https://doi.org/10.34883/PI.2023.12.1.023

Анисько Л.А.^{1,2} ⊠, Литвинчук Д.В.², Сильванович Е.А.², Карпов И.А.²

- 1 Городская клиническая инфекционная больница, Минск, Беларусь
- ² Белорусский государственный медицинский университет, Минск, Беларусь

Лабораторные предикторы тяжелого течения и летального исхода коронавирусной инфекции COVID-19

Конфликт интересов: не заявлен.

Вклад авторов: концепция и дизайн исследования, сбор и обработка материала – Анисько Л.А., Литвинчук Д.В.; написание текста – Анисько Л.А., Сильванович Е.А.; рисунки, таблицы – Литвинчук Д.В.; редактирование – Карпов И.А.

Подана: 13.03.2023 Принята: 27.03.2023 Контакты: luidok@mail.ru

Резюме

В работе представлена значимость основных лабораторных показателей, изменяющихся при коронавирусной инфекции, как предиктора развития тяжелого течения и летального исхода. Выявлен параметр Log NIL, который показал более высокие характеристики по сравнению с рутинными показателями.

Ключевые слова: коронавирусная инфекция, COVID-19, лабораторные предикторы

Anisko L.^{1,2} ⊠, Litvinchuk D.², Silvanovich K.², Karpov I.²

- ¹ City Clinical Hospital of Infectious Diseases, Minsk, Belarus
- ² Belarusian State Medical University, Minsk, Belarus

Laboratory Predictors of Severe Course and Fatal Outcome of COVID-19 Coronavirus Infection

Conflict of interest: nothing to declare.

Authors' contribution: conception and design of the study, collection and processing of material – Anisko L., Litvinchuk D.; writing – Anisko L., Silvanovich E.; figures, tables – Litvinchuk D.; editing – Karpov I.

Submitted: 13.03.2023 Accepted: 27.03.2023 Contacts: luidok@mail.ru

Abstract

The study presents an analysis of the significance of the main laboratory parameters that change during coronavirus infection as a predictor of the development of severe course and fatal outcome. The Log NIL parameter was identified, which showed higher characteristics compared to conventional indicators.

Keywords: coronavirus infection, COVID-19, laboratory predictors

■ ВВЕДЕНИЕ

Коронавирусная инфекция COVID-19, вызываемая вирусом SARS-CoV-2, отличается разнообразными клиническими проявлениями от бессимптомных до крайне тяжелых с развитием острого респираторного дистресс-синдрома. В большинстве случаев тяжесть развития инфекции связана с особенностями реактивации иммунной системы организма в ответ на внедрение вируса, отличающейся неадекватной гиперреактивностью [1]. По данным вОЗ, по состоянию на 07.03.2023 выявлено почти 758 млн случаев заболеваний, из которых почти 7 млн закончились летально (https://covid19.who.int/).

Вирус SARS-CoV-2 является крупным оболочечным РНК-вирусом и принадлежит к семейству Coronaviridae, род Betacoronavirus. Сами коронавирусы впервые были описаны с 1966 года как причина острых респираторных инфекций. Среди семейства Coronaviridae различают 4 рода – альфа-, бета-, гамма- и дельта-коронавирусы [2]. Из известных коронавирусов способность вызывать инфекцию у человека имеют 7 разновидностей: HCoV-229E (Alphacoronavirus) – выявлен в середине 1960-х годов; HCoV-NL63 (Alphacoronavirus) – выявлен в Нидерландах в 2004 году; HCoV-OC43 (Betacoronavirus A) – выявлен в 1967 году; HCoV-HKU1 (Betacoronavirus A) – обнаружен в Гонконге в 2005 году; SARS-CoV (Betacoronavirus B) – возбудитель тяжелого острого респираторного синдрома, первый случай заболевания был зарегистрирован в 2002 году; MERS-CoV (Betacoronavirus C) – возбудитель ближневосточного респираторного синдрома, стал причиной вспышки в 2015 году; SARS-CoV-2 (Betacoronavirus B) – с конца 2019 года стал глобальной проблемой в последние пару лет. Сам вирус имеет сферическую форму и покрыт липидной оболочкой, на поверхности которой имеется особенный антиген – S-гликопротеин, обеспечивающий проникновение в клетку хозяина. В организме человека вирус прикрепляется к клетке через рецептор – ангиотензин-связывающий белок (АПФ). В большинстве случаев COVID-19 проявляется в виде инфекции верхних дыхательных путей, однако вирус способен поражать и сердечно-сосудистую, желудочно-кишечную, нервную, иммунную и кроветворную системы [3]. В связи с этим в большинстве случаев коронавирусной инфекции отмечаются значительные изменения большинства гематологических и биохимических показателей, выраженность которых связана с тяжестью заболевания.

Основные изменения со стороны картины крови связаны со снижением количества лимфоцитов, которые являются главными клетками иммунной системы в процессе противовирусной защиты. Лимфоцитопения (количество лимфоцитов менее 1,2×10°/л) при коронавирусной инфекции наблюдается примерно в 80% случаев. Факторами, способствующими ее развитию, являются следующие: экспрессия рецептора АСЕ2 на поверхности клеток (непосредственное действие SARS-CoV-2 на лимфоциты и в конечном итоге их лизис); цитокиновый шторм характеризуется заметно повышенным уровнем интерлейкинов (в основном IL-6, IL-2, IL-7) и фактора некроза опухоли альфа (TNF), которые способствуют апоптозу лимфоцитов; гиперактивация клеток иммунной системы и продукция провоспалительных цитокинов индуцируют гранулопоэз и миелопоэз и уменьшают лимфопоэз в костном мозге, а гиперпродукция моноцитов и гранулоцитов приводит к еще большему выбросу провоспалительных цитокинов. Имеется прямая связь между выраженностью лимфоцитопении и вероятностью развития острого респираторного дистресс-синдрома [3]. Помимо лимфоцитопении у ряда пациентов отмечается и тромбоцитопения

(снижение тромбоцитов менее 150×10°/л), которая развивается вследствие прямой инфекции гематопоэтических клеток или стромальных клеток костного мозга вирусом SARS-CoV, что приводит к угнетению кроветворения. Кроме того, повреждение легочной ткани способствует истощению тромбоцитов из-за активации, агрегации и удержания тромбоцитов в легких, а также образования тромба в месте повреждения, что приводит к снижению выработки тромбоцитов и увеличению потребления. Тромбоцитопения и динамика уровня тромбоцитов ассоциированы с увеличением риска тяжелой COVID-19-инфекции.

Изменение биохимических показателей при инфекции COVID-19 связано с нарушением функции органов и систем, гиперреактивным иммунным ответом на внедрение вируса в организм человека. Так, основные изменения наблюдаются со стороны ферментных систем организма, острофазовых белков, белкового и электролитного состава крови. Кроме того, в связи с тем, что инфекция COVID-19 поражает преимущественно органы дыхания, в тяжелых случаях отмечаются сдвиги в кислотноосновном состоянии.

Со стороны клеточных ферментов отмечается повышение активности их в крови, что связано как с нарушением проницаемости клеточных мембран, связанных с развитием воспаления, так и с нарушением целостности самих клеток в результате их разрушения. Более чем у половины пациентов с COVID-19-инфекцией увеличивается активность аминотрансфераз (АсАТ и АлАТ). Увеличение активности креатинфосфокиназы (КФК) при COVID-19 объясняется высокой экспрессией ACE2 в эндотелиальных клетках или перицитах, что может приводить к тяжелой микрососудистой и макрососудистой дисфункции. Кроме того, в сочетании с повышенной иммунной реактивностью вирус потенциально может дестабилизировать атеросклеротические бляшки и спровоцировать развитие острых коронарных синдромов. Лактатдегидрогеназа (ЛДГ) относится к цитозольным ферментам, и основной ее функцией является обратимое восстановление пирувата до лактата. Так как при инфекции COVID-19 главным органом-мишенью является легочная ткань, то и повышение ЛДГ в случае развития коронавирусной пневмонии связывают со степенью поражения легких. Следует отметить, что существует прямая зависимость между увеличением активности ЛДГ и степенью вовлечения легочной ткани в патологический процесс. Среди главных реактантов крови, которые повышают свою концентрацию в сыворотке крови в десятки и сотни раз в течение 6-12 часов после повреждения ткани, следует выделить С-реактивный белок (СРБ) и ферритин. СРБ – мультифункциональный белок острой фазы, играющий важную роль при воспалениях, при защите от чужеродных агентов, при некрозах, в аутоиммунных процессах. При COVID-19 повышается у 60% пациентов с первых дней заболевания. Одним из существенных медиаторов воспаления при новой коронавирусной инфекции является интерлейкин-6. ИЛ-6 – гликопротеин, противовоспалительный цитокин, который стимулирует иммунный ответ и является медиатором острой фазы воспаления. Секретируется макрофагами, фибробластами, клетками сосудистого эндотелия, Т-клетками, глиальными клетками, эпителиальными клетками и кератиноцитами кожи после их активации патоген-связанными молекулами, интерлейкином-1 и фактором некроза опухоли. Избыточная продукция интерлейкина-6 вызывает повреждение тканей. Известно, что по мере прогрессирования тяжести заболевания COVID-19 уровень ИЛ-6 также повышается. Имеется прямая корреляция уровня интерлейкина с летальностью пациентов.

В Кокрейновском обзоре, охватившем более 14 000 случаев COVID-19 из 21 исследования, была проанализирована значимость 67 лабораторных тестов, и диагностическую значимость с чувствительностью и специфичностью более 50% показали только три маркера: снижение количества лимфоцитов, повышение С-реактивного белка и ИЛ-6 [4].

■ ЦЕЛЬ ИССЛЕДОВАНИЯ

Разработать прогностический коэффициент развития летального исхода у пациентов с коронавирусной инфекцией на основе наиболее значимых предикторов.

■ МАТЕРИАЛЫ И МЕТОДЫ

В исследование были включены 3307 пациентов с COVID-19 с наличием подтвержденного этиологически диагноза (РНК вируса или антиген) вне зависимости от тяжести течения, формы COVID-19, уровня респираторной поддержки. В анализ потенциальных предикторов включены соотношение количества нейтрофилов и лимфоцитов (Н/Л), С-реактивный белок, интерлейкин-6 и результат умножения соотношения нейтрофилов и лимфоцитов на содержание интерлейкина-6 (NIL). Для анализа использовались максимальные значения данных лабораторных показателей в течение первых 3 дней госпитализации. Статистический анализ выполнен в программе R 4.2.0 с пакетами dplyr, tidyr, gtsummary, caret, pROC, cutpointr, lattice. Количественные показатели выражались в виде медианы (Ме) и межквартильного размаха (25-й; 75-й перцентиль), качественные – в виде процентов и частот в группах (%, n / N). Учитывая большой диапазон значений показателя NIL, выполнено логарифмическое преобразование значений данного показателя. Построение таблиц с описательной статистикой и сравнением лабораторных показателей выполнено в пакете qtsummary. Сравнение количественных признаков в группах выполнялось с применением критерия Уилкоксона. Визуализация распределения анализируемых лабораторных показателей в зависимости от исхода выполнена в виде скрипичных графиков в пакете lattice. Анализ ассоциации лабораторных показателей с исходом госпитализации выполнялся с помощью моделей логистической регрессии в пакете caret.

Набор данных (3307) был разделен на выборку обучения (2316 пациентов, 70%) и тестирования (991 пациент, 30%) моделей с сохранением одинаковой частоты встречаемости вариантов исхода.

Модели проходили внутреннюю валидацию методом k-блочной кросс-валидации по 10 блокам с 1000 повторений с учетом критерия согласия каппа. Внешняя валидация осуществлялась на выборке тестирования моделей: каждая модель на основании лабораторных показателей выборки тестирования предсказывала исходы, которые затем сравнивались с фактическими исходами, по результатам сравнения построены матрицы неточностей. Отношения шансов и их доверительные интервалы рассчитывались как экспоненциальное преобразование соответствующих коэффициентов регрессии и их доверительных интервалов.

Определение оптимальных точек отсечения (cut-off) выполнялось в пакете cutpointr с применением ROC-анализа. Оптимальные чувствительность и специфичность определялись с применением критерия Юдена. Оптимальные точки отсечения затем использовались для предсказания исходов на выборке обучения с

построением матриц неточностей. Доверительные интервалы (95% ДИ) точек отсечения, показателей производительности моделей вычислялись методом бутстрэпа с 10 000 повторений.

Различия принимались как статистически значимые при p<0,001.

■ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Анализ показателей лабораторных исследований в зависимости от исхода заболевания показал значимые различия среди выбранных предикторов, как в изолированном отношении, так и в комплексном (табл. 1).

Согласно анализу распределения и плотности вероятности рассматриваемых показателей, представленному на рис. 1, для всех показателей у пациентов без летального исхода наблюдаются относительно низкие значения медиан и большое количество выпадающих значений, выходящих за верхние границы графиков. Кроме того, для показателя СРБ у пациентов с летальным исходом наблюдается тенденция к формированию бимодального распределения со вторым пиком встречаемости на уровне СРБ около 150 мг/л. Данное наблюдение может свидетельствовать о наличии в выборке пациентов с летальным исходом «подгруппы» с дополнительными причинами, обуславливающими высокий уровень СРБ (например, наличие бактериальной коинфекции).

Далее рассматриваемые лабораторные показатели в качестве независимых переменных включались в модели логистической регрессии с исходом госпитализации как зависимой переменной. Результаты построения моделей представлены в табл. 2.

Таблица 1 Лабораторные показатели пациентов с COVID-19 в зависимости от исхода заболевания Table 1 Laboratory parameters of patients with COVID-19 depending on the disease's outcome

Всего паци-	Лабораторный показатель	Исход госпитализации			
ентов		Без летального исхода	Летальный исход	P	
3307	СРБ, мг/л	25 (8; 60)	58 (29; 93)	<0,001	
3307	NL	2,5 (1,6; 4,1)	5,4 (3,0; 11,0)	<0,001	
3307	ИЛ-6, пг/мл	10 (10; 17)	13 (10; 32)	<0,001	
3307	NIL (log)	3,40 (2,88; 4,16)	4,56 (3,76; 5,76)	<0,001	

Таблица 2 Результаты построения моделей логистической регрессии с исходом госпитализации как зависимой переменной Table 2

The results of constructing logistic regression models with the outcome of hospitalization as a dependent variable

Модель	Критерий каппа (кросс-валидация)	В, коэффициенты регрессии*	р	ош	95% ДИ
Исход ~ СРБ	0,0293	0,0090	<0,001	1,0091	1,0066–1,0115
Исход ~ ИЛ-6	0,0665	0,0084	<0,001	1,0084	1,0056–1,0114
Исход ~ NL	0,1183	0,0100	<0,001	1,1051	1,0796-1,1327
Исход ~ log NIL	0,0521	0,71834	<0,001	2,0510	1,8018-2,3412

Примечание: * константы уравнений регрессии в данной таблице не приведены.

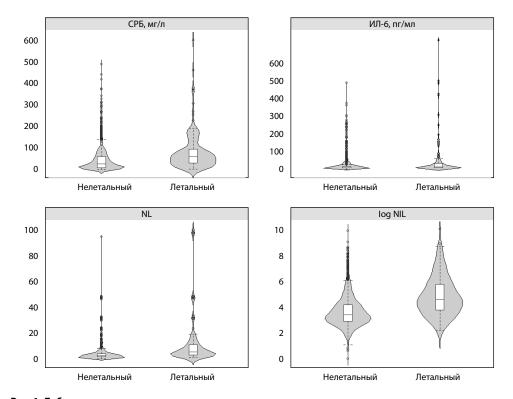


Рис. 1. Лабораторные показатели в зависимости от исхода Fig. 1. Laboratory parameters depending on the disease's outcome

Таблица 3
Внешняя валидация моделей логистической регрессии с исходом госпитализации как зависимой переменной с включением лабораторных параметров (СРБ, ИЛ-6, NL, log NIL)
Table 3
External validation of logistic regression models with hospitalization outcome as a dependent variable

External validation of logistic regression models with hospitalization outcome as a dependent variable with inclusion of laboratory parameters (CRP, IL-6, NL, log NIL)

Модель	Матрица неточностей	Точность (95% ДИ), %	Чувствительность, %	Специфичность, %
Исход ~ СРБ	Факт. Прогн. 0 1 0 644 20 1 295 32	68,21 (65,21–71,11)	61,54	68,58
Исход ~ ИЛ-6	Факт. Прогн. 0 1 0 673 30 1 266 22	70,13 (67,17–72,97)	42,31	71,67
Исход ~ NL	Факт. Прогн. 0 1 0 597 10 1 342 42	64,48 (61,41–67,46)	80,77	63,58
Исход ~ log NIL	Факт. Исход ~ log NIL Прогн. 0 1 0 482 7 1 457 45		86,54	51,33

68,97

71,47

Таблица 4 Анализ точек отсечения для лабораторных параметров Table 4 Analysis of cut-off points for laboratory parameters

0,4043

4,03

Log NIL

Лабораторный показатель	Точка от- сечения	Критерий Юдена	AUC, %	Точность, %	Чувствитель- ность, %	Специфич- ность, %
СРБ, мг/л	30,34	0,2968	68,54	56	74,71	54,96
ИЛ-6, пг/л	19,9	0,2086	61,68	77,4	41,38	79,48
NL	2,96	0,3584	74,32	55,2	75,86	59,97

75,22

71,33

Из полученных данных (табл. 2) видно, что все представленные модели имеют низкое согласие между наблюдателями, каппа менее 0,2. Однако следует отметить, что данные предикторы в унивариантных моделях имели статистическую значимость.

Также была проведена внешняя валидация моделей логистической регрессии с исходом госпитализации как зависимой переменной на выборке тестирования (991 пациент), результаты которой представлены в табл. 3.

Из полученных данных видно, что модель NIL в абсолютном выражении имела наименьшую ошибку в части классификации неблагоприятных исходов: спрогнозировала отсутствие летального исхода в 7 случаях, где он все-таки наступил. В целом

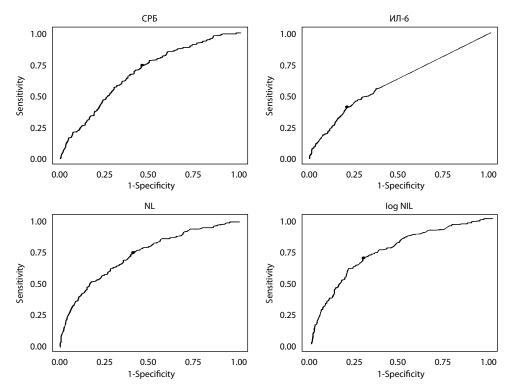


Рис. 2. ROC-кривые для оптимальных точек отсечения лабораторных показателей Fig. 2. ROC curves for optimal cut-off points of laboratory parameters

все представленные модели продемонстрировали точность больше 50%, как и было показано в Кокрейновском обзоре [4]. Таким образом, лабораторные предикторы неблагоприятного исхода показывают наибольшую значимость и прогностическую ценность в их сочетании. Дальнейшие направления исследований лабораторных предикторов неблагоприятного исхода COVID-19 следует сосредоточить на сочетании предикторов во множественном регрессионном анализе.

При определении оптимальных точек отсечения для лабораторных параметров был применен критерий Юдена, результаты представлены в табл. 4 и на рис. 2.

Исходя из представленных данных, оптимальной является точка отсечения для параметра Log NIL, который показал высокие точность, специфичность и чувствительность.

■ ЗАКЛЮЧЕНИЕ

В ходе проведенного исследования, с учетом имеющихся литературных данных, выявлен параметр Log NIL, который показал более высокие характеристики по сравнению с рутинными показателями. В связи с этим данный показатель может представлять прогностическую ценность как предиктор развития тяжелого течения и летального исхода. Однако в данном исследовании пациенты не ранжировались по степени тяжести и (или) уровню респираторной поддержки и не учитывались сопутствующие диагнозы и наличие бактериально-септических осложнений, поэтому считаем необходимым продолжить исследование в данном направлении.

■ ЛИТЕРАТУРА/REFERENCES

- Tizazu A.M., Mengist H.M., Demeke G. Aging, inflammaging and immunosenescence as risk factors of severe COVID-19. Immun. Ageing. 2022;19(1):53. doi: 10.1186/s12979-022-00309-5
- 2. Anis'ko L.A. Issues of verification of COVID-19 infection. Laboratornaya Diagnostika Vostochnaya Evropa. 2021;10(1):8–13. (in Russian)
- 3. Dai W. Characteristics of lymphocyte subset alterations in COVID-19 patients with different levels of disease severity. Virol. J. 2022;19(1):192. doi: 10.1186/s12985-022-01926-8
- Safiabadi Tali S.H. Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clin. Microbiol. Rev. 2021;34(3):e00228-20. doi: 10.1128/CMR.00228-20