СРАВНЕНИЕ МЕТОДОВ МОДЕЛИРОВАНИЯ ТРЕТИЧНОЙ СТРУКТУРЫ ИЗОФОРМЫ УРОКИНАЗЫ

Байроченко Д.С. (2 курс, лечебный факультет), Ринейская О.Н. (к.м.н., доцент, кафедра биоорганической химии)

Белорусский государственный медицинский университет, г. Минск

Аннотация. В настоящей работе проведено сравнение качества 3D-моделей изоформы урокиназы P00749-2. Поиск первичной последовательности изоформы осуществлялся в ресурсе UniProt. Моделирование третичных структур было проведено с использованием программ MODELLER, Phyre2, Robetta и SWISS-MODEL. Для оценки качества 3D-структур были использованы сервисы SAVES v6.0 и Structure Assessment. В результате выполненной работы было установлено, что сервис SWISS-MODEL является оптимальным для моделирования изоформы P00749-2 урокиназы.

Ключевые слова: гомологичное моделирование, SWISS-MODEL, Robetta, Phyre2, MODELLER, урокиназа.

Введение. Установление трехмерных структур белков крайне важно в понимании патогенеза ряда заболеваний, делает возможным проведение таргетной терапии и разработку высокоаффинных лекарственных препаратов. Сегодня важная роль в данном направлении отводится методам in silico, получившим широкое распространение в современной научной биологической и медицинской практике.

Цель исследования. Сравнение качества третичных структур белковых молекул, полученных путем моделирования *in silico*, с использованием ряда онлайн-сервисов и программ в контексте определения наиболее подходящего сервиса для установления третичной структуры изоформы P00749-2 урокиназы.

Материал и методы. Данные о первичной структуре изоформ урокиназы были взяты из ресурса UniProt [2]. Были найдены два основных варианта фермента, обозначаемые как P00749-1 и P00749-2. Вариант P00749-1 имеет длину 431 аминокислотных остатка и массу около 48,5 кДа, является каноничным, для него ранее была предсказана in silico трехмерная структура, которую можно найти в базе данных AlphaFold. Вариант P00749-2 образуется в результате альтернативного сплайсинга, имеет длину 414 аминокислотных остатка и массу около 46,9 кДа. Именно для изоформы P00749-2 проводилось моделирование 3D-структуры.

Далее в каждой из четырех вышеназванных программ было проведено in silico моделирование данной изоформы белка. Программы SWISS-MODEL [3], Robetta [1] и MODELLER [4] конструируют несколько моделей на базе одной первичной последовательности. В связи с чем была проведена первичная оценка глобального качества 3D-структур с целью отбора по одному наиболее успешному образцу от каждой программы для последующего сравнительно анализа. Первичная оценка производилась посредством инструментов, предлагаемых каждой из программ.

С целью выявления наиболее подходящей программы для трехмерного моделирования изоформы урокиназы были использованы следующие сервисы:

- 1. SAVES v6.0. Программа использует следующие инструменты: ERRAT анализирует белковые структуры на предмет наличия несвязанных остатков в пределах 3,5 Å между различными атомами, рассчитывая общий коэффициент качества. Для высококачественной модели значение должно превышать 50; VERIFY3D задействует структурную базу данных и сопоставляет трехмерную структуру с аминокислотной последовательностью, проводя сравнение качества предоставленной структуры с белковыми структурами с высоким разрешением из базы данных); PROCHECK анализирует общую геометрию и оценивает стереохимическое качество прогнозируемой модели, строит карту Рамачандрана с разрешением 2,0 Å.
- Инструмент Structure Assessment. Рассчитывает показатель QMEANDisCo, который позволяет дать абсолютную оценку качества модели. Этот параметр определяет локальное качество для каждого остатка путем соответствия попарных расстояний остаток-остаток *<u>v</u>четом* cпространственных ограничений. Программа определяет потенциалы взаимодействия, зависящие от расстояния, на основе атомов СВ и всех атомов, значения эффекта сольватации; угла торсии для трех соответственно; последовательных аминокислот (оценивается качество вторичных структур); QMEAN (описывает основные геометрические аспекты белковых структур, используя вышеперечисленные параметры). Названные показатели формируются сравнения анализируемой на основании модели экспериментально определенных структур аналогичного размера; структуры получившие значения близкие к нулю считаются нативными; значения меньше «-4» обычно считаются неудовлетворительными. Строит карту Рамачандрана с разрешением 2,5 Å.

Результаты исследования. При построении карты Рамачандрана с использованием инструмента Structure Assessment лучшие результаты соответствовали модели SWISS-MODEL. По значениям QMEANDisCo и QMEAN данная модель также занимает лидирующую позицию. Полученные данные представлены в ниже (табл. 1).

Таблица 1. Инструмент Structure Assessment, количественные характеристики лучших моделей

1 1				
Показатели	SWISS-MODEL	Robetta	Phyre2	MODELLER
Рамачандран основной регион, %	95,85	92,96	89,32	87,38

Рамачандран запрещенный регион, %	0,49	1,46	4,13	5,10
Рамачандран другие регионы, %	3,66	5,58	6,55	7,52
Потенциал взаимодействия (Сβ атомы)	0,69	-0,38	-2,94	-5,68
Потенциал взаимодействия (все атомы)	-1,87	-2,73	-5,72	-6,89
Эффект сольватации	-1,31	-0,99	-3,83	-7,96
Угол торсии	0,33	-0,04	-3,37	-3,77
QMEAN	-0,02	-0,49	-4,94	-7,00
QMEANDisCo	0,77	0,70	0,64	0,48

Далее с целью получения дополнительных данных о качестве структуры сконструированных белковых молекул, а также уточнения значений в картах Рамачандрана для каждой из четырех моделей был использован сервис SAVES v6.0, результаты представлены в сводной таблице (табл. 2).

Таблица 2. Инструмент SAVES v6.0, характеристики лучших моделей

Показатели	SWISS-MODEL	Robetta	Phyre2	MODELLER
Рамачандран основной, %	89,3	82,6	78,9	79,8
Рамачандран разрешенный, %	10,5	15,2	16,6	16,6
Рамачандран в целом разрешенный, %	0,3	1,7	2,8	2,2
Рамачандран запрещенный, %	0,0	0,6	1,7	1,4
ERRAT	89,26	90,5	42,47	38,48
VERIFY3D, %	70,63	73,43	76,09	59,66

Образец SWISS-MODEL обладает лучшими показателями по всем параметрам карты Рамачандрана, за исключением ERRAT и VERIFY3D. Также данная модель не имеет остатков в запрещенном регионе карты, что является весомым аргументом в пользу высокого качества структуры. Ниже представлено изображение трехмерной структуры модели SWISS-MODEL (рис. 1).

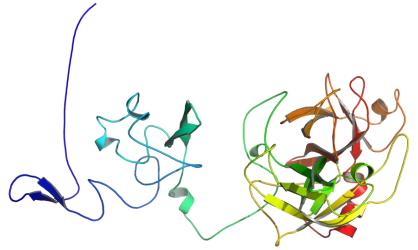


Рисунок 3 – Модель, полученная с помощью SWISS-MODEL

Заключение. Был построен ряд трехмерных моделей с использованием четырех сервисов. На основании 15-ти проанализированных показателей,

полученных с использованием Structure Assessment и SAVES v6.0, наилучшими результатами обладает модель SWISS-MODEL, лидируя по 10 параметрам.

Для конструирования третичной структуры изоформы P00749-2 урокиназы было рекомендовано использовать сервис SWISS-MODEL.

Список литературы:

- 1. Baek, M. Accurate prediction of protein structures and interactions using a three-track neural network / M. Baek [et al] // Science. 2021. Vol. 373, № 6557. P. 871–876. Mode of access: https://www.science.org/doi/10.1126/science.abj8754. Date of access: 11.08.2023.
- 2. UniProt: the Universal Protein Knowledgebase in 2023 / UniProt Consortium // Nucleic Acids Res. 2023. Vol. 51, № D1. P. D523-D531. Mode of access: https://academic.oup.com/nar/article/51/D1/D523/6835362?login=false. Date of access: 03.08.2023.
- 3. Waterhouse, A. SWISS-MODEL: homology modelling of protein structures and complexes / A. Waterhouse [et al] // Nucleic Acids Res. 2018. Vol. 46, № W1. P. W296–W303. Mode of access: https://academic.oup.com/nar/article/46/W1/W296/5000024. Date of access: 15.08.2023.
- 4. Webb, B. Protein Structure Modeling with MODELLER / B. Webb, A. Sali // Methods Mol Biol. 2021. Vol. 2199. P. 239-255. Mode of access: https://escholarship.org/content/qt2023k96v/qt2023k96v.pdf?t=rdxpnp. Date of access: 08.08.2023.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ОРДЕНА ДРУЖБЫ НАРОДОВ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»

«СТУДЕНЧЕСКАЯ МЕДИЦИНСКАЯ НАУКА XXI ВЕКА»

XXIII Международная научно-практическая конференция студентов и молодых ученых

26-27 октября 2023 г.