В. Э. БУТВИЛОВСКИЙ, В. В. ДАВЫДОВ, В. В. ГРИГОРОВИЧ

МЕДИЦИНСКАЯ БИОЛОГИЯ

Практикум для иностранных студентов, обучающихся по специальности «Стоматология»

Студента I к	хурса	группы	
	(ΦΝΟ)		

Минск БГМУ 2024

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА БИОЛОГИИ

В. Э. БУТВИЛОВСКИЙ, В. В. ДАВЫДОВ, В. В. ГРИГОРОВИЧ

МЕДИЦИНСКАЯ БИОЛОГИЯ

Практикум для иностранных студентов, обучающихся по специальности «Стоматология»

2-е издание, переработанное

Минск БГМУ 2024

УДК 57:61(076.5)(075.8) ББК 28.70я73 Б93

Рекомендовано Научно-методическим советом университета в качестве практикума 21.02.2024 г., протокол № 14

Рецензенты: канд. биол. наук, доц. А. В. Колб; каф. биоорганической химии

Бутвиловский, В. Э.

Б93 Медицинская биология : практикум для иностранных студентов, обучающихся по специальности «Стоматология» / В. Э. Бутвиловский, В. В. Давыдов, В. В. Григорович. — 2-е изд., перераб. — Минск : БГМУ, 2024. — 96 с.

ISBN 978-985-21-1561-2.

Включены контрольные вопросы 19 тем практических занятий; термины и понятия; задачи; контуры рисунков изучаемых препаратов; экзаменационные вопросы. Первое издание вышло в 2023 году. В данном издании переработаны и дополнены контрольные вопросы, задания и задачи.

Предназначен для студентов 1-го курса медицинского факультета иностранных учащихся, обучающихся по специальности «Стоматология».

УДК 57:61(076.5)(075.8) ББК 28.70я73

ISBN 978-985-21-1561-2 © Бутвиловский В. Э., Давыдов В. В., Григорович В. В., 2024 © УО «Белорусский государственный медицинский университет», 2024

УЧЕБНО-УЧЕТНАЯ КАРТА

Студента	курса	гр.	 ФИО)
<i></i>	. 1		 ,

№ занятия	Тема практического занятия	Итоговая аттестация
1.	Медицинская биология как наука, ее роль в подготовке врача. Предмет, задачи и методы цитологии	1. НИРС
2.	Структурно-функциональная организация клетки. Организация потока вещества и энергии в клетке	
3.	Структурная организация генома	
4.	Клеточный цикл	
5.	Поток генетической информации в клетке	
6.	Регуляция экспрессии генов у прокариот и эукариот	
7.	Геномика. Анализ генетического материала	2. УИРС
8.	Генетическая инженерия	
9.	Закономерности наследования признаков. Взаимодействие генов	
10.	Сцепление генов. Биология и генетика пола	
11.	Изменчивость. Мутагенез. Канцерогенез	
12.	Генетика популяций	
13.	Генетика человека	
14.	Итоговое занятие по молекулярной биологии и генетике	
15.	Размножение организмов	Допущен
16.	Генетические основы онтогенеза	к итоговой аттестации:
17.	Основы общей паразитологии	<u>«»202_</u> г.
18.	Основы частной паразитологии (часть 1)	
19.	Основы частной паразитологии (часть 2)	(подпись преподавателя)

КРИТЕРИИ ОЦЕНКИ РЕЗУЛЬТАТОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ ОБУЧАЮЩИХСЯ В БГМУ ПО ДЕСЯТИБАЛЛЬНОЙ ШКАЛЕ

10 (десять) баллов, зачтено:

систематизированные, глубокие и полные знания по всем разделам учебной программы по учебной дисциплине, а также по основным вопросам, выходящим за ее пределы:

точное использование научной терминологии (в том числе на иностранном языке), грамотное, логически правильное изложение ответа на вопросы;

безупречное владение инструментарием учебной дисциплины, умение эффективно использовать его в постановке и решении научных и профессиональных задач;

выраженная способность самостоятельно и творчески решать сложные проблемы в нестандартной ситуации;

полное и глубокое усвоение основной, и дополнительной литературы, по изучаемой учебной дисциплине;

умение свободно ориентироваться в теориях, концепциях и направлениях по изучаемой учебной дисциплине и давать им аналитическую оценку;

творческая самостоятельная работа на практических, лабораторных занятиях, активное творческое участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

9 (девять) баллов, зачтено:

систематизированные, глубокие и полные знания по всем разделам учебной программы по учебной дисциплине;

точное использование научной терминологии (в том числе на иностранном языке), грамотное, логически правильное изложение ответа на вопросы;

владение инструментарием учебной дисциплины, умение эффективно его использовать в постановке и решении научных и профессиональных задач;

способность самостоятельно и творчески решать сложные проблемы в нестандартной ситуации в рамках учебной программы;

полное усвоение основной и дополнительной литературы, рекомендованной учебной программой по учебной дисциплине;

умение ориентироваться в теориях, концепциях и направлениях по изучаемой учебной дисциплине и давать им аналитическую оценку;

систематическая, активная самостоятельная работа на практических, лабораторных занятиях, творческое участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

8 (восемь) баллов, зачтено:

систематизированные, глубокие и полные знания по всем разделам учебной программы по учебной дисциплине;

использование научной терминологии (в том числе на иностранном языке), грамотное, логически правильное изложение ответа на вопросы, умение делать обоснованные выводы и обобщения;

владение инструментарием учебной дисциплины (методами комплексного анализа, техникой информационных технологий), умение его использовать в решении научных и профессиональных задач;

способность самостоятельно решать сложные проблемы в рамках учебной программы по учебной дисциплине:

усвоение основной и дополнительной литературы, рекомендованной учебной программой по учебной дисциплине;

умение ориентироваться в теориях, концепциях и направлениях по изучаемой учебной дисциплине и давать им аналитическую оценку;

активная самостоятельная работа на практических, лабораторных занятиях, систематическое участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

7 (семь) баллов, зачтено:

систематизированные, глубокие и полные знания по всем разделам учебной программы по учебной дисциплине;

использование научной терминологии (в том числе на иностранном языке), грамотное, логически правильное изложение ответа на вопросы, умение делать обоснованные выводы и обобщения;

владение инструментарием учебной дисциплины, умение его использовать в постановке и решении научных и профессиональных задач;

свободное владение типовыми решениями в рамках учебной программы по учебной дисциплине;

усвоение основной и дополнительной литературы, рекомендованной учебной программой по учебной дисциплине;

умение ориентироваться в основных теориях, концепциях и направлениях по изучаемой учебной дисциплине и давать им аналитическую оценку;

самостоятельная работа на практических, лабораторных занятиях, участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

6 (шесть) баллов, зачтено:

достаточно полные и систематизированные знания в объеме учебной программы по учебной дисциплине;

использование необходимой научной терминологии, грамотное, логически правильное изложение ответа на вопросы, умение делать обобщения и обоснованные выводы;

владение инструментарием учебной дисциплины, умение его использовать в решении учебных и профессиональных задач;

способность самостоятельно применять типовые решения в рамках учебной программы по учебной дисциплине;

усвоение основной литературы, рекомендованной учебной программой;

умение ориентироваться в базовых теориях, концепциях и направлениях по изучаемой дисциплине и давать им сравнительную оценку;

активная самостоятельная работа на практических, лабораторных занятиях, периодическое участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

5 (пять) баллов, зачтено:

достаточные знания в объеме учебной программы по учебной дисциплине; использование научной терминологии, грамотное, логически правильное изложение ответа на вопросы, умение делать выводы;

владение инструментарием учебной дисциплины, умение его использовать в решении учебных и профессиональных задач;

способность самостоятельно применять типовые решения в рамках учебной программы по учебной дисциплине;

усвоение основной литературы, рекомендованной учебной программой;

умение ориентироваться в базовых теориях, концепциях и направлениях по изучаемой учебной дисциплине и давать им сравнительную оценку;

самостоятельная работа на практических занятиях, фрагментарное участие в групповых обсуждениях, достаточный уровень культуры исполнения заданий.

4 (четыре) балла, зачтено:

достаточный объем знаний в рамках образовательного стандарта высшего образования;

усвоение основной литературы, рекомендованной учебной программой;

использование научной терминологии, логическое изложение ответа на вопросы, умение делать выводы без существенных ошибок;

владение инструментарием учебной дисциплины, умение его использовать в решении стандартных (типовых) задач;

умение под руководством преподавателя решать стандартные (типовые) задачи;

умение ориентироваться в основных теориях, концепциях и направлениях по изучаемой учебной дисциплине и давать им оценку;

работа под руководством преподавателя на практических, лабораторных занятиях, допустимый уровень культуры исполнения заданий.

3 (три) балла, не зачтено:

недостаточно полный объем знаний в рамках образовательного стандарта высшего образования;

знание части основной литературы, рекомендованной учебной программой по учебной дисциплине;

использование научной терминологии, изложение ответа на вопросы с существенными, логическими ошибками;

слабое владение инструментарием учебной дисциплины, некомпетентность в решении стандартных (типовых) задач;

неумение ориентироваться в основных теориях, концепциях и направлениях изучаемой учебной дисциплины;

пассивность на практических и лабораторных занятиях, низкий уровень культуры исполнения заданий.

2 (два) балла, не зачтено:

фрагментарные знания в рамках образовательного стандарта высшего образования;

знания отдельных литературных источников, рекомендованных учебной программой по учебной дисциплине;

неумение использовать научную терминологию учебной дисциплины, наличие в ответе грубых, логических ошибок;

пассивность на практических и лабораторных занятиях, низкий уровень культуры исполнения заданий.

1 (один) балл, не зачтено:

отсутствие знаний и (компетенций) в рамках образовательного стандарта высшего образования, отказ от ответа, неявка на аттестацию без уважительной причины.

Постановление Министерства образования Республики Беларусь 29.05.2012 № 53 «Правила проведения аттестации студентов, курсантов, слушателей при освоении содержания образовательных программ высшего образования».

Ванятие № 1.	Тема: МЕДИЦИНСКАЯ БИОЛОГИЯ КАК НАУКА, ЕЁ РОЛЬ В ПОДГОТОВКЕ ВРАЧА.
	ПРЕДМЕТ, ЗАДАЧИ И МЕТОДЫ ЦИТОЛОГИИ

	<u></u> »	202	Γ.

Цель занятия: изучить задачи биологии в подготовке врача, особенности человека как биологического и социального существа; ознакомиться с методами изучения клетки.

КОНТРОЛЬНЫЕ ВОПРОСЫ

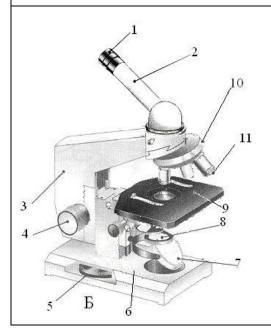
- **1.** Сущность жизни, роль белков и нуклеиновых кислот в организации живых систем.
- 2. Уровни организации живой материи.
- 3. Роль биологии в системе медицинского образования.
- 4. Человек как биологическое и социальное существо.
- 5. Клеточная теория.

6. Эукариоты —

- **6.** Предмет, задачи и методы цитологии (световая, электронная, люминесцентная микроскопия, гистохимический и иммуногистохимический, дифференциальное центрифугирование, авторадиография, морфометрия и др.)
- **7.** Метод световой микроскопии. Устройство светового микроскопа. Правила работы с микроскопом.
- 8. Вирусы. Прокариоты и эукариоты.

OCHODILLE	термины и	плиатиа
OCHOBHSIR	твимины и	понятия

Вирион —
 Жизнь —
 Прокариоты —
 Разрешающая способность микроскопа —
 Цитология —


ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Основные задачи цитологии изучение: 1) способов передачи генетической информации, 2) строения тканей, 3) строения и функций ядра клетки, 4) деления клеток, 5) функций биологической мембраны и органелл: а) все перечисленные; б) 1, 3, 4, 5; в) 3, 4, 5; г) 2, 3, д) 3, 4.
- **2. Методы исследования в цитологии:** а) световая и электронная микроскопия и цитогенетический; б) авторадиография и дифференциальное центрифугирование; в) цитогенетический и микрохирургия; г) генеалогический и цитохимический; д) рентгеноструктурный анализ и близнецовый.
- **3.** Выделить отдельные компоненты клетки позволяют методы: а) световой и электронной микроскопии; б) гистохимический и биохимический; в) генеалогический и гибридологический; г) дифференциального центрифугирования; д) рентгеноструктурного анализа и авторадиографии.
- **4. Признаки отряда Приматы у человека:** а) наличие ногтей; б) бинокулярное зрение и наличие плаценты; в) волосяной покров; г) противопоставление большого пальца руки остальным; д) рука хватательного типа и дифференцированные зубы.
- **5.** Видовые признаки Человека разумного: а) высокая степень развития головного мозга; б) наличие мышления и сознания, прямохождение; в) наличие волосяного покрова и ногтей; г) рука хватательного типа и прямохождение; д) высокая степень противопоставления большого пальца руки.
- **6. Человек как биологическое существо характеризуется:** а) наследственностью и изменчивостью; б) общественным образом жизни; в) борьбой за существование; г) обменом веществ, мышлением и сознанием; д) наличием второй сигнальной системы.
- **7. Человек как социальное существо характеризуется:** а) наследственностью и изменчивостью, мышлением; б) наличием второй сигнальной системы и общественным характером труда; в) обменом веществ, ростом и развитием, способностью к труду; г) ростом и развитием, способностью к труду; д) общественным образом жизни и сознанием.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Свойство изменять параметры собственной жизнедеятельности в соответствии с изменением условий окружающей среды называется ...
- **2.** Химический состав клеток и локализацию в них различных химических веществ изучают ... методом.
- **3.** Тончайшие структуры клеток вплоть до макромолекул изучают методом ... микроскопии.
- **4.** Химический состав клеток и химические реакции, протекающие в них, изучают ... методом.
- **5.** Выделять отдельные компоненты и структуры клеток для последующего изучения позволяет метод ... центрифугирования.
- 6. Человек разумный относится к семейству ...

- *Рис. 1.* Устройство светового микроскопа БИОЛАМ:
- *1* окуляр;
- 2 тубус;
- 3 тубусодержатель;
- 4 макрометрический винт;
- 5 микрометрический винт;
- *6* подставка;
- *7* зеркало;
- 8 конденсор, ирисовая диафрагма и светофильтр;
- 9 предметный столик;
- 10 револьверное устройство;
- *11* объектив

ПРАВИЛА РАБОТЫ С МИКРОСКОПОМ НА МАЛОМ УВЕЛИЧЕНИИ (7 × 8)

- 1. На рабочем месте микроскоп устанавливают колонкой к себе, а зеркалом (его плоской стороной) к источнику света; примерно на ширину ладони от края стола.
- 2. Вращая макрометрический винт, устанавливают объективы на 2–3 см от поверхности предметного столика.
- 3. Проверяют установку объектива *малого увеличения* $(8\times)$ «на щелчок»: он должен быть зафиксированным в положении напротив отверстия в предметном столике.
- 4. Перемещают конденсор в среднее положение и полностью открывают диафрагму.
- 5. Глядя в окуляр, направляют поверхность зеркала на источник света, чтобы осветить поле зрения. При правильно настроенном микроскопе поле зрения выглядит как равномерно и ярко светящийся круг.
- 6. Помещают микропрепарат на предметный столик *покровным стеклом вверх* (!).
- 7. Глядя со стороны (!), макрометрическим винтом опускают объектив до расстояния 0,5 см от поверхности микропрепарата.
- 8. Глядя в окуляр, и медленно вращая *макрометрический винт «на себя»* (!), получают изображение объекта; вращая в ту и другую стороны макровинт, добиваются его четкого изображения.
- 9. Изучают объект. Перемещение микропрепарата под объективом производят с помощью координатных винтов столика.

Примечания

- ✓ Покровное стекло микропрепарата часто загрязняется отпечатками пальцев и пылью, поэтому предварительно его рекомендуется протереть чистой мягкой тряпочкой.
- ✓ Фокусное расстояние объектива 8x составляет *примерно* 1 cm. Если вы его «прошли», то п.п. 7 и 8 придется повторить.
- ✓ Если объект настолько мал, что его практически не видно, то сфокусировать оптику можно *на край покровного стекла*. Получив четкое изображение края стекла, далее перемещаются на рабочее поле в поисках объекта.

ПРАВИЛА РАБОТЫ С МИКРОСКОПОМ НА БОЛЬШОМ УВЕЛИЧЕНИИ (7 × 40)

- 1. Получают четкое изображение объекта на малом увеличении (см. выше).
- 2. Интересующий участок микропрепарата *центрируют* передвигают в центр поля зрения.
- 3. Поворотом револьвера переводят *до щелчка* объектив *большого увеличения* $(40\times)$, устанавливая его напротив микропрепарата.
- 4. Переводят конденсор в верхнее положение. Глядя в окуляр, слегка поворачивают макрометрический винт «на себя» (!) до появления изображения.
- 5. Для получения более четкого изображения используют микрометрический винт, вращая его в ту или другую сторону не более чем на полоборота.
- 6. Изучают интересующий участок микропрепарата.

Примечания

- \checkmark Фокусное расстояние объектива $40 \times$ составляет примерно 0.1–0.2 см, поэтому макрометрический винт необходимо вращать *очень медленно и плавно*. При необходимости повторной фокусировки, эту операцию проводят в такой последовательности:
- *глядя сбоку*, макрометрическим винтом *аккуратно* опускают объектив большого увеличения почти до касания поверхности покровного стекла, повторяют действия п.п. 5 и 6.
- ✓ Если объект плохо контрастируется, то для получения четкого изображения нужно прикрыть диафрагму в конденсоре или слегка его опустить.

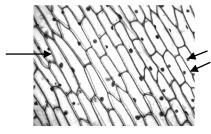
ПРАВИЛА РАБОТЫ С ИММЕРСИОННЫМ ОБЪЕКТИВОМ (7 × 90)

- 1. На большом увеличении центрируют интересующий участок микропрепарата. При этом конденсор находится в крайнем верхнем положении, а зеркало направлено на источник света вогнутой стороной.
- 2. Поворотом револьвера смещают объектив большого увеличение в свободное (нефиксированное) состояние.
- 3. На покровное стекло микропрепарата наносят каплю иммерсионного масла.
- 4. Фиксируют иммерсионный объектив над объектом.
- 5. Наблюдая в окуляр, с помощью макро- и микрометрических винтов добиваются четкого изображения объекта.

ПРАКТИЧЕСКАЯ РАБОТА

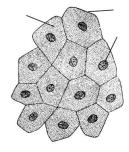
Задание 1. Найдите соответствие между методом цитологии и его возможностями.

- 1. Удаление органелл из одной клетки и пересаживание в другую клетку
- 2. Позволяет изучить распределение изучаемого вещества в исследуемом образце
- 3. Разделение органелл клетки, выделение из клетки химических веществ с помощью центрифуги
- 4. Исследование компонентов клетки с помощью микроскопа, действие которого основано на прохождение света через объект
- 5. Изучение химического состава клеток и протекающих в них реакций
- 6. Установление местонахождения макромолекул цитоплазмы с помощью специальных красителей, либо антител с красителями
- 7. Получение информации о строении биологических молекул в их кристалле
- 8. Анализ биологических объектов за счет их способности к флуоресценции при облучении светом
- 9. Выращивание отдельных клеток многоклеточных организмов на питательных средах в стерильных условиях
- 10. Исследование ультраструктур клетки с помощью микроскопа, действие которого основано на прохождении пучка электронов
- 11. Получение объемного изображения исследуемого объекта


- А. Световая микроскопия
- Б. Просвечивающая электронная микроскопия
- В. Дифференциальное центрифугирование
- Г. Гистохимия
- и иммуногистохимия Д. Рентгеноструктур-
- ный анализ (рентгеновская кристаллография)
- Е. Культура клеток
- Ж. Микрургия
- 3. Сканирующая электронная микроскопия
- И. Биохимический
- К. Авторадиография
- Л. Флуоресцентная микроскопия

1	2	3	4	5	6	7	8	9	10	11

Задание 2. Изучите микропрепараты, сделайте обозначения.


Puc. 2. Участок крыла мухи (7×8)

Puc. 3. Клетки кожицы лука (7×8):1 — оболочка; 2 — ядро;3 — цитоплазма

 $Puc.\ 4$. Кровь лягушки (7×40): 1 — оболочка; 2 — цитоплазма; 3 — ядро

 $Puc. \ 5$. Эпителий кожи лягушки (7×40): 1 — оболочка; 2 — цитоплазма; 3 — ядро

Рис. 6. Чешуя крыла бабочки (7×40)

Задание 3. Сделайте подписи к рисункам.

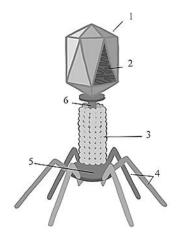


Рис. 7. Схема строения бактериофага:

1 — 2 — 3 — 4 — 5 —

6—

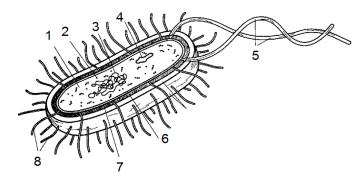


Рис. 8. Схема строения бактерии:

_ 5 —

2 — 6 —

7 -

8 -

Задание 4. Заполните таблицу «Сравнительная характеристика прокариот и эукариот».

Признак	Прокариоты	Эукариоты
Представители		
Наличие ядра (+/–)		
Наличие мембранных органелл (+/–)		
Наличие цитоплазмы (+/–)		
Особенности рибосом		
Наличие плазмалеммы (+/-)		
Особенности цитоскелета		
Особенности строения жгутиков		
Наличие и состав клеточной стенки		
Наличие слизистой капсулы (+/-)		
Многоклеточность		
Типичные размеры		
Особенности метаболизма		
Структурная организация ДНК		
Плоидность		
Способность к фагоцитозу (+/-)		
Основной тип деления клетки		
Половое размножение (+/-)		
		Подпись преподавателя

Занятие № 2. Тема: СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ КЛЕТКИ. ОРГАНИЗАЦИЯ ПОТОКА ВЕЩЕСТВА И ЭНЕРГИИ В КЛЕТКЕ

‹	>>	202	Γ.

Цель занятия: изучить отличительные признаки про- и эукариотических клеток; анаболическую и катаболическую системы клетки; уметь читать электронограммы.

КОНТРОЛЬНЫЕ ВОПРОСЫ	4. Глиоксисомы —
 Модели элементарной биологической мембраны. Строение, свойства и функции плазмалеммы. Транспорт веществ через мембрану: пассивный транспорт (диффузия, осмос, облегченная диффузия), активный транспорт (ионные каналы, их функции, эндоцитоз, экзоцитоз). Ионные каналы и их функции. 	5. Диктиосома —
 Цитозоль. Цитоскелет: микротрубочки, промежуточные филаменты, микрофиламенты. Внутриклеточный транспорт веществ. Ассимиляция и диссимиляция. Пластический обмен в клетке. Рибосомы. Эндомембранная система клетки (мембрана ядра, ЭПС, КГ, лизосомы, 	6. Диссимиляция —
пероксисомы, эндосомы, везикулы). 7. Характеристика этапов энергетического обмена в клетке. Митохондрии. Ферментные системы митохондрий.	7. Осмос —
8. Болезни человека, обусловленные нарушениями на клеточном уровне (лизосомные и пероксисомные). OCHOBHЫЕ ТЕРМИНЫ И ПОНЯТИЯ	8. Пероксисомы —
1. Ассимиляция —	9. Плазмалемма —
2. Гликокаликс —	10. Цитозоль —
3. Гликолиз —	11. Эндоцитоз —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1.** Свойства элементарной мембраны: а) пластичность; б) непроницаемость и текучесть; в) полупроницаемость; г) эластичность; д) способность самозамыкаться.
- **2.** Транспорт веществ в клетку с затратой энергии АТФ: а) поступление в клетку ионов по градиенту концентрации; б) фагоцитоз; в) пиноцитоз и диффузия; г) осмос и эндоцитоз; д) поступление в клетку веществ против градиента концентрации.
- **3. Органеллы анаболической системы клетки:** а) митохондрии и эндоплазматическая сеть; б) рибосомы и комплекс Гольджи; в) эндоплазматическая сеть; г) лизосомы и пероксисомы; д) глиоксисомы и рибосомы.
- **4. Органеллы катаболической системы клетки:** а) митохондрии; б) рибосомы, глиоксисомы и эндоплазматическая сеть; в) эндоплазматическая сеть и митохондрии; г) комплекс Гольджи и пероксисомы; д) пероксисомы и лизосомы.
- **5. Рибосомы располагаются:** а) на мембранах ЭПС и в гиалоплазме; б) в гиалоплазме и кариоплазме; в) на внутренней ядерной мембране и в хлоропластах; г) на наружной ядерной мембране и в митохондриях; д) в матриксе митохондрий и лизосомах.
- **6. Функции агранулярной ЭПС:** а) синтез белков; б) синтез ДНК и компартментализация; в) синтез жиров и углеводов; г) компартментализация и транспорт веществ; д) образование пероксисом и синтез РНК.
- **7. Функции комплекса Гольджи:** а) сортировка, упаковка и секреция веществ; б) образование комплексных соединений органических веществ и первичных лизосом; в) синтез АТФ, белков и глиоксисом; г) синтез цитоплазматических мембран; д) синтез белков и секреция веществ.
- **8.** Функции митохондрий: а) синтез специфических белков; б) расщепление белков до аминокислот; в) синтез моносахаридов и $AT\Phi$; г) синтез $AM\Phi$; д) расщепление органических соединений до H_2O и CO_2 .
- **9. Анаэробный этап энергетического обмена протекает в:** а) кишечнике; б) цитоплазме и митохондриях; в) цитоплазме и ЭПС; г) цитоплазме клеток; д) комплексе Гольджи и ядре клеток.
- 10. Аэробный этап энергетического обмена протекает в: а) кишечнике;
- б) митохондриях; в) цитоплазме и ЭПС; г) цитоплазме и рибосомах; д) комплексе Гольджи и ядре клеток.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Разделение цитоплазмы мембранами на отсеки называется ...
- 2. Опорно-сократительный комплекс клетки представлен: промежуточными филаментами, микрофиламентами и ...
- 3. Выделение из клетки веществ, заключенных в мембрану, называется ...
- 4. Транспортную систему клетки образуют: ЭПС и ...
- 5. Пероксисомы образуются в ...
- 6. Разрушение лизосомами собственных структур клетки называется ...
- 7. Реакции пластического обмена протекают в ... системе клетки.
- **8.** Органеллы животной клетки, содержащие генетический материал, называются ...
- 9. Расщепление полимеров до мономеров происходит на ... этапе энергетического обмена.
- 10. Конечным акцептором электронов в дыхательной цепи является ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите рисунок.

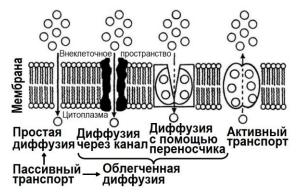
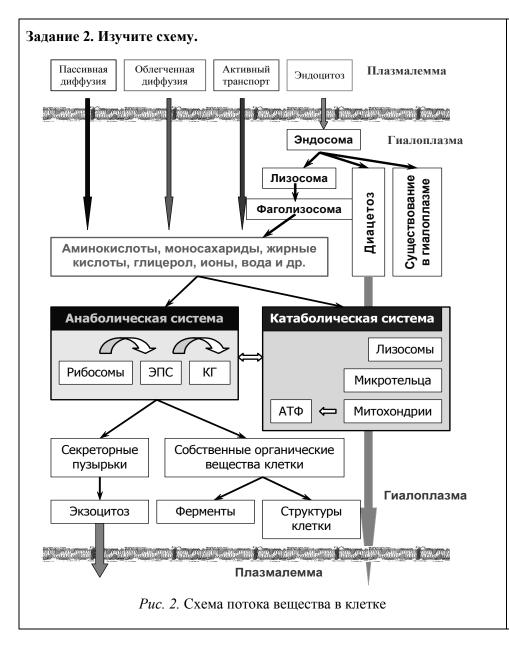
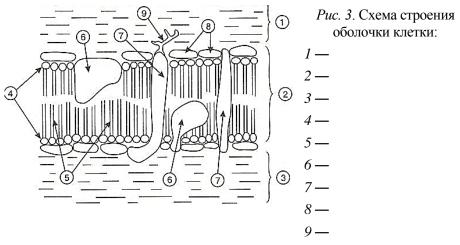




Рис. 1. Типы транспорта веществ через мембрану

Задание 3. Изучите схему, сделайте обозначения.

Задание 4. Обозначьте присутствие или отсутствие указанных в таблице структур у соответствующих органелл знаками «+» или «-».

Структура	эпс	Рибосомы	Комплекс Гольджи	Лизосомы	Мито- хондрии
Мембрана					
Цистерны					
2 мембраны					
Пузырьки					
Кристы					
Гидролазы					
АТФ-сомы					
Субъединицы					

Залание 5. Решите залачи.

Задача № 1. Участвуют ли митохондрии в биосинтезе белков?

Задача № 2. Взрослый человек не растет. Обязательно ли он должен получать с пищей белки или их можно заменить равноценным по калорийности количеством углеводов и жиров?

Задача № 3. Какие свойства мембраны объясняют ее участие в эндоцитозе?

Задача № 4. При беге со средней скоростью за 1 минуту мышцы ног расходуют примерно 24 кДж энергии. Определите, сколько потребуется граммов глюкозы при полном ее окислении для энергообеспечения 20 минут бега (М глюкозы = 180 г/Моль). В мышцах утилизация 1Моль глюкозы позволяет создать 30 Моль АТФ; при окислении 1Моль АТФ до АДФ высвобождается 30,5 кДж энергии.

Задача № 5. При некоторых заболеваниях в клетке накапливаются нерасщепленные вещества. С нарушением функций каких органелл это связано?

Задание 6. Изучите электронограммы, сделайте обозначения.

Puc. 4. Электронограмма элементарной мембраны:

1 — белковый слой;

2 — липидный слой

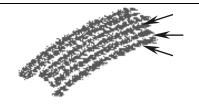
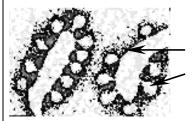
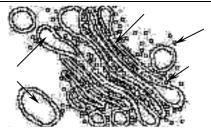




Рис. 5. Электронограмма гранулярной эндоплазматической сети:

1 — мембрана; 2 — канал; *3* — рибосомы

Puc. 6. АТФ-синтаза на кристах митохондрий:
 1 — внутренняя мембрана;
 2 — АТФ-синтаза

Puc. 7. Электронограмма комплекса Гольджи:

1 — мембрана; 2 — канал; 3 — цистерна;
 4 — лизосома; 5 — пузырек

Рис. 8. Электронограмма митохондрии: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — матрикс; 4 — кристы; 5 — рибосомы

Подпись преподавателя

Занятие № 3. Тема: СТРУКТУРНАЯ ОРГАНИЗАЦИЯ ГЕНОМА

« »	202	Γ.
-----	-----	----

Цель занятия: изучить строение ядра клетки; хромосом, кариотип человека, уровни упаковки генетического материала.

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1.** К группе В по Денверской классификации относятся хромосомы человека: а) большие субметацентрические, ЦИ 24-30; б) малые субметацентрические, ЦИ 24-30; в) малые метацентрические, ЦИ 27-35; г) большие метацентрические, ЦИ 34; д) малые акроцентрические, спутничные.
- **2.** Структурные компоненты интерфазного ядра: а) кариолемма и строма; б) кариолимфа и граны, ядрышки; в) кариолимфа, хроматин и ядрышки; г) хроматин и тилакоиды; д) строма, кариолемма и хроматин.
- **3. Кариотип** это: а) набор хромосом соматической клетки; б) любой набор хромосом; в) диплоидный набор хромосом организма; г) совокупность генов в диплоидном наборе хромосом; д) набор генов половой клетки.
- **4.** Особенности генома митохондрий человека: а) транскрибируются обе цепочки, содержит гены цитохрома b; б) кольцевая молекула ДНК, содержащая около 16 500 пар нуклеотидов; в) кольцевая молекула ДНК, содержащая около 50 000 пар нуклеотидов, входят гены рРНК; г) содержит информацию о 22 различных тРНК, кольцевая молекула ДНК содержит 160 500 пар нуклеотидов; д) транскрибируется одна цепочка, входят гены рРНК.
- **5. Мономером молекулы ДНК является:** а) аминокислота; б) ген; в) кодон; г) нуклеотид; д) пара нуклеотидов.
- **6. Аденин комплементарен:** а) аденину и тимину; б) гуанину и урацилу; в) цитозину и тимину; г) тимину и урацилу; д) гуанину и цитозину.
- 7. Согласно одному из правил Чаргаффа, сумма $A + \Gamma$ равна сумме: a) A + T; б) L + T; в) $\Gamma + T$; г) A + L; д) $\Gamma + L$.
- **8.** Для нуклеосомного уровня упаковки генетического материала характерно: а) укорочение нити ДНК в 20 раз; б) образование нитью ДНК 2 витков вокруг белкового октамера; в) петли и изгибы нуклеосомной нити; г) диаметр нуклеосомной нити около 25 нм; д) укорочение нити ДНК в 5–7 раз.
- **9.** Уровни организации генетического материала: а) генный и геномный; б) хромосомный, клеточный и геномный; в) геномный и субклеточный; г) клеточный, организменный и генный; д) организменный и популяционный.
- **10. Идиограмма это:** а) несистематизированный кариотип; б) систематизированный кариотип; в) порядок расположения генов в хромосоме; г) порядок расположения нуклеотидов в гене; д) расположение хромосом кариотипа по мере убывания их величины.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Ядерную пластинку образуют преимущественно белки ...
- **2.** В области первичной перетяжки метафазной хромосомы располагается ..., к которому прикрепляются нити веретена деления.
- **3.** Участок молекулы ДНК в области вторичной перетяжки спутничных хромосом называется ядрышковый ...
- 4. В состав хроматина входят: гистоновые и негистоновые белки и ...
- 5. Оболочка ядра клетки называется ...
- **6.** Запись локализации гена, который находится в первой полосе второго района длинного плеча 17-й хромосомы: ...
- 7. Пиримидиновые основания ДНК ... и ...
- **8.** Пуриновые основания ДНК ... и ...
- **9.** На первом уровне упаковки генетического материала длина молекулы ДНК уменьшается в ... раз.
- **10.** Гистоновый октамер вместе с прикрепленным к нему участком ДНК называется ...
- **11.** Уменьшение длины ДНК в 10–20 раз при упаковке происходит на ... уровне.
- **12.** В результате всех уровней упаковки молекула ДНП укорачивается в ... раз.
- **13.** Отношение (в процентах) длины короткого плеча к длине всей хромосомы это ... индекс.
- 14. Болезнь Лебера обусловлена мутациями генов ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите рисунки, сделайте обозначения.

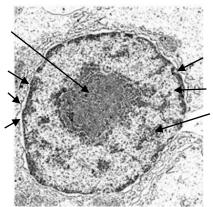
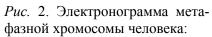


Рис. 1. Электронограмма ядра клетки:

1 — наружная мембрана ядерной оболочки;

2 — внутренняя мембрана;

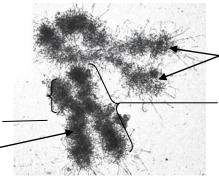

3 — перинуклеарное пространство;

4 — пора;

5 — эухроматин;

6 — гетерохроматин;

7 — ядрышко



1 — плечо;

2 — центромера;

3 — хроматида;

4 — теломеры

Задание 2. Решите задачи.

Задача № 1. В молекуле ДНК на долю цитозиновых нуклеотидов приходится 18 %. Определите процентное содержание других нуклеотидов, входящих в молекулу ДНК.

Задача № 2. Сколько содержится адениновых, тиминовых и гуаниновых нуклеотидов во фрагменте молекулы ДНК, если в нем обнаружено 950 цитозиновых нуклеотидов, составляющих 20 % от общего количества нуклеотидов в этом фрагменте ДНК?

Задача № 3. В одной из цепей ДНК содержится 16 % аденина, 28 % гуанина и 34 % тимина. Определите (в %) суммарное содержание пиримидиновых азотистых оснований в комплементарной цепи ДНК.

Задача № 4. Участок цепи ДНК содержит 1200 нуклеотидов, из которых 25 % приходится на аденин, 10 % — на тимин, 30 % — на гуанин. Сколько гуаниновых нуклеотидов будет содержать комплементарная цепь ДНК?

Задача № 5. Фрагмент молекулы ДНК (двойная спираль) имеет длину 51 нм и содержит 46 цитидиловых нуклеотидов. Рассчитайте процентное содержание адениловых нуклеотидов, входящих в состав данного фрагмента ДНК, учитывая, что один виток двойной спирали ДНК содержит 10 пар нуклеотидов и имеет длину 3,4 нм.

Задание 3. Изучите рисунок.

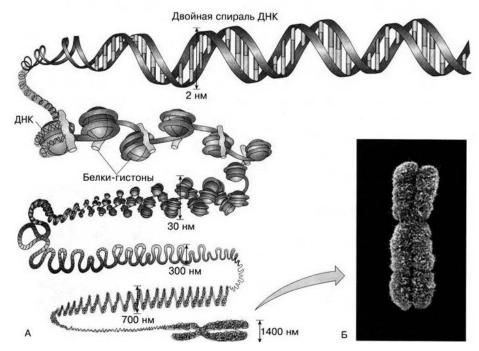


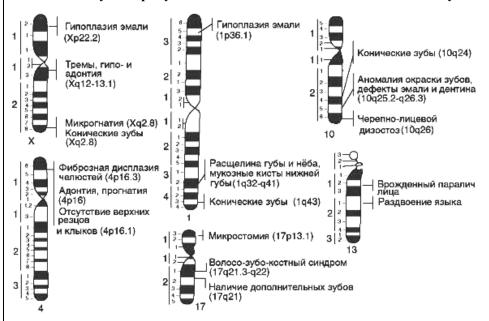
Рис. 3. Конденсация ДНК с образованием метафазной хромосомы

Рис. 4. Кариотип человека

Группы и пары хромосом	ци	Размеры и типы хромосом
A (1-3)		
B (4–5)		
C (6–12, X)		
D (13–15)		
E (16–18)		
F (19–20)		
G (21–22, Y)		

Задание 5. Установите соответствие между названием групп и пар хромосом согласно Денверской классификации.

А) группа С	1. Хромосомы 1–3 пары
Б) группа F	2. Хромосомы 6–12 пары, Х-хромосома
В) группа D	3. Хромосомы 13–15 пары
Г) группа А	4. Хромосомы 19–20 пары
Д) группа G	5. Хромосомы 21–22 пары, Ү-хромосома


A	Б	В	Γ	Д

Задание 6. Установите соответствие между уровнем организации наследственного материала и явлением, которое он допускает.

	1. Дискретное наследование признаков
А) Генный	2. Кроссинговер
	3. Межаллельное взаимодействие генов
	4. Хромосомные мутации
Б) Хромосомный	5. Мутации генов
	6. Геномные мутации
	7. Сцепление генов
В) Геномный	8. Внутриаллельное взаимодействие генов
	9. Независимое наследование признаков

A	Б	В		

Задание 7. Изучите рисунок и на его основании заполните таблицу.

 $Puc.\ 4$. Локализация в хромосомах генов, мутации в которых связаны с пороками развития начального отдела пищеварительной системы человека

Патология	№ хро- мосомы	Плечо	Район	Полоса	Субпо- лоса
Гипоплазия эмали					
Конические зубы					

Подпись преподавателя

Занятие № 4. Тема: КЛЕТОЧНЫЙ ЦИКЛ

~	>>	202	Г

Цель занятия: изучить клеточный цикл и сущность интерфазы, способы деления клеток; уметь делать запись содержания генетического материала в разные периоды интерфазы и на разных стадиях митоза и мейоза.

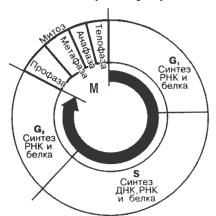
КОНТРОЛЬНЫЕ ВОПРОСЫ	7. Некроз —
 Клеточный цикл. Интерфаза. Полуконсервативный механизм репликации ДНК. Репликон. Регуляторы клеточного цикла (циклины и циклинзависимые киназы). Виды и типы деления клеток: митоз, амитоз, эндомитоз. Политения. Бинарное деление прокариот. Митоз: характеристика фаз, распределение генетического материала, биологическое значение. Мейоз как разновидность митоза: характеристика фаз, распределение генетического материала, биологическое значение. Клеточная пролиферация и гибель клеток. Некроз и апоптоз. Каспазы. 	8. Хиазмы — 9. Хроматин — 10. Циклинзависимые киназы —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ
1. Апоптоз —	1. В пресинтетический период интерфазы происходит: а) синтез РНК,
2. Бивалент —	белков и ферментов; б) синтез ДНК, РНК, белков и АТФ; в) синтез АТФ и рост клетки; г) накопление нуклеотидов ДНК, синтез белков ахроматинового веретена; д) синтез белков ахроматинового веретена, ДНК и РНК. 2. В синтетический период интерфазы происходит: а) удвоение пла-
3. Каспаза —	стид и митохондрий; б) синтез ДНК и p-PHK; в) синтез АТФ и белков; г) накопление нуклеотидов ДНК, синтез и-PHK и белков; д) синтез белков ахроматинового веретена и ДНК.
4. Конъюгация хромосом —	3. В постсинтетический период интерфазы происходит: а) синтез ДНК и ферментов; б) синтез ДНК, p-PHK, рост клетки; в) синтез АТФ; г) накопление нуклеотидов ДНК; д) синтез белков ахроматинового веретена.
5. Мейоз —	4. Содержание генетического материала в клетке в пресинтетический период интерфазы: a) lnlchrlc; б) ln2chr2c; в) 2nlchr2c; г) 2n2chr4c; д) lnbiv4chr4c.
6. Митоз —	5. Содержание генетического материала в клетке в конце синтетического периода интерфазы: a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n4chr4c.

- **6. Основные причины митоза:** а) увеличение ядерно-цитоплазменного отношения; б) уменьшение ядерно-цитоплазменного отношения; в) репликация молекулы ДНК и «раневые гормоны»; г) «раневые гормоны» и митогенетические лучи; д) нарушение целостности ядерной оболочки.
- 7. Содержание генетического материала на полюсе клетки в анафазу митоза: a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n4chr4c.
- **8. Мейозом делятся клетки:** а) соматические и стареющие; б) половые и клетки эмбриона; в) гаметоциты; г) клетки опухолей; д) клетки регенерирующих тканей.
- **9.** Последовательность стадий профазы мейоза **I:** а) диакинез, диплотена, пахитена, зиготена, лептотена; б) лептотена, диакинез, диплотена, пахитена, зиготена; в) лептотена, зиготена, диакинез, диплотена, пахитена; г) лептотена, пахитена, пахитена, диплотена, диакинез; д) диплотена, пахитена, зиготена, лептотена, диакинез.
- **10.** В метафазу мейоза I происходит: а) расхождение центриолей к полюсам клетки; б) деспирализация хромосом; в) биваленты располагаются на экваторе клетки; г) конъюгация хромосом; д) кроссинговер.
- **11.** Содержание генетического материала в клетке в профазу мейоза **II:** a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n_{biv}2chr2c.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- **1.** ДНК-полимераза может передвигаться вдоль матричных цепей от ... конца к ... концу.
- 2. Период между двумя митотическими делениями называется ...
- **3.** На стадии диплотены профазы мейоза I биваленты связаны между собой только в участках, называемых ...
- **4.** Конъюгация гомологичных хромосом начинается на стадии ... профазы мейоза I.
- **5.** В метафазе мейоза II в экваториальной плоскости располагаются ...


- **6.** Многократное удвоение числа хроматид без их расхождения приводит к образованию ... хромосом.
- 7. Период между двумя делениями мейоза называется ...
- **8.** Конъюгирующие гомологичные хромосомы образуют структуру, которая называется ...
- 9. Первое деление мейоза называется ...
- 10. Второе деление мейоза называется ...
- **11.** Разновидность митоза, которая приводит к образованию полиплоидных клеток, называется ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Установите соответствие между белками и выполняемыми ими функциями.

А. Каспазы		1. Образуют ядерный поровый комплекс					
Б. Циклины		2. Образу	уют нукл	еосомы			
В. Когезины		3. Фосфорилируют другие белки, регулируя их активность				уя их	
Г. Гистоны		4. Участвуют в процессе гибели клетки путём апоптоза					
Д. Киназы	:	5. Образуют ядерную пластинку					
Е. Конденсины		6. Связывают гомологичные хромосомы					
Ж. Ламины	,	7. Связывают сестринские хроматиды					
3. Нуклеопор	ины	8. Регулируют клеточный цикл					
И. Синаптоне комплекс		9. Участвуют в образовании метафазной хромосомы и образуют её каркас					
АБ	В	Г Д Е Ж З И				И	

Задание 2. Изучите рисунки.

Puc. 1. Схематичное изображение клеточного цикла:

 G_1 — пресинтетический период;

S — синтетический период;

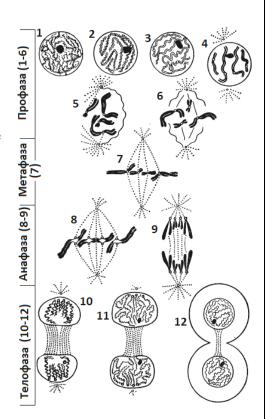
G₂ — постсинтетический период;

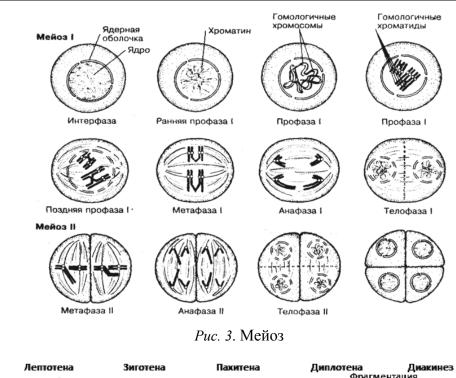
М — митоз

Puc. 2. Схема клетки в различные периоды фаз митоза:

1–4 — профаза;

5–6 — прометафаза;

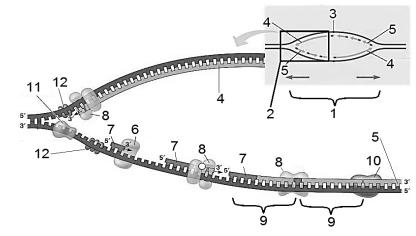

7 — метафаза;


8 — начало анафазы;

9 — анафаза в момент расхождения сестринских хроматид к полюсам;

10, *11* — телофаза;

12 — цитокинез



ена Диакинез Фрагментация ядерной оболочки Ядерная оболочка Хиазмы Синаптонемный Происходит конденсация хроматина в различимые хромосомы формирование комплекс Происхо**д**ит кроссинговер бивалента разрушается, появляются различимые белки синаптонемного комплекса Бивалент, готовый к метафазе інмавих Начинается конъюгация (синапсис)

Рис. 4. Стадии профазы мейоза I

Задание 3. Изучите схему репликации, расшифруйте обозначения.

1 —	7—
2 —	8—
3 —	9 —
4 —	10 —
5—	11 —
6—	12 —

Рис. 5. Репликация ДНК

Задание 4. Укажите функции ферментов репликации.

1. ДНК-полимераза	
2. Праймаза	
3. Хеликаза	
4. Топоизомераза	
5. Лигаза	

Задание 5. Решите задачи.

Задача № 1. Рассмотрим гипотетическую ситуацию, когда клетки **А** и **Б** полностью потеряли способность синтезировать ДНК-полимеразу. Какова теоретическая вероятность передачи этой мутации хотя бы одной из дочерних клеток, если она произошла у клетки **А** в период G_1 , а у клетки **Б** — в период G_2 митотического цикла?

Задача № 2. В клетках **А** и **Б** в интерфазе произошла мутация в одном из генов. Они завершили митотический цикл, но после митоза клетки **А** обе дочерние клетки получили мутантный ген, а после митоза клетки **Б** мутантный ген оказался в одной из дочерних клеток. Чем это можно объяснить?

Задание 6. Впишите в таблицу формулы содержания генетического материала в фазы митотического цикла, фазы митоза и мейоза.

Интерфаза I	Митоз	Мейоз I	Мейоз II
І. Пресинтетический	А. Профаза:	А. Профаза:	А. Профаза:
(G_1) :		• лептотена	
II. Синтетический	Б. Метафаза:		Б. Метафаза:
(S):		• зиготена	
III. Постсинтети-	В. Анафаза:	• пахитена	В. Анафаза:
ческий (G ₂):		• диплотена	
	Г. Телофаза	• диакинез	Г. Телофаза
	(цитокинез):	Б. Метафаза:	(цитокинез):
		D. McTayasa.	, ,
		В. Анафаза:	_
		•	
		Г. Телофаза	
		(цитокинез):	
Подпись прев	подавателя		

Занятие № 5. Тема: ПОТОК ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ В КЛЕТКЕ

11		202	г
~	<i>>></i>	202	Γ.

Цель занятия: изучить первичные функции генов; свойства гена; научиться решать задачи, раскрывающие процессы репликации, транскрипции, трансляции.

контрольные вопросы	6. Трансляция —
 Центральная догма молекулярной биологии. Ген, его свойства и функции. Рибонуклеиновая кислота, ее виды, функции РНК. Генетический код и его свойства. Транскрипция. Транскрипционные факторы. Синтез иРНК у эукариот: первичный транскрипт, процессинг про-иРНК. Рекогниция. Трансляция: инициация, элонгация и терминация. Посттрансляционные изменения белков, фолдинг белков (шапероны). 	7. Транскрипция — 8. Шапероны —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ
1. Альтернативный сплайсинг —	1. РНК содержится: а) в рибосомах и лизосомах; б) хроматине ядра, ядрышке и пероксисомах; в) гиалоплазме, хлоропластах и ядрышках; г) митохондриях, рибосомах и кариолимфе; д) в хлоропластах, гиалоплазме
2. Ген —	и лизосомах и кариолимфе, ду в хлоропластах, тиалоплазме и лизосомах 2. Функции тРНК: а) хранит генетическую информацию; б) транспортирует аминокислоты к рибосоме; в) передает генетическую информацию
3. Генетический код —	дочерним молекулам тРНК; г) катализирует образование пептидных связей; д) переносит генетическую информацию от ДНК к рибосоме. 3. Функции иРНК: а) является хранилищем генетической информации,
4. Протеасома —	передаваемой из поколения в поколение; б) транспортирует аминокислоты к рибосоме; в) передает генетическую информацию дочерним молекулам иРНК; г) определяет порядок аминокислот в молекуле полипептида; д) переносит генетическую информацию от ДНК к рибосоме.
5. Ревертаза —	4. Кодоны-терминаторы в иРНК: а) УАА и УГА; б) УАЦ, УАА и АЦА; в) УАГ; г) УГА, УГЦ и УЦА; д) УГЦ и УАГ. 5. Инициирующий кодон в иРНК: а) АГУ; б) УАЦ; в) УАГ; г) АУГ; д) АУА.

- **6. Фермент РНК-полимераза:** а) расщепляет молекулу ДНК на две цепочки; б) синтезирует дочернюю цепочку ДНК при репликации; в) синтезирует цепочку иРНК при транскрипции; г) сшивает нуклеотиды ДНК при репликации или репарации; д) вырезает поврежденные участки ДНК при репарации.
- **7.** Свойства гена: а) стабильность и лабильность; б) целостность и плейотропность; в) целостность, специфичность и однозначность; г) дискретность и неспецифичность; д) специфичность, триплетность и универсальность.
- **8.** Специфичность это свойство гена: а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **9.** Плейотропия это свойство гена: а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **10. Лабильность это свойство гена:** а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **11.** Экспрессивность это свойство гена: а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **12. Пенетрантность это свойство гена:** а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- **1.** РНК-полимераза может передвигаться вдоль матричных цепей от ... конца к ... концу.
- 2. Процесс узнавания тРНК своей аминокислоты это ...
- **3.** Во время инициации при трансляции в пептидильном центре рибосомы находится стартовый триплет иРНК ...
- **4.** Процесс, который начинается образованием первой пептидной связи и заканчивается присоединением последней аминокислоты к молекуле полипептида называется ...
- 5. Антибиотики являются ... биосинтеза белка.
- **6.** Свойство генетического кода, заключающееся в том, что он одинаков у всех живых существ, называется ...
- **7.** Свойство генетического кода, заключающееся в том, что несколько разных кодонов могут кодировать одну и ту же аминокислоту, называется ...
- **8.** Направление считывания генетической информации от 5'- к 3'-концу матрицы является свойством генетического кода, которое называется ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите рисунок.

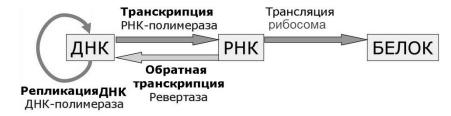
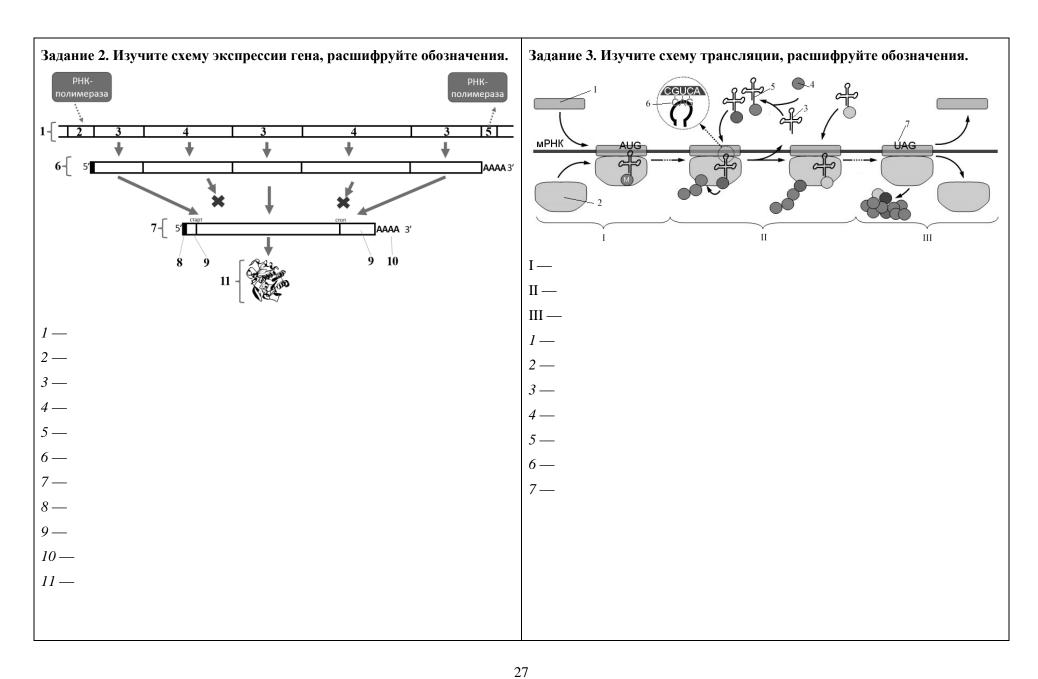



Рис. 1. Центральная догма молекулярной биологии

Задание 4. Решите задачи. Задача № 1. Участок транскрибируемой цепи ДНК имеет последовательность: ТГТАЦЦГАТАЦЦЦГАТАЦТЦГАЦЦГАТАЦА. Определите процентный состав аденина в молекуле мРНК, образующейся на основе данной генетической информации.	Задача № 3. Одноцепочечная ДНК некого фага имеет молекулярную массу порядка 10^7 дальтон. Какое максимальное количество белков теоретически может быть закодировано в ней, если принять, что типичный белок этого фага состоит в среднем из 400 мономеров, а молекулярная масса нуклеотида около 300 дальтон? Некодирующими областями для простоты подсчета можно пренебречь?
Задача № 2. Каждый виток спирали ДНК имеет длину 3,4 нм и содержит 10 пар нуклеотидов. Фрагмент белка состоит из 30 аминокислотных остатков. Какую длину (в нм) имеет участок гена, кодирующий данный фрагмент белка?	Задача № 4. Участок молекулы белка имеет следующую последовательность аминокислот: сер-лиз-гис-вал. Сколько возможных вариантов строения фрагмента молекулы ДНК может кодировать этот полипептид?

Соответствие кодонов и-РНК аминокислотам

Второе азотистое основание

	Bropoe asorneroe centobanne					
		\mathbf{y}	Ц	A	Γ	
		фен	cep	тир	цис	\mathbf{y}
	y	фен	cep	тир	цис	Ц
4)	J	лей	cep	non	non	A
НИ		лей	cep	non	тре	Γ
ва		лей	про	гис	арг	У
ЭНЭ	TT	лей	про	гис	арг	Ц
Õ	Ц	лей	про	ГЛН	арг	A
T0(лей	про	ГЛН	арг	Γ
Первое азотистое основание		иле	тре	асн	cep	У
30	307	иле	тре	асн	cep	Ц
e a	A	иле	тре	лиз	арг	A
)BC		мет	тре	лиз	арг	Γ
Пеј		вал	ала	асп	ГЛИ	\mathbf{y}
	Γ	вал	ала	асп	ГЛИ	Ц
	1	вал	ала	глу	ГЛИ	A
		вал	ала	глу	ГЛИ	Γ

Задача № 5. Одна из цепей молекулы ДНК имеет следующий порядок нуклеотидов: **ГАГГЦТЦТАГГТАЦЦАГТ**

- а) определите последовательность нуклеотидов в комплементарной цепи.
- б) определите последовательность кодонов и-РНК, синтезированной на комплементарной цепи;
- в) определите последовательность аминокислот в полипептиде, закодированном в данном гене.

Исходная цепочка ДНК:

ГАГГЦТЦТАГГТАЦЦАГТ

a)

б)

в)

Третье азотистое основание

Подпись преподавателя

11	<i>''</i>	202 г.
"	<i>))</i>	ZUZ 1.

Цель занятия: изучить международные научные проекты изучения генома человека; различные механизмы регуляции работы генов и уметь решать типовые задачи по регуляции работы генов.

КОНТРОЛЬНЫЕ ВОПРОСЫ 1. Международные научные проекты изучения генома человека: Human genome, NCODE, Roadmap. 2. Характеристика генома человека. Избыточность генома, ее значение. 3. Классификация генов (структурные и функциональные, гены «домашнего хозяйства» и тканеспецифические).

- 4. Транскриптом, протеом и метаболом человека.
- 5. Оперон. Лактозный и триптофановый опероны. Полицистронная РНК.
- **6.** Регуляция транскрипции у эукариот: преинициаторный комплекс, энхансеры, сайленсеры.
- **7.** Эпигенетические механизмы регуляции работы генов: модфикации гистонов, метилирование цитозина, СрG-островки, регуляторные системы некодирующих РНК.

- 6. Сайленсер —
- 7. Экспрессия гена —
- 8. Энхансер —
- 9. Эпигенетика —

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

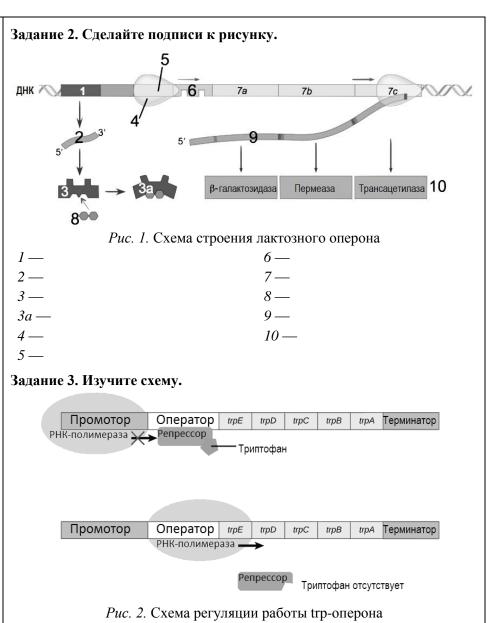
- 1. Индуктор —
- 2. Оператор —
- 3. Оперон —
- 4. Репрессор —
- 5. РНК-интерференция —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Классификация генов: а) структурные, модификаторы и репрессоры;
- б) интроны, экзоны и ингибиторы; в) функциональные и структурные; г) корепрессоры и операторы; д) тканеспецифические гены и гены «домашнего хозяйства».
- **2. Функциональный ген** это: а) любой ген; б) любой ген, не кодирующий факторы, регулирующие работу других генов; в) любой ген, кодирующий РНК, но не белок; г) любой ген, кодирующий белок, но не РНК; д) любой ген, кодирующий белки или РНК, регулирующие работу других генов.
- **3.** Ген-регулятор: а) содержит информацию о структуре белка-репрессора; б) содержит информацию о структуре белков-ферментов; в) содержит информацию о структуре белков-гистонов; г) содержит информацию о структуре рРНК; д) непосредственно регулирует работу структурных генов.

- **4. Роль оператора:** а) содержит информацию о структуре белка-репрессора; б) содержит информацию о структуре белков-ферментов; в) «включает» и «выключает» структурные гены; г) содержит информацию о структуре иРНК; д) регулирует работу функциональных генов.
- **5. Роль промотора:** а) содержит информацию о структуре белка-репрессора; б) содержит информацию о структуре белков-ферментов; в) «включает» и «выключает» структурные гены; г) содержит информацию о структуре иРНК; д) место первичного прикрепления фермента РНК-полимеразы.
- **6.** Вещества, стимулирующие транскрипцию в опероне и, как следствие, синтез ферментов, которые их расщепляют: а) ингибиторы; б) индукторы; в) белки-репрессоры; г) интенсификаторы; д) модификаторы.
- **7. Единица транскрипции прокариот:** а) нуклеотид; б) кодон; в) оперон; г) транскриптон; д) промотор.
- **8. В опероне отсутствуют:** а) промотор; б) регулятор; в) оператор; г) репрессор; д) терминатор.
- **9. В состав оперона входят:** а) оператор и интроны; б) ген-регулятор и экзоны; в) оператор и структурные гены; г) репрессор и промотор; д) промотор и ген-регулятор.
- **10.** Вещество, активирующее белок-репрессор, что приводит к прекращению транскрипции в опероне: а) ингибитор; б) индуктор; в) корепрессор; г) регулятор; д) терминатор.
- **11.** Работа лактозного оперона бактерии регулируется путём: а) ингибиции; б) индукции; в) репрессии; г) корепрессии; д) терминации.
- **12. Аутосинтетическая функция гена** это: а) репликация; б) транскрипция; в) репликация ДНК и репарация; г) трансформация; д) трансляция.
- **13.** Гетеросинтетическая функция гена это: а) транскрипция и репликация; б) трансляция и транскрипция; в) репликация ДНК и репарация; г) трансформация и трансляция; д) только трансляция.
- **14. Роль структурных генов:** а) содержат информацию о структуре белка-репрессора; б) содержат информацию о структуре белков-ферментов; в) содержат информацию о структуре белков-гистонов; г) содержат информацию о структуре РНК; д) содержат информацию о структуре РНК и белка-репрессора.

ОТКРЫТЫЕ ТЕСТЫ


Вставьте пропущенное слово или понятие.

- 1. Гены-регуляторы кодируют белки, которые называются ...
- **2.** Вещество, которое расщепляется под действием ферментов, закодированных в данном опероне это ...
- **3.** Во время «экспрессии» структурных генов, гены-операторы освобождаются от ...
- **4.** Экспрессия структурных генов оперона может начаться лишь когда, оператор освобождается от ...
- **5.** Участок оперона, который инициирует окончание транскрипции, называется ...
- **6.** Белковый комплекс, который образуют в области промотора базальные факторы транскрипции с РНК-полимеразой II, называется ... комплексом.
- **7.** Мобильные последовательности ДНК способные перемещаться в пределах генома называются ...
- 8. Фермент, транскрибирующий гены оперона, называется ...
- **9.** Специфическая структура эпигенетических модификаций, присутствующих в клетке в определенный период времени, называется ...
- **10.** Гены, кодирующие белки, необходимые для поддержания базовых функций любой клетки организма, называются «генами

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите таблицу «Геном человека».

Размер генома (1n)	Около 3 200 000 000 пар оснований
Белок-кодирующие гены	Около 20 000 генов
Гены длинных некодирующих РНК	Около 16 000 генов
Гены коротких некодирующих РНК	Около 7 500 генов
Псевдогены	Около 15 000 генов
По одной из оценок (Laurence A. Mo	ran) геном человека содержит:
Экзоны белок-кодирующих генов	1 %
Интроны белок-кодирующих генов	22 % без учета других типов последовательностей, содержащихся в интронах
Гены некодирующих РНК	0,6 %
Вероятные гены некодирующих РНК	0,4 %
Интроны генов некодирующих РНК	6 %
Псевдогены	5 %
Функциональные транспозоны	0,1 %
Дефектные транспозоны и их фраг- менты	45 %
Вирусные последовательности	0,1 %
Дефектные вирусные последователь- ности и их фрагменты	9 %
Центромеры	1 %
Теломеры	0,1 %
Точки начала репликации	0,3 %
Области прикрепления скэффолда	0,3 %
Регуляторные последовательности	0,2 %
Ядерная митохондриальная ДНК	0,1 %
Неизвестно	9 %

Залание 4. Решите залачи.

Задача № 1. Проведен эксперимент с двумя группами мышей: в первой окрас шерсти был желтым, во второй — тёмным. Данные признаки являлись наследуемыми. Однако было обнаружено, что добавление в рацион беременных мышей с жёлтым окрасом фолиевой кислоты приводит к появлению мышат, имеющих тёмный окрас. Чем это можно объяснить?

Задача № 2. Один из оперонов бактерии содержит 5 генов. Ген **A**, ближайший к промотору, и ген **Б**, расположенный дальше других от промотора, имеют примерно равную длину. Однако было установлено, что белок, кодируемый геном **A**, в среднем появляется в клетке раньше, чем белок, кодируемый геном **Б**. Чем можно объяснить эту разницу?

Задача № 3. Одинакова ли длина генов у бактерии и у дрожжевой клетки, если они кодируют полипептиды с одинаковым числом аминокислот? Ответ поясните.

Задача № 4. Примем условно массу нуклеотида за 1. Определите в условных единицах массу некого оперона бактерии, в котором промотор, оператор и терминатор содержат по 10 пар нуклеотидов каждый, а каждый из 3 структурных генов кодирует белок, состоящий из 50 аминокислот.

Задание 5. Установите соответствие между терминами и соответствующими им определениями.

1. Специфическая структура эпигенетических моди-	
фикаций, присутствующих в клетке в определенный	
период времени	
2. Качественный и количественный набор всех низ-	
комолекулярных молекул, присутствующих в клетке	
3. Вся последовательность ДНК, характеризующая	
вид, организм или определённый тип клеток	
4. Весь набор белков, экспрессируемых в данном ти-	
пе клеток или в организме, в данный период времени	
при данных условиях	
5. Специфический набор транскриптов (молекул	
РНК), представленный в клетках определенного типа	
6. Определённая картина метилирования ДНК, при-	
сутствующая в определённое время в геноме или	
конкретном типе клеток	

A	Б	В	Γ	Д	Е

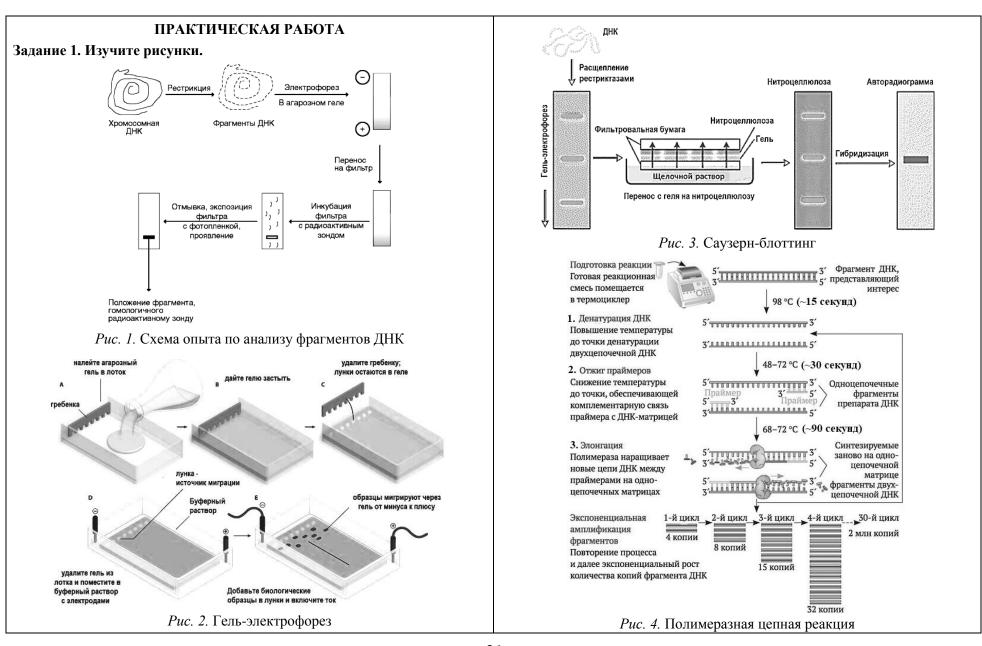
Подпись преподавателя

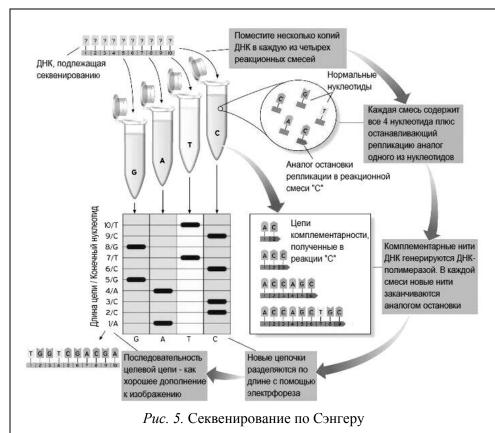
Занятие № 7. Тема: ГЕНОМИКА. МЕТОДЫ ИЗУЧЕНИЯ ДНК

«	>>>	202	Γ.

Цель занятия: изучить методы исследования ДНК, методы секвенирования генома, разновидности полимеразной цепной реакции.

контрольные вопросы	8. Интеркалирующий краситель —	
 Методы исследования ДНК: гель-электрофорез, рестрикционный анализ, гибридизация нуклеиновых кислот, ДНК-микрочипы. ПЦР и ее виды: количественная ПЦР, ПЦР с обратной транскрипцией, мультиплексная ПЦР. Методы секвенирования генома (по Сэнгеру, пиросеквенирование, нанопоровое, бисульфитное). 	9. Липкие концы —	
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	10. Праймер —	
1. Амплификатор —	11. Полимеразная цепная реакция (ПЦР) —	
2. Бисульфитное секвенирование —	12. Рестрикционный анализ —	
3. Гель-электрофорез —	13. Рестрикционная карта —	
4. Гибридизация нуклеиновых кислот —	14. Сайты рестрикции —	
5. Дидезоксинуклеотид —		
6. ДНК-зонд —	15. Секвенирование нуклеиновых кислот —	
7. ДНК-микрочип —	16. Тупые концы —	


ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ


- **1. При электрофорезе** ДНК: а) движется к аноду, так как имеет положительный заряд; б) движется к катоду, так как имеет положительный заряд; в) движется к аноду, так как имеет отрицательный заряд; г) движется к катоду, так как имеет отрицательный заряд; д) движется к катоду, так как не имеет заряда.
- **2.** Последовательность нуклеотидов в молекуле ДНК определяют при помощи методов: а) гибридизации нуклеиновых кислот; б) пиросеквенирования; в) рестрикционного анализа; г) полимеразной цепной реакции; д) секвенирования по Сэнгеру.
- **3.** На первой стадии ПЦР температуру повышают до более чем 90 °C для: а) гибридизации праймеров; б) обратной транскрипции; в) созданий оптимальных условий для работы Таq-полиеразы; г) разделения цепей ДНК; д) ускорения синтеза комплементарных цепей ДНК.
- **4.** Для проведения ПЦР требуются: а) дезоксинуклеотиды; б) термостабильная РНК-полимераза; в) термостабильная ДНК-полимераза; г) один вид праймеров; д) два вида праймеров.
- **5.** Для проведения рестрикционного анализа требуются: а) рестриктазы; б) ДНК-зонды; в) ДНК-микрочипы; г) проведение электрофореза; д) проведение секвенирования.
- **6.** В полимеразной цепной реакции праймеры выполняют следующие функции: а) ограничения амплифицируемой области ДНК; б) затравки для ДНК-полимеразы; в) матрицы, которая подвергается амплификации; г) фермента амплифицирующего ДНК; д) материала для синтеза полных комплементарных цепей ДНК.
- **7.** Для секвенирования по Сэнгеру характерно: а) использование ДНК-зондов; б) использование дидезоксинуклеотидов; в) детекция пирофосфата; г) проведение электрофореза; д) обработка ДНК бисульфитом.
- **8.** Для получения множества копий ДНК, комплементарной РНК используют: а) стандартную качественную ПЦР; б) ОТ-ПЦР; в) количественную ПЦР; г) мультиплексную ПЦР; д) пиросеквенирование.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Установление последовательности нуклеотидов в ДНК называется ...
- **2.** Первая стадия ПЦР, когда водородные связи между цепочками ДНК разрушаются, называется ...
- **3.** Короткие фрагменты одноцепочечной ДНК, необходимые для начала работы ДНК-полимеразы называются ...
- **4.** В ходе гель-электрофореза фрагменты ДНК движутся к электроду, который называется ...
- **5.** Разновидность ПЦР, которая позволяет определить изначальное количество амплифицируемого фрагмента ДНК в образце, называется ...
- **6.** Разновидность ПЦР, в которой происходит амплификация ДНК, комплементарной РНК из образца, называется ...
- **7.** Метод секвенирования ДНК, основанный на детекции пирофосфата, выделяющегося в ходе присоединения нуклеотида к растущей цепи ДНК, называется ...
- **8.** Небольшая пластинка, имеющая тысячи ячеек, в каждой из которых закреплены определённые последовательности олигонуклеотидов, называется ...
- **9.** Объединение двух комплементарных цепей нуклеиновой кислоты, полученных из разных источников, с образованием двухцепочечных молекул, называется ...
- **10.** Метод анализа двухцепочечных ДНК, основанный на их обработке рестриктазами и последующем разделении полученных фрагментов путем электрофореза, называется ...

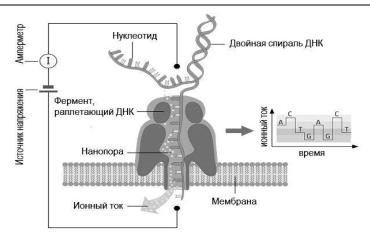
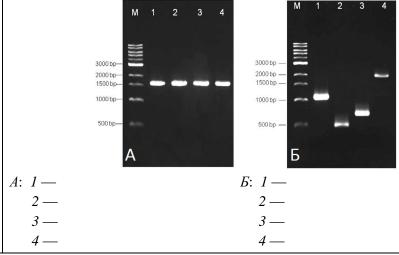
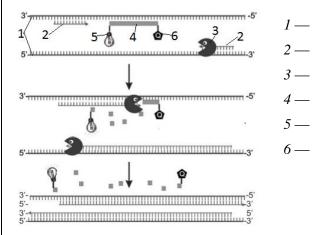



Рис. 6. Нанопоровое секвенирование

Задание 2. Решите задачи.

Задача № 1. На фотографии представлен агарозный гель, в котором визуализирована ДНК после электрофореза. Используя маркер длины (обозначен как М), определите приблизительную длину представленных фрагментов в парах оснований.



Задача № 2. Установлено, что различные мутации в гене, кодирующем трансмембранный белок родопсин, вызывают различные формы наследственного заболевания пигментной ретинопатии, которое характеризуется прогрессирующей потерей зрения. Проведено секвенирование фрагмента ДНК нормального и мутантного гена, ответственного за синтез родопсина (смысловая цепь). Ре-

зультаты секвенирования представлены на рисунке. Направление движения нуклеотидов обозначено стрелкой. Читать кодоны следует с первого нуклеотида. Определите изменения в белке родопсине, приводящие к пигментной ретинопатии.

Задача № 3. Теоретически, после каждого цикла ПЦР количество амплифицируемого фрагмента ДНК удваивается. Сколько минут потребуется для получения 1 млн. копий из одной молекулы, если этапы денатурации, гибридизации праймеров и элонгации длятся 15, 30 и 90 секунд соответственно?

Задание 3. Изучите схему количественной ПЦР, сделайте обозначения.

Задание 4. Установите соответствие между методом секвенирования и его характеристикой и внесите соответствующую букву в таблицу: а) секвенирование по Сэнгеру; б) пиросеквенирование; в) нанопоровое секвенирование; г) бисульфитное секвенирование.

1. Используются дидезоксинуклеотиды	
2. Известен как метод терминации цепи	
3. Основан на измерении силы тока ионов через непроводящую мембрану	
4. Последовательность нуклеотидов определяется благодаря хемилюминисценции в результате окисления люцеферина	
5. Использует нанопору в специальной мембране	
6. Позволяет выявить метилированный цитозин в ДНК	
7. Последовательность нуклеотидов определяется благодаря различиям в длине синтезированных фрагментов ДНК	

Подпись преподавателя

Занятие № 8. Тема: ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ

« »	202	Γ.
-----	-----	----

Цель занятия: изучить основы генной инженерии и клонирования организмов, уметь решать типовые задачи по генной инженерии.

КОНТРОЛЬНЫЕ ВОПРОСЫ	8. Плазмиды —
 Генетическая инженерия: цели, задачи и этапы. Способы получения генов для трансгенеза. Рекомбинантная ДНК. Конструирование векторов, их виды: плазмиды, космиды, фаговые векторы, фазмиды. 	9. Полилинкер —
 4. Введение рекомбинантных ДНК в клетку-реципиент. Отбор трансформированных клеток. Селективные и репортерные гены. 5. Биотехнология, ее значение для медицины. Генетически модифицированные организмы. Продукты питания, содержащие ГМО. 	10. Рекомбинантная ДНК —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	11. Репортерные гены —
1. Биотехнология —	12. Рестриктаза (эндонуклеаза рестрикции) —
2. Вектор (векторная молекула) —	13. Селективные гены —
3. Космиды —	14. Трансгенез —
4. Липосомы —	15. Трансдукция —
5. Липофекция —	16. Трансформация —
6. Маркерные гены —	17. Фазмиды —
7. Микроинъекция —	18. Челночный вектор —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1. Целью генной инженерии является:** а) конструирование генетических структур по заранее намеченному плану; б) расшифровка порядка нуклеотидов участка ДНК; в) создание организмов с новой генетической программой; г) выявление групп сцепления; секвенирование генов; д) построение генетической карты хромосомы.
- **2.** Основные этапы генной инженерии: а) получение необходимого генетического материала; б) построение генетической карты хромосомы; в) расшифровка порядка нуклеотидов участка ДНК и создание рекомбинантной ДНК; г) отбор трансформированных клеток; д) включение рекомбинантной молекулы ДНК в хромосому.
- **3.** Способы получения генов для пересадки: а) синтез простых генов химическим путем; б) синтез генов на молекуле белка; в) синтез сложных генов с помощью обратной транскрипции; г) построение генетической карты хромосомы; д) вырезание генов с помощью рестриктаз.
- **4.** Рекомбинантные молекулы ДНК могут быть получены методами встраивания гена в: а) белковую молекулу; б) плазмиду бактерий; в) геном вируса; г) липидную молекулу; д) геном бактериофага.
- **5. Ферменты, применяемые в генной инженерии:** а) ДНК-полимеразы; б) липазы; в) рестриктазы; г) амилазы; д) лигазы.
- **6. Методами генной инженерии получены:** а) штаммы кишечной палочки, способные синтезировать инулин; б) штаммы кишечной палочки, способные синтезировать соматотропин; в) растения; способные усваивать атмосферный азот; г) микроорганизмы, способные синтезировать из пищевых белков углеводы нефти; д) противовирусные сыворотки.
- **7.** Будущее генной инженерии базируется на следующих достижениях молекулярной биологии: а) возможности переноса генетической информации у эукариот половым путем; б) получении модификаций с помощью химических мутагенов; в) секвенировании генов; г) замене дефектных генов; д) включении в геном человека искусственно синтезированных генов.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. В генной инженерии для выделения генов используют ферменты ...
- 2. Процесс обратной транскрипции лежит в основе метода ... синтеза сложных генов.
- **3.** В генной инженерии векторными молекулами могут быть: фаги, вирусы, ... бактерий.
- **4.** Ферменты, способные разрезать молекулу ДНК в определенных сайтах с образованием более коротких ее фрагментов,
- **5.** Гибридные векторы, способные развиваться и как фаг, и как плазмида, называются ...
- 6. В космидных векторах можно клонировать фрагменты ДНК размером ...
- **7.** Гибридные векторы, способные развиваться и как фаг, и как плазмида, называются ...
- **8.** Плазмиды, содержащие соѕ-участок (липкие концы) ДНК фага λ , называются ...
- **9.** Для отбора генетически трансформированных клеток векторная ДНК должна содержать ... и ... маркерные гены.
- **10.** Векторы, способные реплицироваться в клетках-хозяевах разных биологических видов, называются ... векторы.
- **11.**Растение или животное, чей генотип изменяется путем введения чужеродной ДНК, называют ...
- **12.**Ферменты, способные разрезать молекулу ДНК в определенных сайтах с образованием липких либо тупых концов, называются ...
- 13. Рестриктаза Есо R I при разрезе уступом образует в ДНК ...

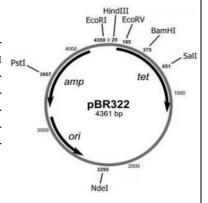
ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите таблицу «Рестриктазы и их сайты рестрикции».

№	Рестриктаза	Сайты распознавания и места разреза ДНК
1.	BalI	5'-ТГГ√ЦЦА-З' З'-АЦЦ∱ГГТ-5'
2.	BamHI	5'-Г√ГАТЦЦ-3' 3'-ЦЦТАГ∱Г-5'
3.	EcoRI	5'-ΓΨΑΑΤΤЦ-3' 3'-ЦТТАА↑Г-5'
4.	HindIII	5'-Α√ΑΓЦΤΤ-3' 3'-ΤΤЦΓΑ∱Α-5'
5.	SalI	5'-Г√ТЦГАЦ-3' 3'-ЦАГЦТ∱Г-5'
6.	XbaI	5'-Τ√ЦТАГА-3' 3'-ΑΓΑΤЦ∱Т-5'
7.	HaeIII	5'-ГГ√ЦЦ-3' 3'-ЦЦ∱ГГ-5'

Задание 2. Решите задачи.

Задача № 1. Приведены последовательности двух ДНК (по одной цепочке из двуцепочечных молекул). Какую из них может разрезать рестриктаза EcoRI, узнающая последовательность 5'-ГААТТЦ-3'?


- а) 5'-АЦТЦЦАГААТТЦАЦТЦЦГ-3';
- б) 5'-ГЦЦТЦАТТЦГААГЦЦТА-3'.

Задача № 2. Имеется фрагмент ДНК из 27 нуклеотидных пар. Какой эндонуклеазой и на сколько частей можно его разрезать?

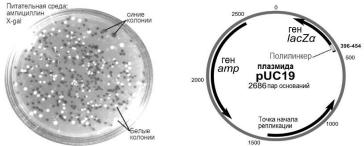
- 5'- UT CAATTA C CATUU A C C U A ÂTA C T C T C 3'
- З'-ГАЦТТААТЦЦТАГГТЦЦГТТАТЦАЦАЦ-5'

Задача № 3. Эндонуклеаза рестрикции HindIII узнает и разрезает сайт **5' ААГЦТТ 3'**. Определите вероятность случайного нахождения такой комбинации нуклеотидов в ДНК неизвестной последовательности и рассчитайте ожидаемую среднюю длину фрагментов, образующихся при ее разрезании

Задача № 4. На рисунке изображена плазмида pBR322. Указаны сайты рестрикции для различных эндонуклеаз и их местоположение. Участок какого из ниже приведенных фрагментов двуцепочечной ДНК можно встроить в плазмиду, при помощи эндонуклеаз, приведенных в таблице «Рестриктазы и их сайты рестрикции»?

.№ 1.

- **5'- Ц**ЦГААТТЦАГАТГТААГГЦААТАГТГТГААТТЦАЦА 3'
- 3'- ГГЦТТААГТЦТАЦАТТЦЦГТТАТЦАЦАЦТТААГТГТ 5'


№ 2.

- 5'- ЦЦТТААГЦТГАГГЦТААГГЦААТАГААГЦААЦАЦАТГ 3'
- 3' $\Gamma\Gamma$ A A T T U Γ A U T U U Γ A T T U U Γ T T A T U Γ T T Γ T A U Γ S Γ

№ 3.

- 5'-АГГЦЦГАТАЦЦЦГАТАЦТЦГАЦЦГАТАЦТГТАГГЦЦГ-3'
- 3'-ТЦЦГГЦТАТГГГЦТАТГАГЦТГГЦТАТГАЦАТЦЦГГЦ-5'

Задача № 5. Плазмида рUC19 содержит ген устойчивости к антибиотику ампициллину (amp), а также ген $lacZ\alpha$, позволяющий бактериям производить вещество синего цвета из вещества X-gal. Сайты рестрикции находятся в пределах гена $lacZ\alpha$, поэтому вставка фрагмента ДНК в плазмиду нарушает работу этого гена. Благодаря этому можно распознать успешно трансформированные клетки. Бактерии были посеяны на среде, содержащей ампициллин и X-gal. На среде выросли колонии белого и синего цвета (каждая колония — группа бактерий-потомков одной клетки, они имеют одинаковый геном).

- 1. Какова судьба бактерий, не подвергшиеся трансформации (т. е. без pUC19)?
- 2. Какова судьба бактерий, имеющих рUC19, но без желаемого гена?
- 3. Колонии какого цвета были успешно генно-модифицированы? Объясните свои ответы

Задание 3. Изучите таблицу «Сравнение векторов для клонирования фрагментов ЛНК».

Вектор	Клетка-хозяин	Размер вставки, т.п.н.
Плазмида	E. coli	1–10
Фаг λ	E. coli	5–25
Космиды	E. coli	35–45
Фазмиды	E. coli	20
ВАС (бактериальная искусственная хромосома)	E. coli	50–300
YAC (дрожжевая искусственная хромосома)	S. cerevisiae	100–2000

Задание 4. Сделайте обозначения к рисункам.

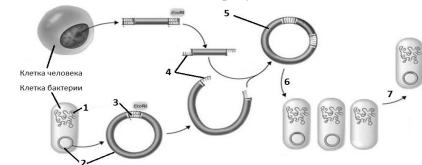
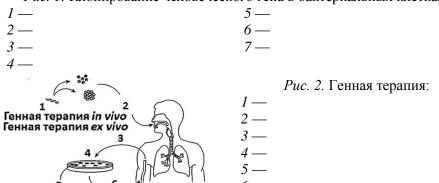



Рис. 1. Клонирование человеческого гена в бактериальных клетках:

Задание 5. Установите соответствие между термином и его определением.

эщиние	адание 3. 3 становите соответствие между термином и сто определением									
А. Тран	сдукция	[1. Способность бактерий поглощать ДНК из раствора				аствора			
Б. Электропорация						-	_			везикулы,
			имеющеі	и один ил	ии не	сколько	оилиі	іиднь	olx CJ	юев
В Пипс	офекция		3. Перен	ос реко	мбин	антной	ДНК	В (бакте	ериальную
D. JIMIC	фскции]	клетку с	помощы	о бак	териофа	га			
ГТрои	сформац	ma ,	4. Непос	редствен	ное 1	введение	д ДНК	Свяд	дро з	укариоти-
1. Тран	сформац	киј	ческой кл	петки с п	ОМОЦ	цью тоні	кой иг	ЛЫ		
П Миня	пм			ование і	време	енных к	анало	ВВ	мем	бране под
Д. Микроинъекция			действие	м электр	ичес	ких разр	ядов			_
A	Б	В	Γ	Д		Пол	шись	ппе	поп	авателя
				. '		110/	LIINCE	, upc	под	аватсли

Занятие № 9. Тема: ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ. ВЗАИМОДЕЙСТВИЕ ГЕНОВ

‹ ‹	>>	202	Γ.

Цель занятия: изучить закономерности наследования, взаимодействие генов, уметь решать типовые задачи, демонстрирующие указанные генетические закономерности.

	КОНТРОЛЬНЫЕ ВОПРОСЫ	7. Плейотропия —
 3. 	Генетика как наука. Гибридологический анализ, его сущность. Закономерности наследования при моногибридном скрещивании. Гипотеза чистоты гамет. Закономерности наследования при полигибридном скрещивании.	8. Полимерия — 9. Реципрокное скрещивание —
5.	Анализирующее скрещивание: прямое и возвратное. Условия, ограничивающие проявление законов Г. Менделя. Плейотропное действие гена. Внутриаллельное взаимодействие генов (полное и неполное доминирование, сверхдоминирование, кодоминирование и аллельное исключение).	10. Сверхдоминирование —
6.	Множественные аллели. Наследование групп крови по системам: AB0, MN и резус-фактору.	11. Фенотип —
7.	Межаллельное взаимодействие генов (комплементарность, эпистаз, полимерия и эффект положения).	12. Фенотипический радикал —
	ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	ОТКРЫТЫЕ ТЕСТЫ
1.	ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ Аллель —	ОТКРЫТЫЕ ТЕСТЫ Вставьте пропущенное слово или понятие.
		Вставьте пропущенное слово или понятие. 1. Разновидность межаллельного взаимодействия генов, при котором степень проявления признака зависит от количества доминантных генов
2.	Аллель —	Вставьте пропущенное слово или понятие. 1. Разновидность межаллельного взаимодействия генов, при котором сте-
2. 3.	Аллель — Аллельное исключение —	Вставьте пропущенное слово или понятие. 1. Разновидность межаллельного взаимодействия генов, при котором степень проявления признака зависит от количества доминантных генов в генотипе, называется полимерия. 2. Для проявления II и III законов Г. Менделя пенетрантность гена должна
2.3.4.	Аллель — Аллельное исключение — Анализирующее скрещивание —	 Вставьте пропущенное слово или понятие. Разновидность межаллельного взаимодействия генов, при котором степень проявления признака зависит от количества доминантных генов в генотипе, называется полимерия. Для проявления II и III законов Γ. Менделя пенетрантность гена должна составлять % Расщепление по фенотипу 9:7 при скрещивании дигетерозигот является

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1. Рецессивная аллель:** а) проявляется фенотипически в гомозиготном состоянии при полном доминировании; б) проявляется фенотипически в гетерозиготном состоянии при полном доминировании; в) проявляется фенотипически в гомо- и гетерозиготном состоянии; г) проявляется фенотипически в гетерозиготном состоянии при неполном доминировании; д) фенотипически подавляется доминантной аллелью при полном доминировании.
- **2. Фенотип** это совокупность: а) фенотипических радикалов; б) незаменимых аминокислот; в) заменимых аминокислот; г) гибридов первого поколения; д) внешних и внутренних признаков организма.
- **3.** Свойства гомозиготного организма: а) образует один тип гамет; б) образует 2 типа гамет; в) содержит одинаковые аллели анализируемого гена; г) содержит разные аллели анализируемого гена; д) дает расщепление при скрещивании с аналогичной по генотипу особью.
- **4.** Второй закон Менделя называется: а) чистоты гамет; б) доминирования; в) единообразия гибридов первого поколения; г) расщепления признаков у гибридов; д) независимого наследования признаков.
- **5. Характеристика неполного доминирования:** а) доминантная аллель не полностью подавляет действие рецессивной; б) доминантная аллель полностью подавляет действие рецессивной; в) доминантные гомозиготы и гетерозиготы фенотипически неотличимы; г) доминантные гомозиготы и гетерозиготы фенотипически различны; д) доминантная аллель в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном.
- **6. Виды межаллельного взаимодействия генов:** а) эффект положения и криптомерия; б) эпистаз и некумулятивная полимерия; в) кодоминирование и полимерия; г) комплементарность и плейотропия; д) сверхдоминирование и пороговый эффект.
- 7. Характеристика комплементарности: а) взаимное влияние аллелей разных генов, занимающих соседние локусы одной хромосомы; б) присутствие в генотипе двух доминантных аллелей разных генов приводит к проявлению нового признака; в) присутствие в генотипе двух рецессивных аллелей разных генов приводит к проявлению нового признака; г) доминантная либо рецессивная аллель одного гена подавляет действие доминантной аллели другого гена; д) несколько разных генов влияют на степень проявления одного признака.

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Решите задачи.

Задача № 1. Сколько типов гамет, и какие именно образуют организмы, имеющие генотипы?

AaBb; MMnnRR; AaBbCc; Aabbccddpp

Задача № 2. У мышей ген доминантной желтой пигментации шерсти $\bf A$ обладает летальным действием (мыши с генотипом $\bf AA$ погибают в эмбриогенезе). Его аллель $\bf a$ вызывает черную пигментацию и обеспечивает нормальную жизнедеятельность. Скрещены две желтые особи. Какое расщепление по окраске шерсти ожидается в $\bf F_1$?

Задача № 3. Ангиоматоз сетчатки глаза обусловлен доминантным аутосомным геном, пенетрантность которого 50 %. Какова вероятность рождения больного ребенка, если оба супруга гетерозиготны?

Задача № 4. У человека карий цвет глаз доминирует над голубым, а способность лучше владеть правой рукой доминирует над леворукостью; гены, влияющие на развитие этих признаков, находятся в разных хромосомах. Какими могут быть дети, если родители кареглазые правши, гетерозиготные по обоим признакам?

Задача № 5. Жена имеет группы крови 0(I), Rh-, MN; ее супруг AB(IY) и N группы крови, гомозиготный Rh+. Какое сочетание групп крови по всем системам может быть у их детей?

Наследование групп крови у человека

Признак	Ген	Генотип			
Система АВО					
0 (I) группа	I^0	$\mathbf{I}_0\mathbf{I}_0$			
А (II) группа	I^{A}	I^AI^A , I^AI^0			
В (III) группа	I^{B}	I^BI^B , I^BI^0			
АВ (IV) группа	I ^A и I ^B	$I^A I^B$			
Сис	Система MN				
М группа	L^{M}	$L^{M}L^{M}$			
N группа	L^{N}	$L^{N}L^{N}$			
MN группа	L^{M} и L^{N}	$L^{M}L^{N}$			
Rh-фактор					
Rh+	D	DD, Dd			
Rh-	d	dd			

Задача № 6. Хондродистрофия (нарушение развития скелета) доминирует над нормальным скелетом, причем доминантные гомозиготы погибают до рождения. Семейная гиперхолестеринемия определяется доминантным геном. У гетерозигот заболевание проявляется лишь высоким содержанием холестерола в крови, у гомозигот, помимо этого, в период полового созревания развиваются доброкачественные опухоли кожи и сухожилий (ксантомы) и атеросклероз. Эти аутосомные признаки наследуются независимо. В семье оба родителя страдают хондродистрофией, при этом у матери нормальный уровень холестерола в крови, а у отца высокий, но у него нет ксантом и атеросклероза. Какова вероятность (%) рождения в этой семье ребенка, похожего по анализируемым признакам на мать, если расщепление соответствовало теоретически ожидаемому?

Задача № 7. Рост человека контролируется тремя парами несцепленных генов, которые взаимодействуют по типу полимерии. В какой-то популяции самые низкорослые люди имеют все рецессивные гены и рост 150 см, а самые высокие — рост 180 см и все доминантные гены. Определите рост людей, гетерозиготных по всем трем парам генов.

Подпись преподавателя

Занятие № 10. Тема: СЦЕПЛЕНИЕ ГЕНОВ. БИОЛОГИЯ И ГЕНЕТИКА ПОЛА

‹ ‹	>>	202	Г

Цель занятия: изучить закономерности наследования при сцеплении генов и генетике пола. Научиться решать типовые задачи, демонстрирующие указанные генетические закономерности.

контрольные вопросы	5. Гоносомное наследование —
 Опыты Т. Моргана. Сцепление генов: полное и неполное. Группы сцепления. Хромосомная теория наследственности Генетические и цитологические карты хромосом. 	6. Голандрические признаки —
 1 енетические и цитологические карты хромосом. Пол как биологический признак. Ограниченные и контролируемые полом признаки. Признаки, сцепленные с полом и голандрические. Теории определения пола. Дифференцировка и переопределение пола 	7. Кроссоверные гаметы —
в онтогенезе. Генная регуляция гонадогенеза у человека. 6. Особенности детерминации пола у человека: физикальные, промежуточная и социально-психологические детерминанты.	8. Мозаичность —
7. Нарушения формирования пола у человека. Этические и юридические аспекты изменения морфологического и гражданского пола.8. Х-половой хроматин. Гипотеза М. Лайон о женском мозаицизме по по-	9. Ограниченные полом признаки —
ловым хромосомам.	10. Первичные половые признаки —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	100 110p211 11120 1101102210 11p1101111111
1. Генетическая карта хромосомы —	11. Синдром нечувствительности к андрогенам —
2. Гетерогаметный пол —	12. Сцепленные гены —
3. Гемизиготность —	13. Сцепленные с Х-хромосомой гены —
4. Генетический пол —	14. Тельце Барра —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1.** Явление сцепления наблюдается при расположении различных генов: а) в одной хромосоме; б) в разных хромосомах; в) только в аутосомах; г) только в X-хромосоме; д) только в Y-хромосоме.
- **2. Неполное сцепление генов наблюдается:** а) если гены разных аллельных пар расположены в одной хромосоме; б) если гены расположены в разных хромосомах; в) если происходит кроссинговер; г) если не происходит кроссинговер; д) у самца мухи дрозофилы и самки тутового шелкопряда.
- **3.** Развитие признаков, сцепленных с полом, обусловлено генами, локализованными: а) в аутосомах мужского организма; б) аутосомах женского организма; в) гомологичных участках X- и Y-хромосом; г) негомологичных участках X-хромосомы; д) в аутосомах обоих полов.
- **4.** Характерные черты некоторых признаков, сцепленных с X-хромосомой: а) проявляются фенотипически только у женских особей; б) проявляются фенотипически только у мужских особей; в) чаще проявляются фенотипически у мужских особей; г) не проявляются у особей женского пола; д) не проявляются у особей мужского пола.
- **5.** Согласно хромосомной теории пол определяется: а) количеством аутосом; б) количеством X-хромосом; в) количеством Y-хромосом; г) сочетанием половых хромосом в момент оплодотворения; д) балансом между количеством Y-хромосом и наборов аутосом.
- **6. Характеристика синдрома Шерешевского-Тернера:** а) кариотип 45,X0; б) снижен интеллект; в) повышен риск заболевания шизофренией; г) недоразвиты первичные и вторичные половые признаки; д) крыловидная складка кожи на шее.
- **7. Характеристика синдрома Клайнфелтера:** а) кариотип 47,ХХҮ; б) крыловидная складка кожи на шее; в) женский организм с мужеподобным телосложением; г) гинекомастиия; д) кариотип 47,ХХХ.
- **8. Характеристика синдрома трисомии Х:** а) кариотип 47,ХХХ; б) кариотип 47,ХХХ; в) женский организм с мужеподобным телосложением; г) мужской организм с женоподобным телосложением; д) низкий рост.

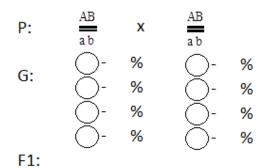
ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- **1.** Если дигетерозиготный организм образует только 2 типа гамет, то наблюдается ... сцепление генов.
- 2. Расстояние между генами в морганидах равно проценту ...
- **3.** При сцепленном наследовании максимальная наблюдаемая при скрещивании вероятность кроссинговера составляет до ... %.
- **4.** Количество глыбок полового хроматина в ядрах клеток здоровых женщин составляет ... (ответ цифрой).
- **5.** Явление фенотипического проявления у мужчин единственного рецессивного гена, находящегося в негомологичном участке X-хромосомы, называется ...
- **6.** Пол, образующий один тип гамет по половым хромосомам, называется ...
- 7. В момент оплодотворения у человека определяется ... пол.
- **8.** Закладка внутренних половых органов человека начинается на ...-й неделе внутриутробного развития (ответ цифрой).

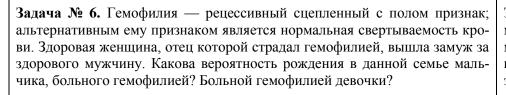
ПРАКТИЧЕСКАЯ РАБОТА

Решите задачи.


Задача № 1. Напишите гаметы и их процентное соотношение для дрозофил с представленными генотипами. Расстояние между сцепленными генами составляет 28 морганид.

1. Самец
$$\stackrel{A}{=}$$
 $\stackrel{B}{=}$ 2. Самец $\stackrel{AB}{=}$ 3. Самка $\stackrel{AB}{=}$ 4. Самка $\stackrel{AB}{=}$ $\stackrel{B}{=}$ $\stackrel{AB}{=}$ $\stackrel{AB}{=}$

Задача № 2. У человека ген, доминантная аллель которого вызывает развитие эллиптоцитоза (EI) и ген, доминантная аллель которого обусловливает наличие резус-антигена в эритроцитах (D), располагаются в одной аутосоме на расстоянии 3 морганид. Один из супругов гетерозиготен по обоим признакам. При этом Rh⁺ он унаследовал от одного родителя, а эллиптоцитоз — от другого. Второй супруг резус-отрицательный и имеет нормальные эритроциты. Определите процентное соотношение генотипов и фенотипов детей в этой семье.


Признак	Ген	Генотип	Локализация гена
Rh+	D	D-	
Rh-	d	dd	Одна аутосома
Элиптоцитоз	El	El-	Расстояние D-El = 3 морганиды
Норма	el	elel	

Задача № 3. Какова вероятность рождения рецессивных гомозигот в семье людей с указанными ниже генотипами? Расстояние между генами **A** и **B** равно 20 морганидам.

Задача № 4. Расстояние между аутосомным геном, определяющим группу крови по системе Лютеран, и геном, от которого зависит растворимость некоторых белков крови, равно 13 морганид. Укажите процент некроссоверных гамет у дигетерозиготной особи.

Задача № 5. Гладкая форма семян кукурузы доминирует над морщинистой, а окрашенные семена — над неокрашенными. При скрещивании дигетерозиготных растений получены следующие результаты: 4152 дочерние особи имели окрашенные гладкие семена, у 149 — окрашенные морщинистые, у 152 — неокрашенные гладкие, а неокрашенные морщинистые семена дали 4163 особи. Покажите механизм такого наследования при помощи генетической записи (схемы скрещивания); определите расстояние между анализируемыми генами.

Задача № 8. Гены, рецессивные аллели которых вызывают развитие гемофилии (h) и дальтонизма (d), локализованы в X-хромосоме. Расстояние между ними 10 морганид. Женщина, отец которой страдал обоими заболеваниями, а мать случаев этих заболеваний в семье не имела, вышла замуж за здорового мужчину. Определите вероятность рождения ребенка, страдающего: 1) обоими заболеваниями; 2) одним из них; 3) фенотипически здорового.

Задача № 7. Потемнение зубов детерминируется двумя доминантными генами, один из которых расположен в аутосоме, а второй в негомологичном участке X-хромосомы. У родителей, которые имели темные зубы, родились мальчик и девочка с нормальным цветом зубов. Определите вероятность рождения следующего ребенка с нормальным цветом зубов, если установлено, что темный цвет зубов у матери обусловлен геном, сцепленным с X-хромосомой, а темные зубы отца — аутосомным геном.

Подпись преподавателя

Занятие № 11. Тема: ИЗМЕНЧИВОСТЬ. МУТАГЕНЕЗ. КАНЦЕРОГЕНЕЗ

~	<i>))</i>	202	Γ.
"	"	202	1.

Цель занятия: изучить основные формы изменчивости, их причины, медицинскую и биологическую значимость; знать механизмы генных, хромосомных и геномных мутаций, репарацию генетического материала и биологические основы канцерогенеза.

контрольные вопросы	5. Кольцевые хромосомы —
 Изменчивость, ее виды. Фенотипическая изменчивость, фенокопии. Генотипическая изменчивость. Рекомбинации, механизмы их возникновения. Мутационная изменчивость. Генокопии. Причины мутаций: ошибки копирования ДНК, неравный кроссинговер. 	6. Миссенс-мутация —
 Физические, химические и биологические мутагенные факторы. Генетическая опасность загрязнения окружающей среды мутагенами. Классификации мутаций. 	7. Норма реакции —
 6. Устойчивость и репарация генетического материала. Антимутагены. 7. Виды репарации. Виды эксцизионной репарации, репарация двуцепочечных разрывов. Фотореактивация. Роль нарушений механизмов репарации в патологии человека. 8. Канцерогенез, понятие об онкогенах и генах-супрессорах опухолей. 	8. Сдвиг рамки считывания —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	9. Транзиция —
1. Делеция —	
2. Дупликация —	10. Трансверзия —
2. Дупликация — 3. Инверсия —	10. Трансверзия — 11. Трансгенация —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1.** Свойства модификаций: а) носят приспособительный характер; б) наследуются; в) не наследуются; г) являются материалом для естественного отбора; д) являются материалом для искусственного отбора.
- **2. Биологические мутагены вызывают:** а) нарушение структуры генов и хромосом; б) полиплоидию; в) образование тиминовых димеров; г) гаплоидию; д) встраивание своей ДНК в ДНК клеток хозяина.
- **3. Характерные признаки генеративных мутаций:** а) происходят в половых клетках; б) происходят в соматических клетках; в) проявляются у самой особи; г) передаются потомкам при половом размножении; д) передаются потомкам при бесполом размножении.
- **4. Виды мутаций функциональных генов:** а) транспозиция; б) нарушение чередования рекогниции и терминации; в) нарушение чередования инициации и элонгации; г) нарушение чередования индукции и репрессии; д) транзиции.
- **5. Полиплоидия** это: а) некратное гаплоидному увеличение числа хромосом; б) кратное гаплоидному увеличение числа хромосом; в) некратное гаплоидному уменьшение числа хромосом; г) кратное гаплоидному уменьшение числа хромосом; д) одинарный набор хромосом.
- **6.** Гаплоидия это: а) положительная мутация; б) нулисомия; в) моносомия; г) отсутствие одной хромосомы; д) одинарный набор хромосом.
- **7. Виды мутаций структурных генов:** а) трансдукции; б) транспозиция; в) транслокации; г) сдвиг рамки считывания; д) транзиции.
- 8. Последовательность этапов темновой репарации генетического материала: 1) синтез нового участка ДНК; 2) «сшивание» синтезированного участка ДНК с основной нитью; 3) «узнавание» поврежденного участка; 4) «вырезание» поврежденного участка; 5) репликация молекулы ДНК: а) 1–5–2–3; б) 5–1–3–2; в) 3–4–5–2; г) 3–4–2–1; д) 3–4–1–2.
- **9.** В основе канцерогенеза согласно концепции онкогена лежат: а) получение организмами протоонкогенов от родителей либо внесение их интегративными вирусами; б) хромосомные мутации соматических клеток; в) наличие в соматических клетках организма протоонкогенов; г) геномные мутации соматических клеток; д) включения вирусной ДНК в геном соматических клеток.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- **1.** Ферменты, способные в процессе репарации вырезать поврежденный участок молекулы ДНК, называются ...
- **2.** Трансгенация, при которой одно пуриновое основание заменяется на другое пуриновое, называется ...
- **3.** Мутация, при которой происходит отрыв участка хромосомы и поворот его на 180° , называется ...
- **4.** Внутрихромосомные мутации называются ..., а межхромосомные мутации ...
- **5.** Мутации структурных генов, приводящие к изменению смысла кодонов и образованию других белков, называются ... мутациями.
- **6.** Нерасхождение хромосом при митозе или мейозе является причиной ... мутаций.
- **7.** Разновидность анеуплоидии, при которой в кариотипе находится только одна хромосома из пары гомологичных хромосом, называется ...
- **8.** Разновидность геномной мутации, при которой соматические клетки содержат одинарный набор хромосом, называется ...
- **9.** Заболевание, обусловленное нарушением механизмов репарации и характеризующееся недостаточностью функционирования костного мозга, приводящего к снижению содержания форменных элементов крови и гиперпигментации, называется

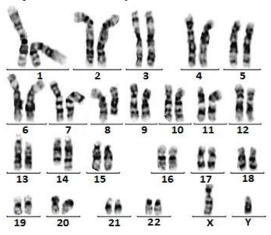
ПРАКТИЧЕСКАЯ РАБОТА Задание 1. Изучите схемы, таблицу. Изменчивость Ненаследственная Наследственная (фенотипическая) (генотипическая) модификационная Мутационная Комбинативная Генная Геномная Хромосомные перестройки 1) делеция; 1) гаплоидия; 2) дупликация; 2) полиплоидия; 3) инверсия; 3) анеуплоидия 4) транслокация Рис. 1. Виды изменчивости C Е В D Норма (исходная форма хромосомы) Межхромосомные мутации Внутрихромосомные мутации Транслокация (перенос участка на негомологичную хромосому) Реципрокные + Инверсия Нехватка Дупликация (отрыв участка и его (удвоение участка) поворот на 180°) Нереципрокные + Α Делеция Дефишенси (отрыв концевого В среднего участка) участка) Робертсоновские -C Α D D В D D Е Е E Е

Рис. 2. Схема хромосомных мутаций

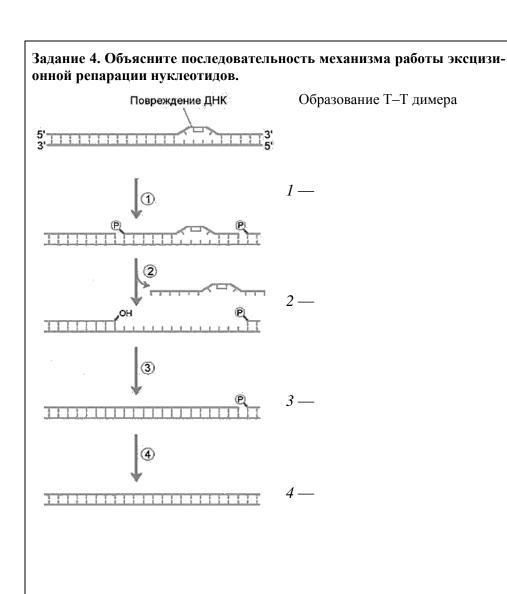
	Антимутагены	
Экз	Эндогенные	
Содержащиеся в про ✓ Аминокислоты (менин, глютаминовая ки ✓ Витамины и провит	Антиоксидантная система	
✓ Полиненасыщенны ✓ Микроэлементы (So ✓ Пищевые волокна	е жирные кислоты;	S-содержащие соединения (глутатион)
Проникающие в орг	анизм воздушно-	Система репарации
капельным путем (ф	оитонциды)	поврежденной ДНК
Антимутагены, пос в процессе фармако лактического примо ✓ Лекарства (стре	Мелатонин	
и др., применяемые в ✓ Специально син (бемитил);	Гормоны щитовидной железы	
✓ Биологически акт карбинол и др.); ✓ Синтетические дибунол и др.)	Некоторые клеточные метаболиты	
Задание 2. Заполните	таблицу «Классификаци	и мутаций».
1. По причинам, вызвавшим мутации 2. По мутировавшим клеткам 3. По изменению фенотипа	a) 6) a) 6) a) 6)	
4. По исходу для организма	а) б) в)	
5. По изменению	a)	
генетического	б)	
материала	B)	

Задание 3. Решите залачи.

Задача № 1. Ежедневно в каждой клетке человека около 200 цитозинов на гаплоидный геном превращается в урацил в результате спонтанного дезаминирования. К чему приведёт дезаминирование цитозина при условии, что он метилирован?


Задача № 2. У женщины с моносомией по X-хромосоме обнаружен дальтонизм. Укажите её генотип по гену дальтонизма, и вероятность передачи этого гена потомству.

Задача № 3. Женщина, переболевшая во время беременности коревой краснухой, родила глухого сына. У неё и мужа слух нормальный, в родословной обоих супругов глухота не отмечена. Как это можно объяснить.


Задача № 4. Известно, что лимфома Бёркитта (онкологическое заболевание, развивающееся из В-лимфоцитов) развивается из-за нарушения активности онкогена *С-МҮС*, расположенного в 8-й хромосоме. Заболевание может быть спровоцировано тремя хромосомными мутациями:

- а) транслокация участка q-плеча 8-й хромосомы на q-плечо 14-й; б) транслокация участка
- о) транслокация участка р-плеча 2-й хромосомы на q-плечо 8-й;
- в) транслокация участка q-плеча 8-й хромосомы на q-плечо 22-й.

Имеется ли одна из данных мутаций в хромосомах, представленных на фотографии? Объясните, почему вы выбрали ваш вариант ответа.

Задача № 5. Отец голубоглазый, мать кареглазая (гомозиготна), а у дочери один глаз карий, а второй — голубой. Как это можно объяснить?

Задание 5. Заполните таблицу и сделайте выводы о влиянии различных точечных мутаций на структуру белка.

Изначальная иРНК	5'АУГАЦЦГАЦЦЦГАААГГГАЦЦЗ'
Пептид	
Мутация	5'АУГАЦЦГАЦЦЦ Ц АААГГГАЦЦЗ'
Пептид	
Мутация	5'АУГЦЦЦГАЦЦЦГАААГГГАЦЦЗ'
Пептид	
Мутация	5'АУГАЦЦГАЦЦЦГ У ААГГГАЦЦЗ'
Пептид	
Мутация	5'АУГАЦЦГАЦГЦЦГАААГГГАЦЦЗ'
Пептид	

Задание 6. Установите соответствие между видом репарации и его характерными особенностями.

А. Прямая репарация	1. Склонный к ошибкам механизм соеди-		
	нения двуцепочечных разрывов		
Б. Репарации путём гомоло-	2. Происходит замена отдельного нуклео-		
гичной рекомбинации	тида		
В. Эксцизионная репарация	3. Способ, которым устраняются пирими-		
оснований	диновые димеры у человека		
Г. Негомологичное соеди-	4. Повреждения устраняются без замены		
нение концов	нуклеотидов		
Д. Эксцизионная репарация	5. Репарация с участием белков, обладаю-		
нуклеотидов	щих эндо- и экзонуклеазной активностью		
	и последующим заполнением бреши в нук-		
	леотидной цепи ДНК-полимеразой		
Е. Репарация ошибочно	6. Использование комплементарного участ-		
спаренных нуклеотидов	ка гомологичной хромосомы или сестрин-		
	ской хроматиды для восстановления		
	двуцепочечного разрыва		

A	Б	В	Γ	Д	Е

Подпись преподавателя

Занятие № 12. Тема: ГЕНЕТИКА ПОПУЛЯЦИЙ

~	>>	202 1	Γ.

Цель занятия: изучить генетику популяций человека; влияние элементарных эволюционных факторов, научиться решать задачи с использованием закона Харди–Вайнберга.

контрольные вопросы	5. Естественный отбор —
1. Популяция. Экологическая и генетическая характеристики популяции. Генофонд.	
 Идеальная популяция. Закон Харди–Вайнберга. Факторы, нарушающие равновесие аллелей и генотипов: естественный отбор, мутации, миграция, дрейф генов. 	6. Иммиграция —
4. Отличительные признаки популяции человека.5. Типы браков. Инбридинг. Брачная ассортативность. Коэффициент инбридинга.	
6. Большие популяции, демы и изоляты. Особенности генофонда изолятов. Эффекты родоначальника и «бутылочного горлышка».	7. Коэффициент инбридинга —
7. Влияние элементарных эволюционных факторов на человеческие популяции.8. Генетический груз, его биологическая сущность и медицинское значение.	8. Положительное ассортативное скрещивание —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	r i i i i i i i i i i i i i i i i i i i
1. Генетический груз —	9. Популяция —
2. Генофонд —	10. 211
3. Дем —	10. Эффект «бутылочного горлышка» —
4. Дрейф генов —	11. Эффект основателя (родоначальника) —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1. Характерные признаки идеальной популяции:** а) большая численность; б) малая численность; в) полная панмиксия; г) отсутствие мутаций; д) наличие мутаций.
- **2.** В математическом выражении закона Харди-Вайнберга р обозначает частоту: а) доминантной аллели; б) рецессивной аллели; в) доминантных гомозигот; г) рецессивных гомозигот; д) гетерозигот.
- **3.** В математическом выражении закона Харди–Вайнберга р² обозначает частоту: а) доминантной аллели; б) рецессивной аллели; в) доминантных гомозигот; г) рецессивных гомозигот; д) гетерозигот.
- **4.** В математическом выражении закона Харди–Вайнберга 2рq обозначает частоту: а) доминантной аллели; б) рецессивной аллели; в) доминантных гомозигот; г) рецессивных гомозигот; д) гетерозигот.
- **5.** Суть закона Харди-Вайнберга: а) существуют гомологические ряды в наследственной изменчивости; б) в малых популяциях частоты генов и генотипов не изменяются в ряду поколений; в) малые популяции не обладают генетическим полиморфизмом; г) в идеальной популяции частоты генов и генотипов не изменяются в ряду поколений; д) в идеальной популяции частоты генов и генотипов изменяются в ряду поколений.
- **6.** Дрейф генов это: а) случайные колебания частот генов и генотипов в популяциях; б) увеличение численности природных популяций; в) уменьшение численности природных популяций; г) колебания численности природных популяций вследствие колебаний факторов внешней среды; д) результат борьбы за существование.
- 7. Изоляция это: а) случайные колебания частот генов и генотипов в малых популяциях; б) стабильность частот генов и генотипов в больших популяциях; в) колебания численности природных популяций вследствие колебаний факторов внешней среды; г) ограничение свободного скрещивания между особями разных популяций; д) объединение малых популяций в большие.
- **8.** Генетический груз это: а) насыщенность популяций положительными мутациями; б) насыщенность популяций мутациями, снижающими приспособленность отдельных особей; в) насыщенность популяций нейтральными мутациями; г) насыщенность популяций отрицательными мутациями; д) отсутствие мутаций в популяциях.

- **9.** Генетические процессы, сильно проявляющиеся в малых популяциях: а) соблюдается закон Харди–Вайнберга; б) изменяются рождаемость и смертность; в) изменяются частоты генотипов; г) изменяется возрастной и половой состав; д) изменяется численность.
- **10.** Коэффициент инбридинга это: а) вероятность рождения дизиготных близнецов; б) вероятность инцестных браков; в) вероятность того, что у какой-то особи в данном локусе гомологичных хромосом окажутся две аллели, разные по происхождению; г) вероятность рождения монозиготных близнецов; д) вероятность того, что у какой-то особи в данном локусе гомологичных хромосом окажутся две аллели, одинаковые по происхождению.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Приток в популяцию новых генотипов из других популяций называется ...
- **2.** Популяции человека численностью от 1500 до 4000 человек, внутригрупповые браки в которых составляют 80–90 %, называются ...
- **3.** Популяции человека, численность которых не превышает 1500 человек и в которых внутригрупповые браки превышают 90 %, называются ...
- 4. Отсутствие ограничений для скрещивания особей в популяции, называется ...
- **5.** Явление случайных колебаний частот генов и генотипов, особенно заметное в малых популяциях, называется ...
- **6.** Насыщение популяций рецессивными генами, снижающими приспособленность отдельных особей к условиям существования, называется
- **7.** Кровнородственные браки приводят к ... депрессии, так как у родственников высока степень вероятности гетерозиготности по одному и тому же рецессивному патологическому гену.

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите схему и объясните механизм наблюдаемого явления.

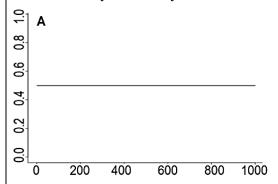
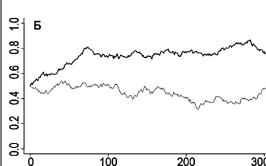
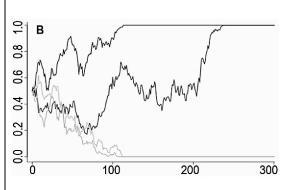


Рис. 1. Моделирование дрейфа генов По оси X — поколения, по Y — частота p.


Обе аллели не влияют на приспособленность, изначальная частота p=0,5.


А — идеальная популяция на протяжении 1000 поколений, дрейфа нет;

Б — 2 популяции из 1000 особей на протяжении 300 поколений;

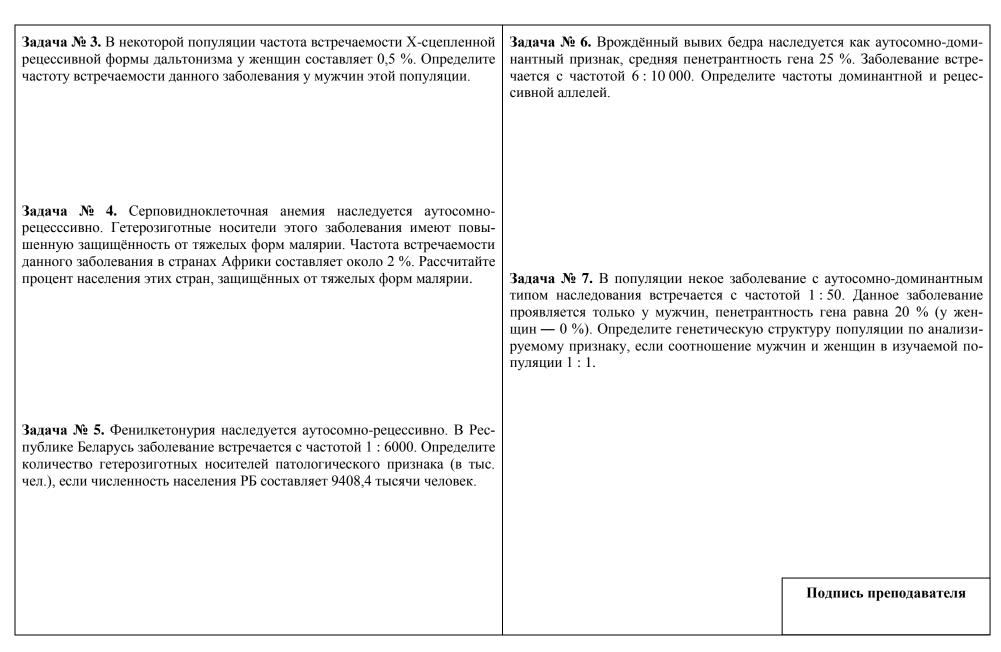
В — 4 популяции из 100 особей на протяжении 300 поколений.

Менее чем за 300 поколений одна из аллелей теряется (частота p достигает либо 0 %, либо 100 %)

Задание 2. Решите задачи.

Задача № 1. Определите частоту встречаемости альбиносов в большой по численности африканской популяции, где концентрация патологического рецессивного гена составляет 10 %.

Признак	Ген	Генотип
Норма	В	BB; Bb
альбинизм	b	bb


 ${f B}$ — частота доминантной аллели $({f p}); {f b}$ — частота рецессивной аллели $({f q});$

BB — частота доминантных гомозигот (p^2); Bb — частота гетерозигот (2pq);

bb — частота рецессивных гомозигот (q^2) .

$$p + q = 1$$
$$p^2 + 2pq + q^2 = 1$$

Задача № 2. В ходе обследования 4300 лиц одной из популяций было обнаружено, что 3009 из них могут распознать горький вкус фенилтиокарбамида (ФТК), а 1291 — нет. Определите генетическую структуру данной популяции, если способность ощущать вкус ФТК наследуется как аутосомно-доминантный признак

Занятие № 13. Тема: ГЕНЕТИКА ЧЕЛОВЕКА

« »	202 г.	Γ.
-----	--------	----

Цель занятия: изучить задачи генетики человека на современном этапе, основные методы, экспресс-методы и методы пренатальной диагностики наследственных заболеваний; научиться решать задачи по анализу родословных, выявлению роли наследственности и среды в формировании признаков.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Генетика человека. Медицинская генетика и ее задачи.
- 2. Человек как специфический объект генетического анализа.
- 3. Классификация методов генетики человека.
- **4.** Основные методы генетики человека: генеалогический, близнецовый, цитогенетический, биохимический и другие.
- **5.** Методы диагностики хромосомных болезней человека: классическое кариотипирование, FISH-, SKY- и SNP-кариотипирование.
- **6.** Экспресс-методы диагностики: микробиологические, выявление X-и Y-полового хроматина, биохимические, дерматоглифический.
- 7. Пренатальные методы выявления наследственной патологии.
- **8.** Пренатальный скрининг. Морально-этические аспекты пренатальной диагностики.
- **9.** Медико-генетическое консультирование, его цели, задачи и этапы. Показания для медико-генетического консультирования.

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

- 1. Биологическое моделирование —
- 2. Кариотипирование спектральное (SKY) —
- 3. Конкордантность —
- 4. Пробанд —
- 5. Родословная —
- 6. Скрининг новорожденных (неонатальный скрининг) —
- 7. Цитогенетика —

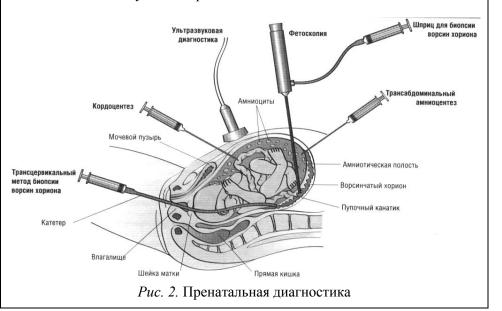
ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1. Трудности изучения генетики человека:** а) простой кариотип; б) раннее половое созревание; в) малое количество потомков; г) большое количество потомков; д) возможность экспериментирования.
- **2.** Этапы генеалогического анализа: а) сбор анамнеза; б) определение частот генов и генотипов в популяции; в) построение генетической карты хромосомы; г) изучение роли среды в проявлении признака; д) анализ родословной.
- **3. Цитогенетический метод основан:** а) на использовании закона Харди–Вайнберга; б) изучении активности ферментов; в) построении и анализе родословных; г) изучении моно- и дизиготных близнецов; д) на изучении кариотипа.
- 4. Последовательность этапов цитогенетического метода: 1) обработка клеток гипотоническим раствором NaCl; 2) окрашивание хромосом; 3) остановка митоза колхицином на стадии метафазы; 4) культивирование клеток на искусственных питательных средах; 5) стимуляция митозов $\Phi\Gamma$ A. a) 1-5-3-4-2; б) 4-5-3-1-2; в) 4-1-5-3-2; г) 5-3-4-1-2; д) 4-5-1-3-2.
- **5.** Формула Хольцингера используется для вычисления: а) частоты генов и генотипов в популяции; б) коэффициента наследования; в) роли среды в проявлении признака; г) вероятности наследования; д) степени генетического риска.
- **6.** Биохимические методы генетики человека это изучение: а) общего анализа крови; б) активности ферментов плазмы крови; в) активности ферментов желудочного сока; г) состава первичной мочи; д) пространственной структуры ферментов.
- **7. Микробиологические тесты позволяют:** а) строить генетические карты хромосом человека; б) определять количество X-хромосом; в) определять количество Y-хромосом; г) выявлять некоторые хромосомные мутации; д) выявлять некоторые дефекты обмена веществ.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- **1.** Вероятность рождения больного ребенка у гетерозиготных родителей при аутосомно-доминантном типе наследования (полное доминирование, пенетрантность гена 25 %) составляет ... %.
- **2.** Вероятность рождения больных детей при X-сцепленном доминантном типе наследования у гетерозиготной матери и здорового отца (пенетрантность гена 40 %) составляет ... %.
- **3.** Тип наследования, при котором отец передает свой признак всем дочерям, но ни одному из сыновей, называется ...
- **4.** Метод генетики, позволяющий выявлять геномные и хромосомные мутации, называется ...
- **5.** Гетерозиготных носителей патологического гена позволяют выявлять биохимические ... тесты.


ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Заполните таблицу.

	Конкордантность, %			Фактор,
Признаки	монози-	Дизигот-		определяющий
или заболевания	готные	ные	Н	проявление признака
iiiiii saoonebaiiiiii	близнецы	близнецы		(наследственность
	(MZ)	(DZ)		или среда)
Папиллярные линии	92	40		
Корь	95	87		
Туберкулез	76	28		
Сахарный диабет	69	18		
Шизофрения	65	10		
Расщелины губы и нёба	30	5		
Эндемичный зоб	92	87		
Флюороз эмали	97	94		

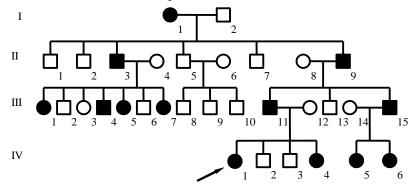
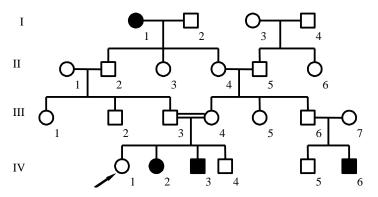


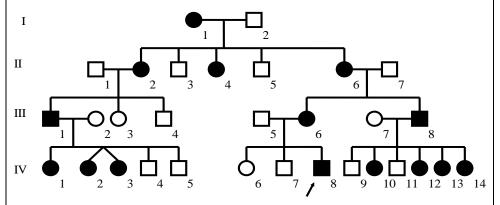
Рис. 1. Получение кариотипа цитогенетическим методом

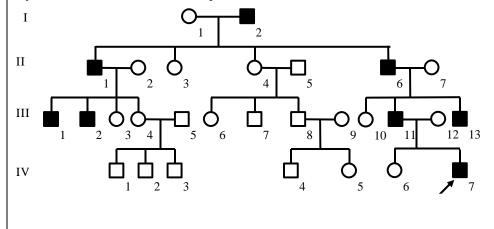
Задание 3. Решите задачи.


Задача № 1. Проанализируйте родословную, определите тип наследования и установите генотипы членов родословной.

Тип наследования	Название синдрома	Локализация гена	Признаки
Аутосомно-	Волосо-зубо-	Длинное плечо	Мелкие зубы с тонкой эма-
доминантный	костный	17-й хромосомы	лью, аномальное расположе-
	синдром		ние пульпы и увеличенную
	_		полость
	Глазо-зубо-	Длинное плечо	Неправильный рост зубов,
	пальцевый	6-й хромосомы	микродентия и частичная
	синдром		адентия, гипоплазия эмали,
			ранний кариес
	Синдром	Длинное плечо	Гипоплазия нижней челюсти
	Томсона	5-й хромосомы	(78 %) и скуловых костей
			(81 %), высокое арковидное
			нёбо или его расщелина
	ЕЕС-синдром	Длинное плечо	(35 %)
		7-й хромосомы	Расщелина губы и нёба, мик-
			родентия, неправильная фор-
			ма зубов, гипоплазия эмали

Примечание. После названия аномалии в скобках указана пенетрантность признака.


Задача № 2. Проанализируйте родословную, определите тип наследования и установите генотипы членов родословной.


Тип	Название	Локализация	Признаки
наследования	синдрома	гена	
Аутосомно-	Синдром	Длинное плечо	Гипоплазия верхней челюсти (81 %), выступающие резцы (65 %), микрогения (97 %)
рецессивный	Коэна	8-й хромосомы	
	Хондроэкто- дермальная дистрофия	Короткое плечо 4-й хромосомы	Частичная адентия, мелкие, рано выпадающие зубы неправильной формы, расщелина губы
	Пикнодизостоз	Длинное плечо 1-й хромосомы	Гипоплазия нижней челюсти, нарушение прорезывания зубов, аномалии формы и расположения зубов

Примечание. После названия аномалии в скобках указана пенетрантность признака.

Задача № 3. Проанализируйте родословную, определите тип наследования и установите генотипы членов родословной.

Задача № 4. Проанализируйте родословную, определите тип наследования и установите генотипы членов родословной.



Тип	Название	Локализация	Аномалии
наследования	синдрома	гена	
X-сцепленный доминантный	Рото-лице- пальцевой синдром, тип I	Короткое плечо Х-хромосомы	Расщелина нёба (80 %), аномалии передних зубов (50 %, дольчатость языка (100 %), гипоплазия скуловых костей (75 %)
	Ото-палато- дигитальный синдром	Длинное плечо X-хромосомы	Расщелина нёба, ано- мальный рост зубов, ча- стичная адентия
	Синдром недержания пигмента	Длинное плечо X-хромосомы	Коническая форма зубов, гипо- или адентия (65 %), расщелина губы и нёба

Примечание. После названия аномалии в скобках указана пенетрантность признака.

Голандриче-	Азооспермия	Негомологичный	Мужское бесплодие. Сек-
ский		участок	суальная функция может
		Ү-хромосомы	оставаться не нарушен-
			ной. Дискомфорт, боль,
			отек или припухлость
			мошонки

Задача № 5. Проанализируйте родословную, определите тип наследования и установите генотипы членов родословной.

Тип наследования	Название синдрома	Локализация гена	Признаки
Х-сцепленный	Ангидротическая	Длинное плечо	Гипо- или адентия,
рецессивный	эктодермальная	Х-хромосомы;	аномальная форма
	дисплазия;		зубов, тремы
	Синдром	Короткое плечо	Гипоплазия верх-
	Аарского	Х-хромосомы	ней челюсти (85 %),
			макродентия

Примечание. После названия аномалии в скобках указана пенетрантность.

Задача № 6. Конкордантность монозиготных близнецов по избыточной массе тела составляет 80 %, а дизиготных — 30 %. Каково соотношение наследственных и средовых факторов в формировании признака?

Задание 4. Заполните таблицу.

Методы генетики человека	Цель и возможности метода
. Генеалогический	
. Цитогенетический	
Близнецовый	
. Биохимический	
б. Метод биологического иоделирования	
. Методы ренатальной иагностики	
Методы экспресс- иагностики	

Подпись преподавателя

Занятие № 14. Тема: ИТОГОВОЕ ЗАНЯТИЕ ПО МОЛЕКУЛЯРНОЙ БИОЛОГИИ И ГЕНЕТИКЕ

« »	202	Γ.
------------	-----	----

Цель занятия: итоговый контроль знаний студентов по цитологии и генетике и умению решать типовые задачи.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- **1.** Сущность жизни, роль белков и нуклеиновых кислот в организации живых систем.
- 2. Уровни организации живой материи.
- 3. Роль биологии в системе медицинского образования.
- 4. Человек как биологическое и социальное существо.
- **5.** Клеточная теория. Предмет, задачи и методы цитологии (световая, электронная и люминесцентная микроскопия, гистохимический и иммуногистохимический, дифференциальное центрифугирование, авторадиография, морфометрия и др.)
- **6.** Метод световой микроскопии. Устройство светового микроскопа. Правила работы с микроскопом.
- 7. Вирусы. Прокариоты и эукариоты.
- **8.** Модели элементарной биологической мембраны. Строение, свойства и функции плазмалеммы.
- **9.** Транспорт веществ через мембрану: пассивный транспорт (диффузия, осмос, облегченная диффузия), активный транспорт (ионные каналы, их функции, эндоцитоз, экзоцитоз). Ионные каналы и их функции.
- **10.** Цитозоль. Цитоскелет: микротрубочки, промежуточные филаменты, микрофиламенты. Внутриклеточный транспорт веществ.
- 11. Ассимиляция и диссимиляция. Пластический обмен. Рибосомы.
- **12.** Эндомембранная система клетки (мембрана ядра, ЭПС, КГ, лизосомы, пероксисомы, эндосомы, везикулы).
- **13.** Характеристика этапов энергетического обмена в клетке. Митохондрии. Ферментные системы митохондрий.
- **14.** Болезни человека, обусловленные нарушениями на клеточном уровне (лизосомные и пероксисомные).
- 15. Доказательства роли ДНК в передаче наследственной информации.
- 16. Строение и функции ДНК. Правила Чаргаффа.
- **17.** Организация наследственного материала у неклеточных и прокариотических форм жизни.
- 18. Строение и функции ядра клетки.

- 19. Организации генетического материала эукариот (генный, хромосомный и геномный уровни).
- 20. Упаковка генетического материала эукариот. Эухроматин и гетерохроматин.
- **21.** Строение метафазной хромосомы. Типы хромосом. Правила хромосом. Кариотип и идиограмма. Классификации хромосом человека.
- 22. Плазмогены. Цитоплазматическая наследственность.
- **23.** Клеточный цикл. Регуляторы клеточного цикла (циклины и циклинзависимые киназы). Интерфаза.
- 24. Полуконсервативный механизм репликации ДНК. Репликон.
- **25.** Типы деления клеток: митоз, амитоз, эндомитоз. Политения. Бинарное деление прокариот.
- **26.** Митоз: характеристика фаз, распределение генетического материала, биологическое значение.
- 27. Мейоз как разновидность митоза: характеристика фаз, распределение генетического материала, биологическое значение.
- 28. Клеточная пролиферация и гибель клеток. Некроз и апоптоз. Каспазы.
- 29. Центральная догма молекулярной биологии.
- 30. Ген, его свойства и функции. Генетический код и его свойства.
- 31. Рибонуклеиновая кислота, ее виды, функции РНК.
- **32.** Транскрипция. Транскрипционные факторы. Синтез иРНК у эукариот: первичный транскрипт, процессинг про-иРНК.
- 33. Рекогниция. Трансляция: инициация, элонгация и терминация.
- 34. Посттрансляционные изменения белков, фолдинг белков (шапероны).
- **35.** Международные научные проекты изучения генома человека: Human genome, NCODE, Roadmap.
- 36. Характеристика генома человека. Избыточность генома, ее значение
- **37.** Классификация генов (структурные и функциональные, «гены домашнего хозяйства» и тканеспецифические).
- 38. Транскриптом, протеом и метаболом человека.
- 39. Оперон. Лактозный и триптофановый опероны. Полицистронная РНК.

- **40.** Регуляция транскрипции у эукариот: преинициаторный комплекс, энхансеры, сайленсеры.
- **41.** Эпигенетические механизмы регуляции работы генов: модификации гистонов, метилирование цитозина, СрG-островки, регуляторные системы некодирующих РНК.
- **42.** Методы исследования ДНК: гель-электрофорез, рестрикционный анализ, гибридизация нуклеиновых кислот, ДНК-микрочипы.
- **43.** ПЦР и ее виды: количественная ПЦР, ПЦР с обратной транскрипцией, мультиплексная ПЦР.
- **44.** Методы секвенирования генома (по Сэнгеру, пиросеквенирование, нанопоровое, бисульфитное).
- **45.** Генетическая инженерия: цели, задачи и этапы. Способы получения генов для трансгенеза.
- **46.** Рекомбинантная ДНК. Конструирование векторов, их виды: плазмиды, космиды, фаговые векторы, фазмиды.
- **47.** Введение рекомбинантных ДНК в клетку-реципиент. Отбор трансформированных клеток. Селективные и репортерные гены.
- **48.** Биотехнология, ее значение для медицины. Генетически модифицированные организмы. Продукты питания, содержащие ГМО.
- 49. Генетика как наука. Гибридологический анализ, его сущность.
- **50.** Закономерности наследования при моногибридном скрещивании. Гипотеза чистоты гамет. Закономерности наследования при полигибридном скрещивании.
- **51.** Анализирующее скрещивание: прямое и возвратное. Условия, ограничивающие проявление законов Г. Менделя. Плейотропное действие гена.
- **52.** Внутриаллельное взаимодействие генов (полное и неполное доминирование, сверхдоминирование, кодоминирование и аллельное исключение).
- **53.** Множественные аллели. Наследование групп крови по системам: AB0, MN и резус-фактору.
- **54.** Межаллельное взаимодействие генов (комплементарность, эпистаз, полимерия).
- **55.** Опыты Т. Моргана. Сцепление генов: полное и неполное. Группы сцепления. Хромосомная теория наследственности. Генетические и цитологические карты хромосом.

- **56.** Пол как биологический признак. Признаки ограниченные и контролируемые полом, сцепленные с полом и голандрические.
- **57.** Теории определения пола. Дифференцировка и переопределение пола в онтогенезе. Генная регуляция гонадогенеза у человека.
- **58.** Особенности детерминации пола у человека: физикальные, промежуточная и социально-психологические детерминанты.
- **59.** Нарушения формирования пола у человека. Этические и юридические аспекты изменения морфологического и гражданского пола.
- **60.** X-половой хроматин. Гипотеза М. Лайон о женском мозаицизме по половым хромосомам.
- 61. Изменчивость, ее виды. Фенотипическая изменчивость, фенокопии.
- **62.** Генотипическая изменчивость. Рекомбинации, механизмы их возникновения. Мутационная изменчивость. Классификации мутаций. Причины мутаций: ошибки копирования ДНК, неравный кроссинговер. Генокопии.
- **63.** Физические, химические и биологические мутагенные факторы. Генетическая опасность загрязнения окружающей среды мутагенами.
- 64. Устойчивость и репарация генетического материала. Антимутагены.
- **65.** Виды репарации. Виды эксцизионной репарации, репарация двуцепочечных разрывов. Фотореактивация. Роль нарушений механизмов репарации в патологии человека.
- 66. Канцерогенез, понятие об онкогенах и генах-супрессорах опухолей.
- **67.** Популяция. Экологическая и генетическая характеристики популяции. Генофонд. Идеальная популяция. Закон Харди–Вайнберга.
- **68.** Факторы, нарушающие равновесие аллелей и генотипов: естественный отбор, мутации, миграция, дрейф генов.
- **69.** Отличительные признаки популяции человека. Типы браков. Инбридинг. Брачная ассортативность. Коэффициент инбридинга.
- **70.** Большие популяции, демы и изоляты. Особенности генофонда изолятов. Эффекты родоначальника и «бутылочного горлышка».
- **71.** Влияние элементарных эволюционных факторов на человеческие популяции. Генетический груз, его биологическая сущность и медицинское значение.
- 72. Генетика человека. Медицинская генетика и ее задачи.
- 73. Человек как специфический объект генетического анализа. Классификация методов генетики человека.

- **74.** Основные методы генетики человека: генеалогический, близнецовый, цитогенетический, биохимический и другие.
- **75.** Методы диагностики хромосомных болезней человека: классическое кариотипирование, FISH-, SKY- и SNP-кариотипирование.
- **76.** Экспресс-методы диагностики: микробиологические, выявление X-и Y-полового хроматина, биохимические, дерматоглифический.
- 77. Пренатальные методы выявления наследственной патологии.
- **78.** Пренатальный скрининг. Морально-этические аспекты пренатальной диагностики.
- **79.** Медико-генетическое консультирование, его цели, задачи и этапы. Показания для медико-генетического консультирования.

Коллоквиум (компьютерное тестирование) содержит 22 вопроса:

- ✓ 12 закрытых вопросов (от 1 до 3 верных вариантов, засчитывается только полный ответ),
- √ 5 открытых вопросов,
- ✓ 3 задачи,
- ✓ 2 теста на установление соответствия либо последовательности.

Вопросы могут содержать иллюстрации.

На решение отводится 25 минут.

Разрешается использование черновиков и калькуляторов (за исключением калькуляторов в телефонах и прочих цифровых носителях информации).

В открытых тестах и задачах вводите ответ в соответствующих вопросам числах и падежах. Не допускайте наличия пробелов до или после введённого ответа, слова в ответе отделяйте одним пробелом.

Не вводите слова, не требуемые в ответе, либо несколько ответов сразу, так как они также не будут засчитаны.

Грамматические ошибки в ответах недопустимы. Размер шрифта не имеет значения.

Достаточно полные по смыслу синонимы верных ответов также засчитываются.

Подпись преподавателя

Занятие № 15. Тема: РАЗМНОЖЕНИЕ ОРГАНИЗМОВ

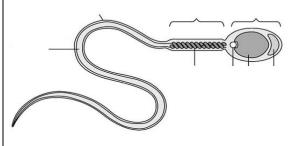
~	>>	202	Γ.
11	//	202	т.

Цель занятия: изучить размножение как одно из универсальных свойств живого, его способы и эволюцию; изучить строение половых клеток, гаметогенез и особенности репродукции человека.

контрольные вопросы	5. Оплодотворение —
 Размножение — универсальное свойство живого. Формы бесполого размножения, биологическое значение. Формы полового размножения, биологическое значение. Половой процесс. Гермафродитизм. 	6. Половой процесс —
 Гаметогенез (овогенез и сперматогенез) у человека. Регуляция гаметогенеза у человека. Морфологические и функциональные особенности зрелых гамет человека. 	7. Пронуклеус —
6. Осеменение. Особенности оплодотворения у человека.7. Преодоление бесплодия у человека. Искусственное осеменение, экстракорпоральное оплодотворение и его варианты.	8. Синкарион —
8. Преимплантационная генетическая диагностика.9. Этические проблемы научных исследований с использованием человеческих эмбрионов.	9. Сперматогенез —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ
1. Акросома —	1. Основные формы размножения организмов: а) половое; б) с оплодотворением; в) партеногенез; г) фрагментация; д) бесполое.
2. Анизогамия —	2. Характеристика бесполого размножения: а) в воспроизведении себе подобного участвуют две особи; б) в воспроизведении себе подобного участвует одна особь; в) генотип дочерней особи отличается от родительского; г) генотип дочерней особи идентичен родительскому; д) число до-
3. Гиногенез —	черних особей возрастает медленно. 3. Характеристика полового размножения: а) в воспроизведении себе подобного участвуют две особи; б) в воспроизведении себе подобного всегда участвует одна особь; в) генотип дочерней особи отличается от роди-
4. Оогенез —	тельских; г) генотип дочерней особи идентичен родительским; д) быстро увеличивается число дочерних особей. 4. Формы бесполого размножения животных: а) вегетативными орга-
	нами. у) контистина. в) конлидниа. г) попизмуриониа. п) фрагментаниа

- **5. Половой процесс** это: а) размножение организмов; б) слияние двух гамет; в) образование половых клеток; г) обмен генетической информацией между особями одного вида; д) объединение генетической информации особей одного вида.
- **6.** Продвижение сперматозоидов в женских половых путях обеспечивается: а) подвижностью сперматозоидов; б) неподвижностью яйцеклетки; в) сокращением мышечной оболочки стенки яйцевода; г) выделением гиногамонов; д) сокращением мышц брюшной стенки.
- **7.** Типы яйцеклеток в зависимости от содержания и распределения желтка: а) изолецитальные; б) анимальные; в) вегетативные; г) центролецитальные; д) смешанные.
- **8. Изолецитальные яйцеклетки:** а) содержат много желтка; б) содержат мало желтка; в) желток распределен равномерно; г) желток сконцентрирован на вегетативном полюсе; д) желток расположен на анимальном полюсе.
- **9.** Оплодотворение это: а) слияние яйцеклетки и сперматозоида; б) процесс сближения яйцеклетки и сперматозоида; в) движение сперматозоидов по половым путям самки; г) выход яйцеклетки из яичника; д) половой процесс.
- **10. Характерные признаки сперматозоида:** а) подвижен; б) неподвижен; в) имеет округлую или овальную форму; г) имеет головку, шейку и хвост; д) содержит мало желтка.
- **11.** Партеногенез это: а) слияние сперматозоида и яйцеклетки; б) половой процесс; в) сближение сперматозоида и яйцеклетки; г) развитие яйцеклетки после оплодотворения; д) развитие яйцеклетки без оплодотворения.
- **12. Этапы оплодотворения:** а) разрушение яйцеклеток гиалуронидазой сперматозоидов; б) дистантное взаимодействие гамет; в) контактное взаимодействие гамет; г) проникновение головки и шейки сперматозоида в цитоплазму яйцеклетки; д) дробление яйцеклетки.
- **13.** Особенности репродукции человека: а) женщины способны к репродукции с периода полового созревания до пожилого возраста; б) мужчины способны к репродукции с периода полового созревания до 50 лет; в) у женщин в течение лунного месяца образуется один овоцит ІІ порядка; г) у мужчин сперматозоиды образуются периодически; д) чем старше мужчина, тем больший промежуток времени между мейозом-1 и мейозом-2.

- **14. Периоды овогенеза:** а) развития, размножения и роста; б) размножения, роста и созревания; в) роста, созревания и формирования; г) созревания, формирования и развития; д) формирования, роста и развития.
- **15.** В период размножения при гаметогенезе клетки делятся: а) митозом; б) мейозом; в) амитозом; г) фрагментацией; д) шизогонией.
- **16.** В период созревания при гаметогенезе клетки делятся: а) митозом; б) мейозом; в) амитозом; г) фрагментацией; д) шизогонией.
- **17.** В результате мейоза образуются клетки: а) с диплоидным набором хромосом; половые; б) с гаплоидным набором хромосом; в) нервные с диплоидным набором хромосом; г) соматические с гаплоидным набором хромосом; д) половые.
- **18.** Гаметогенез это: а) деление соматических клеток; б) размножение гамет; в) слияние гамет; г) процесс образования и созревания гамет; д) мейотическое деление клеток.


ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Обмен генетической информацией между особями одного вида называется ...
- 2. Стадия слияния женского и мужского пронуклеусов при оплодотворении называется ...
- 3. Половое размножение без оплодотворения называется ...
- **4.** Развитие организма на основе генетической информации только мужских гамет называется ...
- 5. В период размножения при гаметогенезе клетки делятся ...
- 6. В период созревания при гаметогенезе клетки делятся ...
- **7.** Бесполое размножение зародыша, возникшего путем полового размножения, называется ...
- **8.** Гамоны, инактивирующие агглютинацию сперматозоидов, называются ...
- 9. Сперматозоиды человека обладают способностью к оплодотворению в течение ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите схемы и микропрепараты, сделайте обозначения.

Puc. 1. Схема сперматозоида человека:

- *1* головка;
- 2 средняя часть;
- 3 мембрана;
- 4 акросома;
- *5* ядро;
- 6 митохондрии;
- *7* жгутик;
- 8 центросома

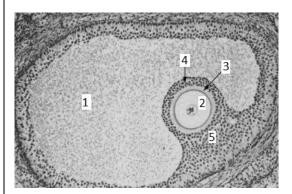
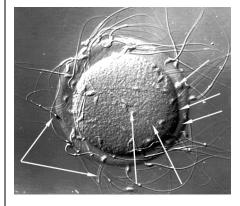



Рис. 2. Граафов пузырек:

- овоцит II порядка;
- яйценосный бугорок;
- лучистый венец;
- полость фолликула;
- прозрачная оболочка

Puc. 3. Оплодотворение яйцеклетки мыши *in vitro*:

- *1* полярное тельце;
- 2 прозрачная оболочка;
- 3 пронуклеус;
- 4 мембрана;
- 5 цитоплазма;
- 6 сперматозоиды

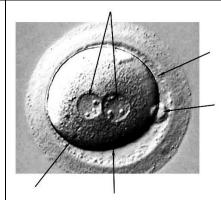


Рис. 4. Зигота человека:

- 1 полярное тельце;
- 2 прозрачная оболочка;
- 3 пронуклеусы;
- 4 мембрана;
- 5 цитоплазма

Задание 2. Заполните таблицу «Отличия полового и бесполого размножения».

Тип размножения	Половое	Бесполое
Оплодотворение		
Изменение набора хромосом		
Генотип потомства		
Скорость воспроизведения потомства		
Количество родительских организмов		
Используемые клетки		
Биологическая роль		

Залание 3. Решите залачи.

Задача № 1. В овоците II порядка и в сперматоците II порядка в одной из хроматид возник мутантный ген. Одинакова ли вероятность наличия этого гена в мужской и женской гамете?

Задача № 4. При партеногенезе организм развивается из неоплодотворенной яйцеклетки. Почему сперматозоид без оплодотворения не может дать начало новому организму?

Задача № 2. Для половых клеток характерно необычное отношение объема ядра к объему цитоплазмы: у яйцеклеток оно сильно снижено (1 : 500), а у сперматозоидов, наоборот, ядерно-цитоплазматическое отношение очень высокое (2 : 1). Свяжите показатели ядерно-цитоплазменных отношений с функциональной ролью половых клеток.

Задача № 5. Белая планария — гермафродит и может дать потомство в результате самооплодотворения. Кроме этого, она способна размножаться бесполым путем. Одинаков ли генотип у потомков одной особи, полученных в результате самооплодотворения и в результате бесполого размножения?

Задача № 3. При вскрытии трупа 22-летней женщины оказалось, что при исследовании яичников в них обнаружено:

Правый яичник (меньший)	Левый яичник (больший)
17 000 фолликулов	25 000 фолликулов
26 рубцов от желтых тел	48 рубцов от желтых тел

В каком приблизительно возрасте у этой женщины могли начаться овуляции?

Задача № 6. При исследовании оплодотворяющей способности сперматозоидов у мужчин по фамилии П. и И. установлено, что сперматозоиды выглядят нормально, но у П. они не движутся, а у И. собираются на наружной оболочке женской половой клетки, не проникая внутрь. Объясните, с дефектами в каких структурах теоретически могут быть связаны эти нарушения?

Рис. 5. Экстракорпоральное оплодотворение

Показания к проведению ЭКО

Мужское бесплодие:

- снижение количества, подвижности сперматозоидов;
- нарушение нормального строения сперматозоидов;
- отсутствие сперматозоидов в эякуляте из-за «закупорки» семявыносящих протоков.

Женское бесплодие:

- отсутствие или непроходимость маточных труб;
- ановуляция (недостаточность яичников, выражающаяся в отсутствии созревания фолликулов и овуляции);
- поздний репродуктивный возраст (при истощении функции яичников может потребоваться использовать яйцеклетки донора или донорские эмбрионы);
- во всех случаях безуспешного лечения бесплодия (эндометриоз, нарушения овуляции и т.д.) другими методами;
- бесплодие неясного генеза.

Задание 5. Заполните таблицу «Этапы ЭКО». Название этапа Описание этапа 3. 5. 6. Подпись преподавателя

Занятие № 16. Тема: ГЕНЕТИЧЕСКИЕ ОСНОВЫ ОНТОГЕНЕЗА

‹ ‹	<i>))</i>	202	Γ.
"	<i>))</i>	202	Ι.

Цель занятия: изучить стадии эмбриогенеза, механизмы реализации генетической информации в эмбриогенезе; изучить периодизацию онтогенеза человека, критические периоды онтогенеза, типы роста тканей, основные теории старения; иметь представления о геронтологии, гериатрии, акселерации, реанимации.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Онтогенез, его типы. Периодизация онтогенеза.
- **2.** Эмбриональный период, характеристика стадий (предзиготный период, зигота, дробление, гаструляция, гисто- и органогенез).
- **3.** Взаимодействие частей развивающегося организма. Эмбриональная индукция, морфогенетические поля, градиент физиологической активности.
- **4.** Периодизация постнатального онтогенеза у человека. Генный контроль постэмбрионального развития.
- **5.** Рост и развитие организма человека, их регуляция. Акселерация. Конституция и габитус человека, и их медицинское значение.
- **6.** Критические периоды пренатального постнатального онтогенеза. Тератогенные факторы
- 7. Старение. Смерть организма.

- 6. Гериатрия —
- 7. Геронтология —
- 8. Конституция человека —
- 9. Критические периоды онтогенеза —

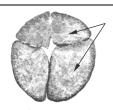
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

- 1. Акселерация —
- 2. Амнион —
- 3. Бластула —
- 4. Габитус человека —
- 5. Гаструляция —

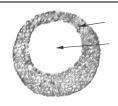
ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Первопричинами дифференцировки клеток в процессе эмбриогенеза являются: а) химическая однородность цитоплазмы яйцеклетки; б) химическая разнородность цитоплазмы яйцеклетки; в) химическая однородность цитоплазмы сперматозоида; г) химическая разнородность цитоплазмы сперматозоида; д) разные потенции анимального и вегетативного полюсов яйцеклетки.
- **2.** Реализация действия генов в онтогенезе: а) ДНК → белок-фермент → и-РНК → биохимическая реакция → признак; б) ДНК → и-РНК → белок-фермент → биохимическая реакция → признак; в) другие гены влияют на проявление признака; г) другие гены не влияют на проявление признака; д) факторы внешней среды не влияют на проявление признака.
- **3.** Способы гаструляции: а) инвагинация; б) телобластический; в) иммиграция; г) деляминация; д) энтероцельный.
- **4. Производные мезодермы:** а) мышцы; б) скелет; в) дыхательная система; г) хорда; д) эпидермис кожи.

- **5. Производные** энтодермы: а) эпителий задней кишки; б) нервная система; в) дыхательная система; г) мочеполовая система; д) хорда.
- **6.** Характерные признаки тотипотентных клеток: а) их развитие окончательно запрограммировано; б) их развитие не запрограммировано; в) каждая из них может дать начало любому типу клеток; г) каждая из них может дать начало только определенному типу клеток; д) большинство транскриптонов заблокированы.
- **7. Характерные признаки** детерминированных клеток: а) их развитие окончательно запрограммировано; б) их развитие не запрограммировано; в) каждая из них может дать начало любому типу клеток; г) каждая из них может дать начало только определенному типу клеток; д) в работу может включаться большинство блоков генов.
- **8. Критические периоды эмбриогенеза у человека:** а) предэмбриональный; б) оплодотворение; в) имплантация; г) плацентация; д) роды.
- **9. Критические периоды постнатального онтогенеза человека:** а) роды; б) новорождения; в) полового созревания; г) полового увядания; д) старческий возраст.
- **10.** Общий тип роста характерен для: а) тела в целом; б) головы, головного и спинного мозга; в) тимуса и селезенки; г) половых органов; д) скелета и мышц.
- **11.** Гиперстеники предрасположены к: а) неврозам; б) гипертонической болезни; в) язвенной болезни желудка и 12-перстной кишки; г) атеросклерозу; д) ожирению.
- **12. Морфофизиологические особенности астеников:** а) широкая грудная клетка; б) узкая грудная клетка; в) пониженная возбудимость; г) высокое содержание холестерина в крови; д) низкое артериальное давление.
- **13. Морфофизиологические особенности нормостеников:** а) пропорциональное телосложение; б) узкая грудная клетка; в) толстые кости; г) умеренное отложение жира; д) высокое содержание холестерина в крови.
- **14.** Суть генетических гипотез старения: а) изменения коллоидных свойств цитоплазмы; б) снижение продукции половых гормонов; в) нарушение процессов репарации и репликации ДНК; г) нарушение процессов адаптации и регуляции; д) запрограммированное число митозов клеток.
- **15. Критерии биологического возраста:** а) степень развития волосяного покрова; б) размеры половых органов; в) скелетозрелость; г) рост человека; д) зубная зрелость.


ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.


- **1.** Период эмбрионального развития человека с начала четвертой недели и до конца восьмой после оплодотворения называется ...
- **2.** Способ гаструляции, при котором отдельные клетки бластодермы перемещаются внутрь бластоцеля и, размножаясь, образуют второй слой клеток, называется ...
- **3.** Амнион, хорион, аллантоис, желточный мешок и плацента это ... органы хордовых животных.
- 4. Нервная система и эпидермис кожи развиваются из ...
- **5.** Первопричиной дифференцировки клеток в процессе эмбриогенеза является ... цитоплазмы яйцеклеток.
- **6.** Влияние одной группы клеток эмбриона на соседние путем выделения определенных веществ называется ...
- 7. Для тимуса и селезенки характерен ... тип роста.
- 8. Особое значение в регуляции роста человека имеет гормон гипофиза ...
- **9.** К неврозам, язвенной болезни, туберкулезу склонны люди ... конституционного типа.
- **10.** Состояние организма, при котором наблюдается остановка сердца и дыхания, потеря сознания, но не нарушен метаболизм клеток, называется ... смертью.
- **11.** Добровольный уход из жизни безнадежно больного человека при помощи медицинского работника называется ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите препараты, сделайте обозначения.

 $Puc.\ 1.\$ Дробление лягушки (7×8): 1 — бластомеры

Рис. 2. Бластула лягушки (7×8) : 1 — бластомеры; 2 — бластоцель

Рис. 3. Гаструла лягушки (7×8): 1 — дорсальная губа бластопора; 2 — вентральная губа бластопора

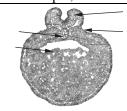
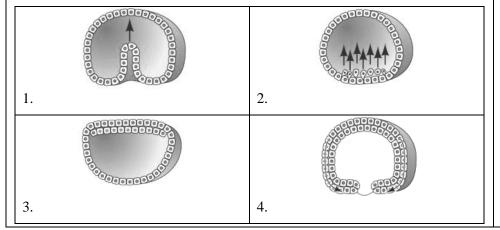



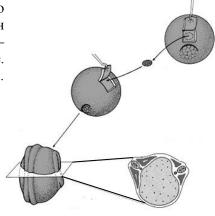
Рис. 4. Нейрула лягушки (7×8): 1 — эктодерма; 2 — нервный валик; 3 — хорда; 4 — энтодерма

Задание 2. Укажите названия приведённых на рисунках процессов, происходящих в ходе гаструляции.

Задание 3. Установите соответствие между зародышевым листком и его производными.

			1. Хрящи и кости					
А. Эктодерма		2. Эпидермис кожи						
		3. По	оджел	удочна	ая жел	еза		
		4. Kr	овенс	сные	сосудн	Ы		
Б. Мезодерма		5. Эпителий дыхательных путей						
		6. Дерма кожи						
В. Энтодерма		7. Печень						
		8. Молочные железы						
		9. Эпифиз						
A		БВ		В				

Задание 4. Установите соответствие между провизорным органом и его функцией.


А. Желточный мешок	1. Участвует в образовании плаценты
Б. Амнион	2. Входит в состав пупочного канатика
В. Хорион	3. Защищает эмбрион от высыхания и механи-
	ческих воздействий
Г. Аллантоис	4. Место образования первичных половых кле-
	ток, первый кроветворный орган зародыша

A	Б	В	Γ

Задание 5. Решите задачи.

Задача № 1. Зародыши, имеющие лишние хромосомы, во время дробления остаются живыми, но после его завершения большинство из них гибнет. Чем можно объяснить их выживаемость в период дробления?

Задача № 2. В результате оперативного вмешательства был получен эмбрион лягушки с двумя нервными трубками — на спинной и на брюшной стороне. Нервную трубку ему не подсаживали. В чем состояла операция?

Задача № 3. Какие периоды постнатального онтогенеза человека у мужского организма более продолжительны по сравнению с женским организмом?

Задача № 4. Какое значение для врача имеет учение о конституционных типах человека?

Задача № 5. Чем отличаются клиническая и биологическая смерть?

Задание 6. Впишите в таблицу названия периодов постнатального онтогенеза по их срокам.

Период	Возраст	
	1–28 дней	
	29 дней – 12 месяцев	
	1–3 года	
	4–6 лет	
	девочки 6–11 лет, мальчики 6–12 лет	
	девочки 11–15 лет, мальчики 12–16 лет	
	девушки 15–20 лет, юноши 16–21 год	
	женщины 20-35 лет, мужчины 21-35 лет	
	женщины 35-55 лет, мужчины 35-60 лет	
	женщины 55-75 лет, мужчины 60-75 лет	
	75–90 лет	
	свыше 90 лет	

Задание 7. Установите соответствие типа роста органов и их примерами.

А. Общий	1. Печень
	2. Головной мозг
	3. Селезенка
Б. Головной	4. Фаллопиевы трубы
	5. Предстательная железа
	6. Миндалины
В. Лимфоидный	7. Глаза
	8. Скелет
	9. Тимус
Г. Репродуктивный	10. Спинной мозг
	11. Яичники
	12. Мышцы

	A		Б		В		Γ	

Задание 8. Изучите таблицы.

Таблица 1

Действие тератогенов

Топологон	Розмини и породи розружия	
Тератоген	Врожденные пороки развития	
Инфекционные агенты		
Вирус краснухи	Катаракта, глаукома, пороки серд-	
Rubella virus	ца, потеря слуха, аномалии зубов	
Цитомегаловирус	Микроцефалия, нарушение зрения,	
Cytomegalovirus	умственная отсталость, гибель	
	плода	
Вирус простого герпеса	Микрофтальмия, микроцефалия,	
Herpes simplex virus	дисплазия сетчатки глаза	
Возбудитель токсоплазмоза	Гидроцефалия, кальцификаты го-	
Toxoplasma gondii	ловного мозга, микрофтальмия	
Физиче	ские агенты	
Рентгеновские лучи	Микроцефалия, расщелина неба,	
X-rays	дефекты конечностей	
Химиче	ские агенты	
Аминоптерин (Aminopterin) —	Анэнцефалия, гидроцефалия, рас-	
противоопухолевой препарат	щелина губы и нёба	
Триметадион (Trimethadione) —	Расщелина неба, пороки сердца,	
противоэпилептический пре-	аномалии мочеполовой системы и	
парат	скелета	
Алкоголь	Фетальный алкогольный синдром	
Alcohol	(ФАС), короткие нёбные дуги, ги-	
	поплазия верхнечелюстной кости,	
	пороки сердца, умственная отста-	
	лость	
Амфетамины (Amphetamine) —	Расщелина губы и нёба, пороки	
психостимуляторы	сердца	
Го	рмоны	
Андрогенные агенты	Маскулинизация женских половых	
Androgenic agents	органов: сросшиеся половые губы,	
	гипертрофия клитора	
Диабет матери	Различные пороки развития сердца	
Maternal diabetes	и нервной трубки	
•		

Ключевые признаки старения (Lopez-Otin et al., 2013)

	1 1 1
Геномная	Существуют доказательства, что многочисленные мутации в ядер-
нестабиль-	ной и митохондриальной ДНК, хромосомах, нарушения структурной
ность	организации хроматина вносят свой вклад в старение. Искусственная
	индукция повреждений генома может вызывать появление некото-
	рых признаков ускоренного старения
Сокращение	Старение сопровождается истощением теломер у млекопитающих.
длины теломер	Патологическая дисфункция теломер ускоряет старение
Эпигенетиче-	Имеются свидетельства о наличии связи между процессом старения
ские измене-	и работой системам клетки, отвечающими за модификацию гисто-
ния	нов, метилирование ДНК и перестройку хроматина
Нарушение	Есть свидетельства, что старение связано с дефектами системы, под-
протеостаза	держивающей трехмерную структуру белков, а экспериментальное
	нарушение ее работы ведет к развитию возраст-зависимых патоло-
	гий. Имеются примеры генетических манипуляций, которые улуч-
	шают протеостаз и замедляют старение млекопитающих
Нарушение	Имеются свидетельства, что анаболический сигналинг ускоряет ста-
распознавания	рение, а катаболический сигналинг увеличивает продолжительность
питательных	жизни. Кроме того, фармакологические манипуляции, которые ими-
веществ	тируют состояние ограниченной доступности нутриентов, могут
	увеличивать продолжительность жизни у мышей
Митохондри-	Митохондриальная дисфункция у млекопитающих может ускорять
альная	процессы старения, однако остается неясным, обеспечивает ли по-
дисфункция	вышение митохондриальной функции у млекопитающих увеличение
	продолжительности жизни
Клеточное	Старение связано с накоплением в организме сенесцентных клеток
старение	(старых клеток, которые перестают делиться и не подвержены
	апоптозу). Так как при старении их число растет, предполагается,
	что сенесцентность вносит определённый вклад в старение
Истощение	Истощение стволовых клеток является следствием множества раз-
стволовых	личных возраст-ассоциированных повреждений, и, вероятно, являет-
клеток	ся одной из основных причин старения тканей и организма
Изменения	Существуют доказательства, что старение затрагивает не только
межклеточной	клетки, но и влияет на общие изменения в межклеточной коммуни-
коммуникации	кации

Подпись преподавателя

Занятие № 17. Тема: ОСНОВЫ ОБЩЕЙ ПАРАЗИТОЛОГИИ

‹ ‹	>>	202	Γ.

Цель занятия: изучить и знать паразитизм как биологический феномен, классификацию паразитов и их хозяев, закономерности отношений в системе «паразит–хозяин», адаптации паразитов, их патогенное действие и ответные реакции хозяев.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Паразитизм антагонистический симбиоз. Критерии паразитизма.
- **2.** Паразитарная система. Система паразит—хозяин. Микробиом. Паразитоценоз.
- 3. Классификация паразитов и их хозяев
- **4.** Механизмы передачи паразитозов. Пути проникновения паразитов в организм хозяина.
- 5. Патогенное действие и специфичность паразитов.
- 6. Морфофизиологические и биологические адаптации паразитов.
- 7. Ответные реакции организма хозяина на внедрение паразитов.
- **8.** Классификация паразитарных болезней. Медицинская паразитология, её нели и залачи.

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

- 1. Болезни инвазионные —
- 2. Болезни инфекционные —
- 3. Гиперпаразитизм —
- 4. Мимикрия молекулярная —
- 5. Микробиом —

- 6. Паразит —
- 7. Паразитоценоз —
- 8. Патогенность паразита —
- 9. Симбиоз —
- 10. Стадия инвазионная —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1. Формы биотических связей:** а) конкуренция и хищничество; б) симбиоз и парабиоз; в) парабиоз; г) симбиоз и антибиоз; д) анабиоз.
- **2. Конкурентные взаимоотношения** это: а) прямое уничтожение одного организма другим; б) выделение одними видами веществ, угнетающих жизнедеятельность организмов других видов; в) необходимость одинаковых условий существования для разных организмов; г) любое сожительство организмов разных видов; д) взаимовыгодное сожительство организмов разных видов.
- **3. При антибиозе наблюдается:** а) прямое уничтожение одного организма другим; б) выделение одними видами веществ, угнетающих жизнедеятельность организмов других видов; в) необходимость одинаковых условий существования для разных организмов; г) любое сожительство видов; д) взаимовыгодное сожительство.

- **4. Комменсализм** такое сожительство организмов разных видов, при котором: а) организмы получают взаимную выгоду; б) особь одного вида использует особь другого вида только как жилище; в) особь одного вида использует особь другого вида как жилище и источник питания, не причиняя ей вреда; г) особь одного вида использует особь другого вида как жилище и источник питания и причиняет ей вред; д) ни один из организмов не получает выгоды.
- **5.** Паразитизм такое сожительство организмов разных видов, при котором: а) организмы получают взаимную выгоду; б) особь одного вида использует особь другого вида только как жилище; в) особь одного вида использует особь другого вида как жилище и источник питания, не причиняя ей вреда; г) особь одного вида использует особь другого вида как жилище и источник питания и причиняет ей вред; д) ни один из организмов не получает выгоды.
- **6. Критерии паразитизма:** а) пространственные отношения с хозяином; б) контакт паразита и хозяина необязателен; в) питание за счет хозяина и болезнетворное возлействие на хозяина: г) использует хозяина как место
- и болезнетворное воздействие на хозяина; г) использует хозяина как место обитания, не причиняя ему вреда; д) снабжает хозяина витаминами.
- 7. Для формирования системы паразит-хозяин необходимы условия:
- а) паразит и хозяин должны вступать в контакт друг с другом; б) паразит должен вызывать гибель хозяина; в) паразит и хозяин не обязательно должны вступать в контакт друг с другом; г) хозяин должен обеспечивать оптимальные условия для развития паразита; д) паразит не должен противостоять реакциям со стороны хозяина.
- **8. Уровни защитных реакций организма хозяина:** а) субклеточный и клеточный; б) клеточный и организменный; в) видовой и тканевой; г) клеточный и тканевой; д) популяционно-видовой.
- **9.** Адаптации паразитов к хозяевам на популяционном уровне: а) наличие покоящихся стадий и активный поиск хозяев; б) упрощение строения нервной системы и редукция пищеварительной системы у ленточных червей; в) молекулярная «мимикрия» и выделение антиферментов;
- г) включение в цикл развития промежуточных и резервуарных хозяев;
- д) синхронизация циклов развития паразита и поведения хозяев.

- **10. Виды симбиоза:** а) мутуализм и синойкия; б) антибиоз и паразитизм; в) конкуренция и антибиоз; г) хищничество и каннибализм; д) комменсализм и паразитизм.
- **11.** Патогенное действие паразита: а) механическое повреждение органов и тканей и токсико-аллергическое; б) снабжение организма хозяина витаминами; в) снабжение организма хозяина питательными веществами; г) поглощение питательных веществ и витаминов из организма хозяина; д) открытие ворот для вторичной инфекции.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- **1.** Свободноживущие организмы, которые при случайном попадании в организм другого вида, способны к паразитированию, называются ...
- 2. Хозяева, которые обеспечивают оптимальные биохимические условия для развития паразита и имеют с ним биоценотические связи, называются ...
- **3.** Хозяева, которые обеспечивают биохимические условия для развития паразита, но не имеют с ним биоценотических связей, называются ...
- 4. Болезни, вызываемые членистоногими, называются ...
- **5.** Хозяева, которые характеризуются наличием биоценотических связей с паразитами, но отсутствием оптимальных биохимических условий для их развития, называются ...
- **6.** Путь проникновения паразита в организм хозяина с водой или с продуктами питания через рот называется ...
- **7.** Путь проникновения паразита в организм хозяина через слизистые оболочки дыхательных путей называется ...
- **8.** Путь проникновения паразита в организм хозяина при непосредственном контакте с больными человеком или животными и с предметами домашнего обихода называется ...
- 9. Путь проникновения паразита в организм хозяина при переливании нестерильной донорской крови называется ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите и заполните таблицы.

Таблица 1

Таксоны паразитов и вызываемые ими заболевания человека

Таксоны паразитов	Названия заболеваний	Группы заболеваний
Вирусы, бактерии (микоплазмы,	Инфекции	Инфекции
хламидии, риккетсии, спирохе-		
ты и др.)		
Грибы	Микозы	Микозы
Протисты	Протозоозы	Инвазии
Гельминты	Гельминтозы	
Клещи	Акаринозы	Инфестации
Насекомые	Инсектозы	

Таблица 2

Виды взаимоотношений между организмами

Вид	Разновидности,	Примеры
взаимоотношений	характеристика	примеры
1. Хищничество	а) Внутривидовое	
1. Дищничество	хищничество	
	б) Межвидовое	
	хищничество	
2. Конкуренция	а) Внутривидовая	
2. Конкурсиция	конкуренция	
	б) Межвидовая	
	конкуренция	
3. Симбиоз	а) Мутуализм	
	б) Комменсализм	
	– Нахлебничество	
	– Синойкия	
	(квартиранство)	
	в) Паразитизм	

Адаптации паразитов

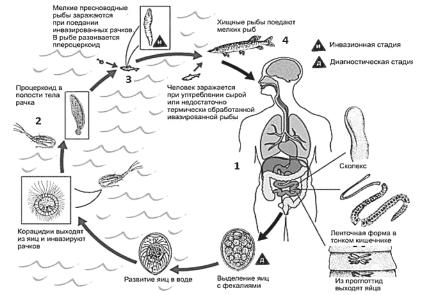
Таблица 3

Морфофизиологические прогрессивные:
Морфофизиологические регрессивные:
THE TOTAL CONTRACTOR OF THE PROPERTY OF THE PR
Биологические:

Задание 3. Установите соответствие между механизмом передачи паразита и его характеристикой.

	T
А. Контактный	1. Механизм передачи возбудителей от беременной плоду в течение всего периода внутриутробного развития
Б. Гемоконтактный	2. Возбудители локализуются в слизистой оболочке дыхательных путей источника и переносятся в восприимчивый организм через воздух
В. Трансплацентарный	3. Возбудители локализуются на коже или на слизистой оболочке, откуда могут попадать на поверхность различных предметов, и при контакте с ними происходит заражение восприимчивого организма
Г. Аэрозольный	4. Механизм передачи осуществляется по- средством переносчиков, как правило, это кровососущие членистоногие
Д. Фекально-оральный	5. Возбудители локализуются преимущественно в желудочно-кишечном тракте, выводятся из зараженного организма с испражнениями или рвотными массами
Е. Трансмиссивный	6. Возбудители циркулируют в крови (лим- фе), проникновение в восприимчивый орга- низм происходит при контакте с кровью за- раженного человека

A	Б	В	Γ	Д	Е


Задание 4. Классифицируйте паразитов.

		По характеру	По длитель-	По локали-
Паразит	Описание	связи	ности связи	зации
Пиризи		с хозяином	с хозяином	у хозяина
Трихомонада урогенитальная	Обитает в моче- половых путях. Заражение про- исходит при по- ловых контактах			,
Дизентерийная амеба	Обитает в стенке кишечника. Заражение происходит алиментарным путем; инвазионная стадия — циста			
Кошачий сосальщик	Обитает в желчных ходах. Заражение происходит при употреблении рыбы с метацеркариями; яйца выделяются во внешнюю среду с фекалиями			
Вооруженный цепень	Заражение про- исходит при употреблении свинины с фин- нами; яйца вы- деляются во внешнюю среду с фекалиями			

Папала	0	По характеру	По длитель-	По локализа-
Паразит	Описание	связи	ности связи	ции
	n	с хозяином	с хозяином	у хозяина
	Заражение про-			
<i>'</i>	исходит алимен-			
	тарным путем;			
\ /	яйца паразита			
	выделяются во			
Аскарида	внешнюю среду			
человеческая	с фекалиями			
16лове теская	Обитает в толще			
	рогового слоя			
	кожи. Заражение			
100 CON E	происходит при			
	непосредствен-			
	ном контакте с			
	больными или			
Чесоточный	их вещами			
клещ	их вещеми			
\ " \	Насыщение			
	клещей кровью			
	длится от не-			
	скольких часов			
	до нескольких			
	суток			
Собачий клещ				
. \4/ .	Обитает на			
C. Bark	волосистой ча-			
1	сти головы,			
	обычно переда-			
	ётся при прямом			
	контакте			
Down no see see				
Вошь головная				

Задание 5. Изучите жизненный цикл лентеца широкого. Классифицируйте хозяев данного паразита в зависимости от стадии его развития.

- из организма человека (1) с фекалиями выделяются оплодотворённые яйца паразита;
- в воде из яйца выходит личинка (корацидий), которая проглатывается **пресноводным рачком (2)**; в кишечнике рачка образуется следующая личиночная стадия (процеркоид);
- при проглатывании рачка рыбой (3) в ее мышцах и половых органах процеркоид превращается в плероцеркоид;
- **хищные рыбы (4)** могут поедать поражённых рыб, накапливая плероцеркоидов;
- заражение человека (1) происходит при поедании рыбы.

Какими хозяевами являются организмы, обозначенные цифрами?

- *1* —
- 2
- 3 —
- 4 —

Подпись преподавателя

Занятие № 18. Тема: ОСНОВЫ ЧАСТНОЙ ПАРАЗИТОЛОГИИ (часть 1)

«	>>	202	Г
11	//	202	1.

Цель занятия: изучить и знать особенности морфологии и биологии паразитических представителей классов Саркодовые, Жгутиковые и Споровики – возбудителей болезней человека, их патогенное действие; знать методы диагностики и профилактики вызываемых ими заболеваний.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Общая характеристика царства Протисты.
- 2. Жизненный цикл возбудителей малярии человека. Виды малярийных плазмодиев, паразитирующих у человека, их морфологическая характеристика в тонком мазке крови.
- 3. Механизмы и пути заражения человека малярией, патогенное действие 7. Псевдоциста (тканевая циста) плазмодиев. Симптомы, диагностика и профилактика малярии.
- 4. Токсоплазма: особенности морфологии и цикла развития, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика токсоплазмоза.
- 5. Дизентерийная и ротовая амебы: особенности морфологии и жизненного цикла, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика амебиаза.
- 6. Трихомонада: особенности морфологии и жизненного цикла, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика урогенитального трихомоноза.
- 7. Биологические основы профилактики протозойных заболеваний.

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

- 1. Гипнозоиты (брадиспорозоиты) —
- 2. Малярия шизонтная —
- 3. Мерозоит —
- 4. Меруляция —

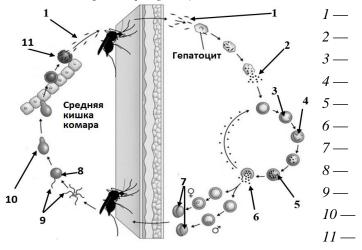
- 5. Оокинета —
- 6. Оописта —
- 8. Ундулирующая мембрана —
- 9. Шизогония —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Последовательность стадий развития возбудителей малярии при предэритроцитарной шизогонии: a) спорозоиты \rightarrow кровяные шизонты \rightarrow тканевые шизонты → тканевые мерозоиты; б) спорозоиты → тканевые шизонты \to кровяные шизонты \to тканевые мерозоиты; в) спорозоиты \to тканевые шизонты \rightarrow тканевые мерозоиты; г) кровяные шизонты \rightarrow спорозоиты — гаметоциты; д) спорозоиты — кровяные шизонты — тканевые шизонты \rightarrow гаметоциты.
- 2. Последовательность стадий развития при эритроцитарной шизого**нии**: а) кольцевидный шизонт \rightarrow амебоидный шизонт \rightarrow гаметоцит \rightarrow округлый шизонт \rightarrow кровяной мерозоит; б) округлый шизонт \rightarrow кровяной мерозоит → гаметоцит → кольцевидный шизонт → амебоидный шизонт; в) амебоидный шизонт ightarrow кольцевидный шизонт ightarrow округлый шизонт ightarrowгаметоцит → кровяной мерозоит; г) кольцевидный шизонт → амебоидный шизонт \rightarrow округлый шизонт \rightarrow кровяной мерозоит \rightarrow гаметоцит; д) гаметоцит \rightarrow округлый шизонт \rightarrow кольцевидный шизонт \rightarrow амебоидный шизонт → кровяной мерозоит.

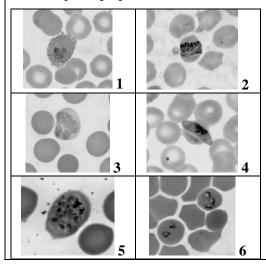
- **3.** Последовательность стадий гаметогонии у возбудителей малярии человека: а) ооциста \rightarrow гаметоциты \rightarrow макро- и микрогаметы \rightarrow зигота \rightarrow оокинета; б) гаметоциты \rightarrow макро- и микрогаметы \rightarrow зигота \rightarrow оокинета; в) макро- и микрогаметы \rightarrow зигота \rightarrow оокинета; г) макро- и микрогаметы \rightarrow зигота \rightarrow оокинета \rightarrow гаметоциты; д) гаметоциты \rightarrow зигота \rightarrow оокинета \rightarrow макро- и микрогаметы.
- **4.** Последовательность проявления симптомов при приступе малярии: а) обильный пот \rightarrow жар \rightarrow озноб; б) жар \rightarrow обильный пот \rightarrow озноб; в) озноб \rightarrow жар \rightarrow обильный пот; г) жар \rightarrow озноб \rightarrow обильный пот; д) озноб \rightarrow обильный пот \rightarrow жар.
- **5. Профилактика малярии:** а) не пить воду из открытых источников; б) выявление и лечение больных, химиопрофилактика; в) уничтожение переносчиков, защита от укусов комаров; г) хорошая термическая обработка свинины и говядины; д) тщательный контроль за донорской кровью.
- **6.** Лабораторная диагностика токсоплазмоза основана на: а) обнаружении трофозоитов в фекалиях и дуоденальном содержимом; б) иммунологических методах; в) обнаружении трофозоитов в моче; г) обнаружении трофозоитов в поперечнополосатых мышцах; д) обнаружении трофозоитов в спинномозговой жидкости и пунктатах лимфатических узлов.
- **7. Профилактика токсоплазмоза:** а) соблюдение правил личной гигиены после контактов с кошками; б) соблюдение правил личной гигиены после контактов с собаками и больными людьми; в) хорошая термическая обработка рыбных продуктов; г) хорошая термическая обработка мясных продуктов; д) уничтожение мух и тараканов.
- 8. Последовательность стадий цикла развития дизентерийной амебы:
- a) forma minuta forma magna тканевая циста forma magna;
- б) forma magna \rightarrow forma minuta \rightarrow тканевая \rightarrow циста \rightarrow forma magna;
- в) циста \rightarrow forma minuta \rightarrow forma magna \rightarrow тканевая \rightarrow forma magna;
- г) циста \rightarrow forma minuta \rightarrow forma magna \rightarrow forma minuta \rightarrow циста; д) тканевая \rightarrow forma magna \rightarrow forma minuta \rightarrow циста.
- **9. Профилактика амебиаза:** а) хорошая термическая обработка свинины и говядины; б) хорошая термическая обработка рыбы, раков и крабов; в) соблюдение правил личной гигиены и лечение больных амебиазом; г) прививки; д) не употреблять воду из открытых источников.

10. Симптомы амебиаза: а) нарушение дыхания; б) частый жидкий стул с примесью крови; в) снижение аппетита и нарушение свертывания крови; г) нарушение работы сердца; д) общая слабость и боли в животе.


ОТКРЫТЫЕ ТЕСТЫ

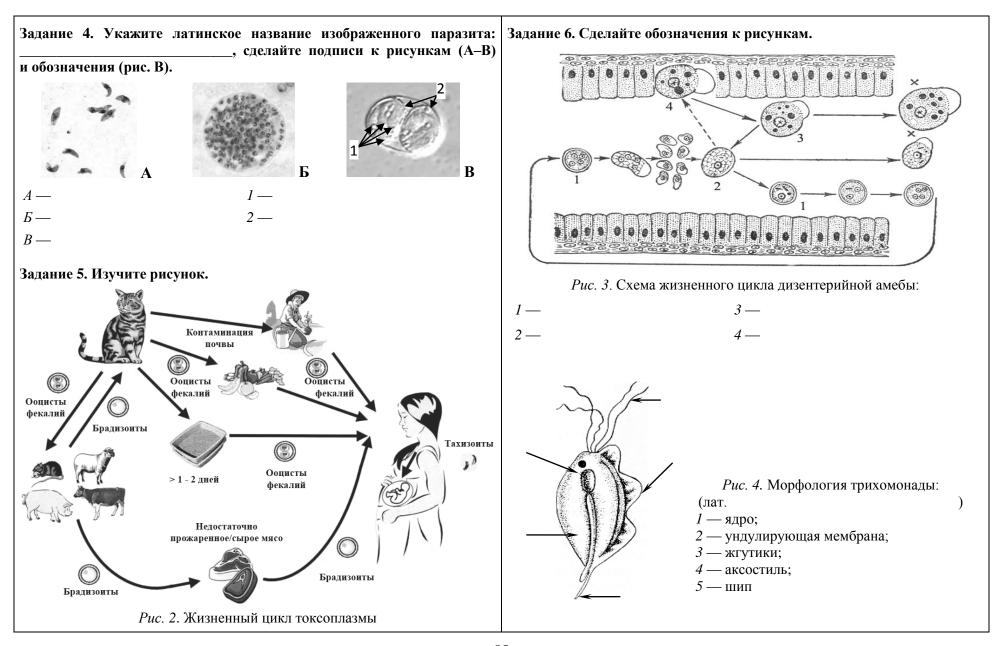
Вставьте пропущенное слово или понятие.

- 1. Вегетативная форма протистов называется ...
- 2. Эластичная оболочка, являющаяся уплотненным слоем эктоплазмы клетки протистов, называется ...
- 3. Пищеварительная вакуоль протистов образуется путем слияния эндосомы и первичной ...
- **4.** Функции осморегуляции и выделения жидких продуктов обмена у протистов выполняют ... вакуоли.
- 5. Возбудителем тропической малярии является Р. ...
- 6. Возбудителем четырехдневной малярии является Р. ...
- **7.** Стадия жизненного цикла малярийного плазмодия, инвазионная для промежуточного хозяина при трансмиссивном пути заражения, называется ...
- **8.** Конечная стадия развития возбудителей малярии в организме человека называется ...
- **9.** Образование, служащее для прикрепления токсоплазмы к клетке хозяина, называется ...
- 10. Основными хозяевами токсоплазмы являются представители семейства ...
- 11. Инвазионными стадиями токсоплазмы для основного хозяина являются ... и ...
- **12.** Инвазионными стадиями токсоплазмы для промежуточных хозяев являются ... и ...
- 13. Урогенитальная трихомонада имеет ... жгутиков (ответ запишите цифрой).


ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите рисунок, сделайте обозначения.

Puc. 1. Жизненный цикл Plasmodium spp.


Задание 2. Определите видовую принадлежность паразитов, указанных на фотографиях.

- Морула *P. ovale*
- Гаметоцит P. falciparum
- Трофозоит *P. ovale*
- Лентовидный трофозоит *P. malaria*
- Кольцевидные трофозоит
- P. falciparum
- Амёбовидный трофозоит *P. vivax*

Задание 3. Изучите таблицу «Дифференциальная диагностика возбудителей малярии в мазке крови (окраска по Романовскому–Гимзе)».

П	Возбудитель			
Признак	P. vivax	P. malaria	P. falciparum	P. ovale
Стадии	Все стадии	Все стадии	Кольца и гамон-	Все стадии
развития	шизонтов	шизонтов	ты; шизонты — в	шизонтов
	и гамонты	и гамонты	тяжелых случаях	и гамонты
Стадия	Форма перст-	Как у <i>P. vivax</i>	Мелкие, размер	Как у <i>P. vivax</i>
кольца	ня размеры	всегда	¹ / ₆ — ¹ / ₅ диаметра	
	$^{1}/_{3}$ — $^{1}/_{2}$ диамет-	по одному	эритроцита,	
	ра эритроцита,	в эритроците	часто 2-3	
	иногда 2–3		в эритроците	
	в эритроците			
Шизонты	Неправиль-	Округлой или	Округлой формы	Округлой
	ной амебо-	лентовидной	крупнее, чем	формы, круп-
	видной фор-	формы,	y P. malaria,	нее, чем у
	мы, крупные	размер не	обнаруживаются	P. malaria
	с вакуолями	превышает	в тяжелых	
		нормальный	случаях	
		эритроцит		
Морула	12-18 меро-	8-12 мерозои-	12-24 мерозоита,	6-12 мерозо-
	зоитов сред-	тов средней	мелкие	итов, крупные
	ней величины	величины		
Гамонты	Округлые,	Как у <i>P. vivax</i>	Полулунные	Округлые
	крупные,	не превыша-		
	заполняют	ют размера		
	увеличенный	нормального		
D.	эритроцит	эритроцита	D	D.
Зерни-	Мелкая,	Отсутствует	Выявляется	Более крупная
стость в	обильная,		редко, розово-	и менее
поражен-	красная		фиолетовые	обильная,
ных эрит-	(Шюффнера)		пятна (Маурера)	чем у <i>P. vivax</i>
роцитах	V	II.	II	(Джеймса)
Поражен-	Увеличены,	Не изменены	Не изменены	Увеличены,
ные эрит-	неправильной			с неровными
роциты	формы			краями

Залание 7. Решите задачи.

Задача № 1. Больной П. доставлен в больницу с жалобами на сильную головную и мышечную боли, резкую общую слабость, чувство жара во всем теле. Болен 4-й день. Заболевание началось с резкого озноба, который через 2 часа сменился чувством жара во всем теле, температура тела повысилась до 40 °C. Через несколько часов температура снизилась до 35 °C, что сопровождалось обильным потом. Больной П. недавно вернулся из командировки из Экваториальной Африки. Какое заболевание можно предположить? Как подтвердить диагноз?

Задача № 2. Изучение мазка периферической крови показало: пораженные эритроциты не изменены, морула содержит от 12 до 24 мелких мерозоитов, в эритроцитах по 2–4 мелких кольцевидных шизонта, гамонты имеют полулунную форму. Определите вид плазмодия и дайте его латинское название.

Задача № 3. У беременной женщины 22 лет на 5 месяце беременности произошел выкидыш. При гистологическом исследовании плаценты, плодных оболочек и ряда органов плода в клетках обнаружены скопления протистов полулунной формы (4-7 мкм), с ярко-красным ядром и голубой цитоплазмой. При опросе выяснилось, что женщина любит животных, у нее в квартире живут кошка и морская свинка. Определите вид паразита.

Задача № 4. При профилактическом обследовании работников пищеблока в анализах кала у двух из них были обнаружены цисты: у повара — восьмиядерные, крупные (13–25 мкм), у официантки — размером 10–12 мкм, четырехъядерные. Кто из них является источником паразитарного заболевания для питающихся в столовой людей?

Задача № 5. В инфекционную больницу поступила женщина с подозрением на острую бактериальную дизентерию. Больная жалуется на частый, жидкий стул со слизью и кровью, схваткообразные боли в животе, повышение температуры до 39 °С. Обследование больной не подтвердило диагноза бактериальной дизентерии. При микроскопировании нативного препарата испражнений больной обнаружены крупные (30—40 мкм) подвижные протисты, в цитоплазме которых много эритроцитов. Какое заболевание можно предположить?

Задача № 6. В женскую консультацию обратилась женщина с жалобами на серозно-гнойные выделения из влагалища. В нативном мазке, приготовленном из свежесобранных выделений, обнаружены подвижные грушевидной формы протисты, размером 15–30 мкм, на переднем конце 4 жгутика и ундулирующая мембрана. Какое паразитарное заболевание можно предположить?

Подпись преподавателя

Занятие № 19.	Тема: ОСНОВЫ ЧАСТНОЙ ПАРАЗИТОЛОГИИ ((часть 2)
	Temas o chiobbi michioni minimi ishir ottor min (1440122 -

‹ ‹	>>	202	Г

Цель занятия: изучить особенности морфологии и биологии паразитических представителей классов Сосальщики, Ленточные черви, Круглые черви, Паукообразные и Насекомые, их патогенное действие; знать методы диагностики и профилактики вызываемых ими заболеваний.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- **1.** Кошачий сосальщик: особенности морфологии и цикла развития, механизмы и пути заражения человека и животных, патогенное действие. Симптомы, диагностика и профилактика описторхоза.
- 2. Цепень вооруженный (свиной): особенности морфологии, механизмы и пути заражения человека и животных, патогенное действие. Симптомы, диагностика и профилактика тениоза и цистицеркоза.
- **3.** Аскарида человека: особенности морфологии и биологии, механизмы и пути заражения человека, патогенное действие личинок и половозрелых аскарид. Симптомы, диагностика миграционного и кишечного аскаридоза, профилактика аскаридоза.
- **4.** Острица: особенности морфологии и биологии, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика энтеробиоза.
- **5.** Саркоптовые клещи возбудители заболеваний человека: особенности их морфологии и биологии.
- **6.** Отряд Вши: особенности морфологии и биологии. Вши возбудители и переносчики возбудителей заболеваний человека и меры борьбы с ними.
- 7. Учение академика Е. Н. Павловского о природной очаговости болезней.

- 5. Марита —
- 6. Метацеркарий —
- 7. Педикулез —
- 8. Скабиоз —
- 9. Сколекс —
- 10. Фтириоз —
- 11. Церкарий —

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

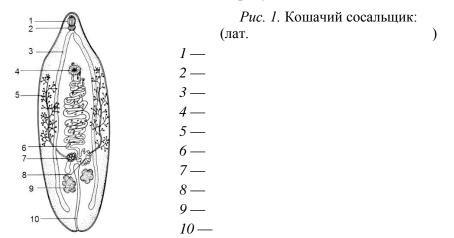
- 1. Аутоинвазия —
- 2. Бульбус —
- **3.** Колтун —
- **4.** Гниды —

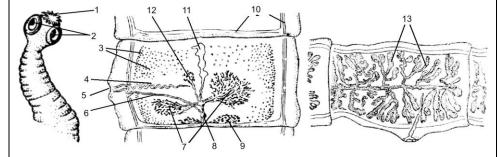
ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1.** Инвазионная стадия кошачьего сосальщика для второго промежуточного хозяина: а) яйцо; б) мирацидий; в) метацеркарий; г) редия; д) церкарий.
- **2.** Инвазионная стадия кошачьего сосальщика для окончательного хозяина: а) яйцо и мирацидий; б) церкарий и адолескарий; в) спороциста и редия; г) метацеркарий; д) онкосфера.
- **3.** Заражение человека описторхозом происходит: а) при несоблюдении правил личной гигиены; б) питье воды из открытых водоемов; в) употреблении недостаточно термически обработанной свинины и говядины; г) употреблении недостаточно термически обработанной рыбы; д) употреблении недостаточно термически обработанных раков и крабов.

- **4.** Инвазионные для человека стадии свиного цепня: а) яйцо; б) онкосфера; в) плероцеркоид; г) цистицеркоид; д) цистицерк.
- **5.** Заражение человека тениозом: а) несоблюдение правил личной гигиены; б) контакты с больными тениозом и цистицеркозом; в) употребление термически недостаточно обработанной говядины; г) употребление термически недостаточно обработанной свинины; д) употребление термически недостаточно обработанных рыбы, раков и крабов.
- **6. Заражение человека цистицеркозом:** а) проглатывание яиц свиного цепня при несоблюдении правил личной гигиены; б) употребление недостаточно термически обработанной свинины и говядины; в) аутоинвазия при тениаринхозе; г) проглатывание яиц бычьего цепня при несоблюдении правил личной гигиены; д) аутоинвазия при тениозе.
- 7. Последовательность миграции личинок аскарид в теле человека: а) кишечник → правое сердце → легкие → кровеносные сосуды → печень → бронхи → трахея → глотка → кишечник; б) кишечник → печень → бронхи → правое сердце → легкие → кровеносные сосуды → трахея → глотка → кишечник; в) печень → бронхи → правое сердце → легкие → кровеносные сосуды → трахея → глотка → кишечник; г) кишечник → кровеносные сосуды → печень → правое сердце → легкие → бронхи → трахея → глотка → кишечник; д) кишечник → кровеносные сосуды → правое сердце → легкие → бронхи → трахея → глотка → кишечник; д) кишечник → кровеносные сосуды → правое сердце → легкие → печень → бронхи → трахея → глотка → кишечник.
- **8.** Диагностические признаки миграционного аскаридоза: а) непроходимость кишечника; б) лихорадка и астматический бронхит; в) летучие эозинофильные инфильтраты в легких; г) закупорка желчного протока; д) аппендицит.
- **9. Медицинское значение** *S. scabiei*: а) переносчик возбудителей шотландского и таежного энцефалитов; б) переносчик возбудителей туляремии и бруцеллеза; в) возбудитель катаральных явлений ЖКТ; г) вызывает бронхоспазмы; д) возбудитель чесотки.
- **10.** Лабораторная диагностика энтеробиоза основана на: а) иммунологических методах; б) обнаружении личинок в крови и поперечнополосатых мышцах; в) обнаружении взрослых паразитов и яиц на коже промежности; г) обнаружении паразитов и яиц в фекалиях; д) обнаружении личинок и яиц на коже промежности.

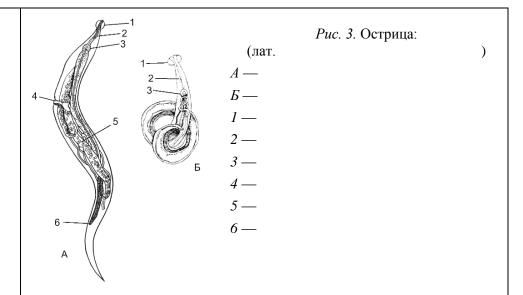
- **11.** Основные диагностические признаки энтеробиоза: а) нарушение сна и снижение памяти; б) нарушение зрения; в) боли по ходу тонкого кишечника и в правом подреберье; г) кашель; д) зуд в области промежности.
- **12. Профилактика чесотки:** а) выявление и лечение больных, санитарный надзор за общежитиями и банями; б) уничтожение переносчиков; в) поддержание чистоты, тела, белья, жилищ; г) тщательное мытье овощей и фруктов; д) достаточная термическая обработка мясных продуктов.
- **13. Морфологические особенности вшей рода** *Phthirus*: а) тело короткое и широкое, размером до 10 мм; б) тело короткое и широкое, размером до 1,5 мм; в) тело удлиненное, размером до 5мм; г) ротовой аппарат колющесосущего типа; д) ротовой аппарат грызущего типа.
- **14.** Медицинское значение вшей *P. pubis*: а) механические переносчики возбудителей возвратного и сыпного тифов; б) специфические переносчики цист протистов и яиц гельминтов; в) возбудители фтириоза; г) специфические переносчики возбудителей малярии; д) поражают кожу с редкими жесткими волосами, укусы вызывают зуд.


ОТКРЫТЫЕ ТЕСТЫ


Вставьте пропущенное слово или понятие.

- **1.** Жизненный цикл кошачьего сосальщика включает стадии: яйцо $\rightarrow \dots \rightarrow$ спороциста \rightarrow редия \rightarrow церкарий \rightarrow метацеркарий \rightarrow марита.
- 2. Человек для кошачьего сосальщика является ... хозяином.
- 3. Финна свиного цепня называется ...
- **4.** Зрелая проглоттида вооруженного цепня имеет ... пар боковых ответвлений матки (ответ запишите цифрой).
- **5.** Среди представителей класса Собственно круглые черви аскарида является геогельминтом, а острица ... гельминтом.
- 6. Заболевание, вызываемое острицей, называется ...
- **7.** Вши рода Pediculus являются специфическими переносчиками вшивого ... и ... тифов.
- 8. Возбудителями вшивого ... тифа являются риккетсии Провачека.
- 9. Возбудителями вшивого ... тифа являются спирохеты Обермейера.
- 10. Латинское название отряда Вши ...

ПРАКТИЧЕСКАЯ РАБОТА


Задание 1. Сделайте обозначения к рисункам.

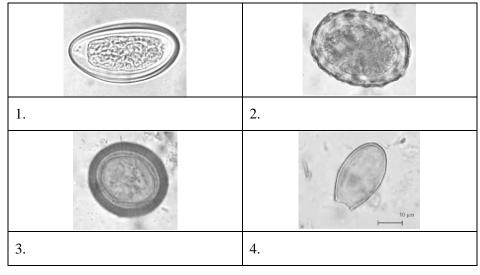
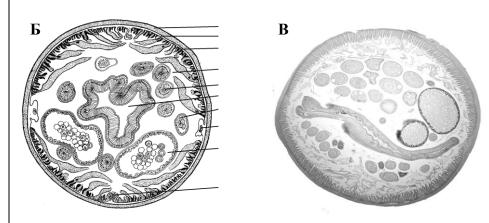
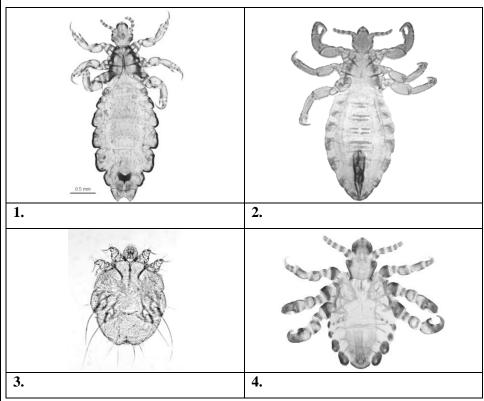


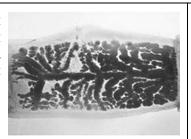
Рис. 2. Сколекс, гермафродитная и зрелая проглоттиды вооруженного цепня (лат.):


1—	7—
2 —	8—
3—	9—
4—	10 —
5 —	11, 13 —
6—	12 —

Задание 2. Впишите в таблицу латинские названия паразитов, яйца которых показаны на фотографиях.



 $Puc.\ 4.$ Внешний вид, поперечный срез аскариды (лат.): A — самец и самка; B — схема; B — микропрепарат; 1 — кутикула; 2 — гиподерма; 3 — мускульные клетки; 4 — первичная полость тела; 5 — канал выделительной системы; 6 — нервные стволы; 7 — просвет кишечника; 8 — яичники; 9 — яйцеводы; 10 — матка


Задание 3. Изучите фотографии, определите паразитов и впишите в таблицу их латинские названия.

Задание 4. Решите задачи.

Задача № 1. Больной И., проживающий в районном центре Паричи, жалуется на боли в области печени. При проведении дуоденального обследования обнаружены мелкие гельминты бледно-желтого цвета, размером около 10 мм. Определите вид гельминта.

Задача № 2. В лабораторию доставлены проглоттиды цепня. При микроскопии обнаружено, что от центрального ствола матки отходит от 7 до 12 боковых ответвлений с каждой стороны. Определите вид гельминта.

Задача № 5. При плановом обследовании сотрудников детского сада у воспитательницы в фекалиях обнаружены яйца размером 60 × 45 мкм, овальные с толстой бугристой оболочкой, желто-коричневого цвета, без крышечки. Какому виду паразита они могут принадлежать?

Задача № 3. В хирургическую клинику поступил больной мужчина 40 лет, с симптомами непроходимости кишечника. При операции в содержимом кишечника обнаружено 6 червей (веретенообразной формы, длиной 30 см, бело-розового цвета), что и явилось, по мнению хирурга, причиной непроходимости кишечника. Какое паразитарное заболевание можно предположить?

Задача № 6. У больного, обратившегося на прием по поводу сильного зуда, на коже кистей рук и живота обнаружены тонкие извилистые беловатогрязного цвета полоски, заканчивающиеся небольшим пузырьком с жидкостью внутри. Какое паразитарное заболевание можно предположить?

Задача № 4. Мать, обнаружив у ребенка белых гельминтов, вызывающих у него зуд и беспокойство, доставила их в лабораторию. Гельминты длиной до 1 см, концы тела заострены, у некоторых слегка закручены. Определите вид гельминта.

Задача № 7. Мальчика 9 лет беспокоит сильный зуд в области волосистой части головы. При осмотре на голове обнаружено огрубление и пигментация кожи, струпья, на волосах — гниды. Какое паразитарное заболевание можно предположить?

Подпись преподавателя

ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ

- 1. Сущность жизни, роль белков и нуклеиновых кислот в организации живых систем. Уровни организации живой материи.
- 2. Роль биологии в системе медицинского образования.
- 3. Человек как биологическое и социальное существо.
- 4. Клеточная теория. Вирусы. Прокариоты и эукариоты.
- **5.** Предмет, задачи и методы цитологии (световая, электронная и люминесцентная микроскопия, гистохимический и иммуногистохимический, дифференциальное центрифугирование, авторадиография, морфометрия и др.).
- **6.** Метод световой микроскопии. Устройство светового микроскопа. Правила работы с микроскопом.
- **7.** Модели элементарной биологической мембраны. Строение, свойства и функции плазмалеммы.
- **8.** Транспорт веществ через мембрану: пассивный транспорт (диффузия, осмос, облегченная диффузия), активный транспорт (ионные каналы, их функции, эндоцитоз, экзоцитоз). Ионные каналы и их функции.
- **9.** Цитозоль. Цитоскелет: микротрубочки, промежуточные филаменты, микрофиламенты. Внутриклеточный транспорт веществ.
- 10. Ассимиляция и диссимиляция. Пластический обмен в клетке. Рибосомы.
- **11.** Эндомембранная система клетки (мембрана ядра, ЭПС, КГ, лизосомы, пероксисомы, эндосомы, везикулы).
- **12.** Характеристика этапов энергетического обмена в клетке. Митохондрии. Ферментные системы митохондрий.
- 13. Болезни человека, обусловленные нарушениями на клеточном уровне (лизосомные и пероксисомные).
- 14. Доказательства роли ДНК в передаче наследственной информации.
- 15. Строение и функции ДНК. Правила Чаргаффа.
- **16.** Организация наследственного материала у неклеточных и прокариотических форм жизни.
- **17.** Строение и функции ядра клетки. Организация генетического материала эукариот (генный, хромосомный и геномный уровни).
- **18.** Упаковка генетического материала эукариот. Эухроматин и гетерохроматин.
- 19. Строение метафазной хромосомы. Типы хромосом. Правила хромосом.
- 20. Кариотип и идиограмма. Классификации хромосом человека.

- 21. Плазмогены. Цитоплазматическая наследственность.
- 22. Клеточный цикл. Интерфаза.
- 23. Полуконсервативный механизм репликации ДНК. Репликон.
- 24. Регуляторы клеточного цикла (циклины и циклинзависимые киназы).
- **25.** Виды и типы деления клеток: митоз, амитоз, эндомитоз. Политения. Бинарное деление бактерий.
- **26.** Митоз: характеристика фаз, распределение генетического материала, биологическое значение.
- 27. Мейоз как разновидность митоза: характеристика фаз, распределение генетического материала, биологическое значение.
- 28. Клеточная пролиферация и гибель клеток. Некроз и апоптоз. Каспазы.
- 29. Центральная догма молекулярной биологии.
- 30. Ген, его свойства и функции.
- 31. Генетический код и его свойства.
- 32. Рибонуклеиновая кислота, ее виды, функции РНК.
- **33.** Транскрипция. Транскрипционные факторы. Синтез иРНК у эукариот: первичный транскрипт, процессинг про-иРНК.
- 34. Рекогниция. Трансляция: инициация, элонгация и терминация.
- 35. Посттрансляционные изменения белков, фолдинг белков (шапероны).
- **36.** Международные научные проекты изучения генома человека: Human genome, NCODE, Roadmap. Транскриптом, протеом и метаболом человека.
- 37. Характеристика генома человека. Избыточность генома, ее значение
- **38.** Классификация генов (структурные и функциональные, гены «домашнего хозяйства» и тканеспецифические).
- 39. Оперон. Лактозный и триптофановый опероны. Полицистронная РНК.
- **40.** Регуляция транскрипции у эукариот: преинициаторный комплекс, энхансеры, сайленсеры.
- **41.** Эпигенетические механизмы регуляции работы генов: модификации гистонов, метилирование цитозина, СрG-островки, регуляторные системы некодирующих РНК.
- **42.** Методы исследования ДНК: гель-электрофорез, рестрикционный анализ, гибридизация нуклеиновых кислот, ДНК-микрочипы.
- **43.** ПЦР и ее виды: количественная ПЦР, ПЦР с обратной транскрипцией, мультиплексная ПЦР.

- **44.** Методы секвенирования генома (по Сэнгеру, пиросеквенирование, нанопоровое, бисульфитное).
- **45.** Генетическая инженерия: цели, задачи и этапы. Способы получения генов для трансгенеза.
- **46.** Рекомбинантная ДНК. Конструирование векторов, их виды: плазмиды, космиды, фаговые векторы, фазмиды.
- **47.** Введение рекомбинантных ДНК в клетку-реципиент. Отбор трансформированных клеток. Селективные и репортерные гены.
- **48.** Биотехнология, ее значение для медицины. Генетически модифицированные организмы. Продукты питания, содержащие ГМО.
- 49. Генетика как наука. Гибридологический анализ, его сущность.
- **50.** Закономерности наследования при моногибридном скрещивании. Гипотеза чистоты гамет. Закономерности наследования при полигибридном скрещивании.
- **51.** Анализирующее скрещивание: прямое и возвратное. Условия, ограничивающие проявление законов Г. Менделя. Плейотропное действие гена.
- **52.** Внутриаллельное взаимодействие генов (полное и неполное доминирование, сверхдоминирование, кодоминирование и аллельное исключение).
- **53.** Множественные аллели. Наследование групп крови по системам: AB0, MN и резус-фактору.
- **54.** Межаллельное взаимодействие генов (комплементарность, эпистаз, полимерия и эффект положения).
- **55.** Опыты Т. Моргана. Сцепление генов: полное и неполное. Группы сцепления. Хромосомная теория наследственности.
- 56. Генетические и цитологические карты хромосом.
- **57.** Пол как биологический признак. Признаки ограниченные и контролируемые полом, сцепленные с полом и голандрические.
- **58.** Теории определения пола. Дифференцировка и переопределение пола в онтогенезе. Генная регуляция гонадогенеза у человека.
- **59.** Особенности детерминации пола у человека: физикальные, промежуточная и социально-психологические детерминанты.
- **60.** Нарушения формирования пола у человека. Этические и юридические аспекты изменения морфологического и гражданского пола.
- **61.** X-половой хроматин. Гипотеза М. Лайон о женском мозаицизме по половым хромосомам.
- 62. Изменчивость, ее виды. Фенотипическая изменчивость, фенокопии.

- **63.** Генотипическая изменчивость. Рекомбинации, механизмы их возникновения.
- **64.** Мутационная изменчивость. Генокопии. Причины мутаций: ошибки копирования ДНК, неравный кроссинговер.
- **65.** Физические, химические и биологические мутагенные факторы. Генетическая опасность загрязнения окружающей среды мутагенами. Классификации мутаций
- 66. Устойчивость и репарация генетического материала. Антимутагены.
- **67.** Виды репарации. Виды эксцизионной репарации, репарация двуцепочечных разрывов. Фотореактивация.
- 68. Роль нарушений механизмов репарации в патологии человека.
- 69. Канцерогенез, понятие об онкогенах и генах-супрессорах опухолей.
- **70.** Популяция. Экологическая и генетическая характеристики популяции. Генофонд.
- 71. Идеальная популяция. Закон Харди-Вайнберга.
- **72.** Факторы, нарушающие равновесие аллелей и генотипов: естественный отбор, мутации, миграция, дрейф генов.
- **73.** Отличительные признаки популяции человека. Типы браков. Инбридинг. Брачная ассортативность. Коэффициент инбридинга.
- **74.** Влияние элементарных эволюционных факторов на человеческие популяции. Генетический груз, его биологическая сущность и медицинское значение.
- **75.** Большие популяции, демы и изоляты. Особенности генофонда изолятов. Эффекты родоначальника и «бутылочного горлышка».
- 76. Генетика человека. Медицинская генетика и ее задачи.
- 77. Человек как специфический объект генетического анализа. Классификация методов генетики человека.
- **78.** Основные методы генетики человека: генеалогический, близнецовый, цитогенетический, биохимический и другие.
- **79.** Методы диагностики хромосомных болезней человека: классическое кариотипирование, FISH-, SKY- и SNP-кариотипирование.
- **80.** Экспресс-методы диагностики: микробиологические, выявление X-и Y-полового хроматина, биохимические, дерматоглифический.
- **81.** Пренатальные методы выявления наследственной патологии. Пренатальный скрининг. Морально-этические аспекты пренатальной диагностики.

- **82.** Медико-генетическое консультирование, его цели, задачи и этапы. Показания для медико-генетического консультирования.
- **83.** Размножение универсальное свойство живого. Формы бесполого размножения, биологическое значение.
- **84.** Формы полового размножения, биологическое значение. Половой процесс. Гермафродитизм.
- **85.** Гаметогенез (овогенез и сперматогенез) у человека. Регуляция гаметогенеза у человека. Морфологические и функциональные особенности зрелых гамет человека.
- 86. Осеменение. Особенности оплодотворения у человека.
- **87.** Преодоление бесплодия у человека. Искусственное осеменение, экстракорпоральное оплодотворение и его варианты.
- 88. Преимплантационная генетическая диагностика.
- **89.** Этические проблемы научных исследований с использованием человеческих эмбрионов.
- 90. Онтогенез, его типы. Периодизация онтогенеза.
- **91.** Эмбриональный период, характеристика стадий (предзиготный период, зигота, дробление, гаструляция, гисто- и органогенез).
- 92. Взаимодействие частей развивающегося организма. Эмбриональная индукция, морфогенетические поля, градиент физиологической активности.
- 93. Периодизация постнатального онтогенеза у человека. Генный контроль постэмбрионального развития.
- 94. Рост и развитие организма человека, их регуляция. Акселерация. Конституция и габитус человека, и их медицинское значение.
- **95.** Критические периоды пренатального и постнатального онтогенеза человека.
- **96.** Организм как открытая саморегулирующаяся система. Общие закономерности регуляции гомеостаза. Кибернетические основы гомеостаза. Уровни и механизмы регуляции гомеостаза.
- **97.** Биоритмология. Медицинское значение хронобиологии. Хронопрофилактика, хронодиагностика и хронотерапия. Регенерация органов и тканей. Физиологическая регенерация как механизм поддержания гомеостаза. Классификация клеток по способности к регенерации.
- **98.** Репаративная регенерация, ее виды и способы. Регуляция регенерации. Значение регенерации для биологии и медицины. Регенеративная медицина.

- **99.** Трансплантация органов и тканей, ее виды: аутотрансплантация, аллотрансплантация, гомотрансплантация и ксенотрансплантация. Тканевая и видовая специфичность белков.
- **100.** Иммунологические механизмы тканевой несовместимости и пути ее преодоления. Понятие о трансплантационном иммунитете. Система HLA.
- **101.** Культивирование клеток и тканей вне организма человека, консервирование тканей. Стволовые клетки. Клеточные линии в биологических и медицинских экспериментах.
- **102.** Искусственные органы. Выращивание органов человека у животных и децеллюляризация, терапевтическое клонирование, 3D-биопринтинг.
- **103.** Морально-этические и юридические аспекты трансплантации тканей и органов: констатация смерти, концепция смерти мозга, донорство и его коммерциализация.
- 104. Паразитизм антагонистический симбиоз. Критерии паразитизма.
- **105.** Паразитарная система. Система паразит-хозяин. Микробиом. Паразитоценоз. Классификация паразитов и их хозяев
- 106. Пути проникновения паразитов в организм хозяина. Механизмы передачи паразитозов. Патогенное действие и специфичность паразитов.
- 107. Морфофизиологические и биологические адаптации паразитов.
- 108. Ответные реакции организма хозяина на внедрение паразитов.
- **109.** Классификация паразитарных болезней. Медицинская паразитология, её цели и задачи.
- 110. Общая характеристика царства Протисты.
- **111.** Жизненный цикл возбудителей малярии человека. Виды малярийных плазмодиев, паразитирующих у человека, их морфологическая характеристика в тонком мазке крови.
- 112. Механизмы и пути заражения человека малярией, патогенное действие возбудителей. Симптомы, диагностика и профилактика малярии.
- **113.** Токсоплазма: особенности морфологии и цикла развития, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика токсоплазмоза.
- **114.** Дизентерийная и ротовая амебы: особенности морфологии и жизненного цикла, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика амебиаза.

- **115.** Трихомонада: особенности морфологии и жизненного цикла, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика урогенитального трихомоноза.
- 116. Биологические основы профилактики протозойных заболеваний
- **117.** Кошачий сосальщик: особенности морфологии и цикла развития, механизмы и пути заражения человека и животных, патогенное действие. Симптомы, диагностика и профилактика описторхоза.
- **118.** Цепень вооруженный (свиной): особенности морфологии, механизмы и пути заражения человека и животных, патогенное действие. Симптомы, диагностика и профилактика тениоза и цистицеркоза.
- **119.** Аскарида человека: особенности морфологии и биологии, механизмы и пути заражения человека, патогенное действие личинок и половозрелых аскарид. Симптомы, диагностика миграционного и кишечного аскаридоза, профилактика аскаридоза.
- **120.** Острица: особенности морфологии и биологии, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика энтеробиоза.
- **121.** Саркоптовые клещи возбудители заболеваний человека: особенности их морфологии и биологии.
- **122.** Отряд Вши: особенности морфологии и биологии. Вши возбудители и переносчики возбудителей заболеваний человека и меры борьбы с ними.
- 123. Учение академика Е. Н. Павловского о природной очаговости болезней.
- **124.** Ядовитость универсальное явление в живой природе. Понятие о ядах и токсинах. Классификация ядовитых животных.
- **125.** Ядовитые животные, представители типов: Кишечнополостные, Членистоногие и Хордовые (рыбы, земноводные, пресмыкающиеся).
- **126.** Физиологическая характеристика токсинов беспозвоночных (медузы, паукообразные, перепончатокрылые), действие их на человека; первая помощь и меры профилактики укусов и отравлений.
- **127.** Физиологическая характеристика токсинов позвоночных (рыбы, амфибии, рептилии), действие их на человека; первая помощь и меры профилактики укусов и отравлений.
- 128. Ядовитые грибы и растения, их характеристика.
- **129.** Значение ядовитых организмов как источника сырья для фармации и медицины.

- 130. Индивидуальное и историческое развитие. Законы К. Бэра. Рекапитуляции.
- **131.** Филогенез как процесс эволюции онтогенезов. Биогенетический закон. Понятие о ценогенезах и палингенезах.
- 132. Учение А. Н. Северцова о филэмбриогенезах.
- 133. Эволюция систем органов позвоночных: черепа и пищеварительной системы, онтофилогенетическая обусловленность пороков развития черепа и пищеварительной системы.

ПИСЬМЕННЫЙ ЭКЗАМЕН

Структура билета:

- 15 закрытых тестов,
- 5 открытых тестов,
- 3 задачи.

Студенты отвечают на вопросы билета 60 минут.

Критерии оценки:

No	Вид задания номера вопроса	Количество баллов за 1 задание	Количество заданий	Максимальное количество баллов
1.	Закрытые тесты (1–15)	3	15	45
2.	Открытые тесты (16–20)	5	5	25
3.	Задачи (21–23)	10	3	30
	Итого		23	100

Количество баллов	Оценка	Количество баллов	Оценка
94–100	«10»	49–55	«5»
83–93	«9»	42–48	«4»
73–82	«8»	26–41	«3»
63–72	«7»	11–25	«2»
56–62	«6»	0–10	«1»

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Основная

- 1. *Бутвиловский, В. Э.* Медицинская биология для иностранных студентов : учеб.-метод. пособие. В 2 ч. Ч. 1 / В. Э. Бутвиловский, В. В. Давыдов, В. В. Григорович. Минск : БГМУ, 2023. 199 с.
- 2. Бутвиловский, В. Э. Медицинская биология для иностранных студентов: учеб.-метод. пособие. В 2 ч. Ч. 2 / В. Э. Бутвиловский, В. В. Давыдов, В. В. Григорович. Минск: БГМУ, 2023. 226 с.
 - 3. Медицинская биология и общая генетика: учеб. / Р. Г. Заяц [и др.]. 3-е изд., испр. Минск: Вышэйшая школа, 2017. 480 с.
 - 4. ЭУМК «Медицинская биология и общая генетика» [Электронный ресурс]. http://etest.bsmu.by.

Дополнительная

- 5. Медицинская биология и общая генетика: термины, задачи, тесты для студ. стом. факультета / В. Э. Бутвиловский [и др.]. Минск: БГМУ, 2020. 260 с.
 - 6. Тейлор, Д. Биология: в 3 т. / Д. Тейлор, Н. Грин, У. Стаут; пер. с англ. 13-е изд. Москва: БИНОМ. Лаборатория знаний, 2021. 1340 с.
- 7. *Бекиш, О.-Я. Л.* Медицинская биология и общая генетика : учеб. / О.-Я. Л. Бекиш, В. Я. Бекиш. 3-е изд., испр. и доп. Витебск : ВГМУ, 2018. 420 с.
- 8. *Медицинская* биология : учеб.-метод. пособие для студ. мед. ф-та иностр. учащихся по специальности «Стоматология» / В. Э. Бутвиловский [и др.]. 4-е изд., испр. Минск : БГМУ, 2018. 143 с.
- 9. Практические задания по медицинской биологии и общей генетике : учеб. пособие. В 2 ч. Ч. 1 / Е. В. Чаплинская [и др.]. Минск : БГМУ, 2020. 174 с.
- 10. Практические задания по медицинской биологии и общей генетике : учеб. пособие. В 2 ч. Ч. 2 / Е. В. Чаплинская [и др.]. Минск : БГМУ, 2021. 176 с.

Учебное издание

Бутвиловский Валерий Эдуардович **Давыдов** Владимир Витольдович **Григорович** Виктор Васильевич

МЕДИЦИНСКАЯ БИОЛОГИЯ

Практикум для иностранных студентов, обучающихся по специальности «Стоматология»

2-е издание, переработанное

Ответственный за выпуск В. В. Давыдов Компьютерная вёрстка Н. М. Федорцовой

Подписано в печать 06.06.24. Формат 60×84/8. Бумага писчая «Снегурочка». Ризография. Гарнитура «Times». Усл. печ. л. 11,16. Уч.-изд. л. 5,63. Тираж 75 экз. Заказ 305.

Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный медицинский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/187 от 24.11.2023. Ул. Ленинградская, 6, 220006, Минск.