students studying in the specialty «General Medicine» : учеб.-метод. пособие / В. Э. Бутвиловский [и др.]. Минск : БГМУ, 2018. 220 с. 3. Медииинская биология для иностранных студентов 1-го года обучения = *Medical* biology for international students 1^{st} year : курс лекций / В. Э. Бутвиловский [и др.]. 3-е изд., испр. и перераб. Минск : БГМУ, 2018. 68 c. 4. Бутвиловский, В. Э. Медицинская биология для иностранных студентов, обучающихся по специальности «Лечебное дело» = Medical biology for international students studying «General medicine» : учеб.-метод. пособие / В. Э. Бутвиловский, В. В. Григорович, А. В. Бутвиловский. Минск : БГМУ, 2016. 224 с. 5. Медицинская биология и общая генетика : терминологический словарь для иностранных студентов / В. Э. Бутвиловский [и др.]. Минск : БГМУ, 2007. 55 с. 6. Медицинская биология и общая генетика : тесты / В. Э. Бутвиловский [и др.]. Минск : БГМУ, 2006. 228 с. 7. Медицинская биология и общая генетика : сб. задач / В. Э. Бутвиловский [и др.]. 2-е изд. Минск : БГМУ, 2010. 264 с. 8. Медицинская биология и общая генетика : учеб. / Р. Г. Заяц [и др.]. 2-е изд., испр. Минск : Выш. школа, 2012. 496 с. 9. Частная паразитология : учеб.-метод. пособие / В. Э. Бутвиловский [и др.]. Минск : БГМУ, 2007. 107 с.