АНАЛИЗ МЕХАНИЗМОВ РЕЗИСТЕНТНОСТИ НЕМЕЛКОКЛЕТОЧНОГО РАКА ЛЕГКОГО К ЛЕКАРСТВЕННОЙ ТЕРАПИИ ГЕНТИФИНИБОМ

Семенкович П.А., Лепиков Н.А., Чепелев С.Н. Белорусский государственный университет г. Минск, Республика Беларусь

Актуальность. Опухолевые заболевания легких ежегодно обнаруживаются у 1,8 млн пациентов. Большинство из них (85 %) приходится на немелкоклеточный рак лёгкого (НМРЛ). Одним из наиболее эффективных подходов к терапии этого заболевания является применение химиотерапевтических препаратов. Одним из наиболее часто применяемых препаратов является гентифиниб, в основе механизма действия, которого лежит физическое блокирование участков связывания рецептора

эпидермального фактора роста (EGFR), одного из ключевых участников опухолеобразования при НМРЛ. Эффективность данного лекарственного средства отличается у различных пациентов. Считается, что EGFR в опухолевых клетках подвергается мутационной изменчивости, что влияет на его структуру и как следствие связывание с препаратом.

Цель исследования. Оценить изменение сродства гентифиниба к EGFR при наиболее распространённых вариантах одноаминокислотных замен в его структуре с последующим сопоставлением клинических данных для поиска потенциальных молекулярных механизмов формирования устойчивости к данному препарату.

Материалы И методы. В ходе выполнения данной работы использовалась методика гомологичного моделирования структуры измененного белка с помощью программного комплекса MODELLER (США) полученных пространственных последующим докингом Мутантные аминокислотные последовательности создавались на основании данных о нормальной структуре белка и наиболее его распространенных изменениях с последующей обработкой при помощи программного кода на основе Python. Предварительная подготовка полученных гипотетических моделей осуществлялась при помощи AutoDock Tools и PyMol. Докинг осуществлялся в AutoDock Vina.

Измененные аминокислотные последовательности проектировались на основе киназного домена EGFR дикого типа (PDB:3POZ), очищенного от низкомолекулярных соединений с помощью утилиты PyMol. Отбор одноаминокислотных мутаций осуществлялся из общедоступной базы данных COSMICv95. Структурная формула гентифиниба была взята из открытой базы данных химических соединений PubChem с последующей обработкой в OpenBabel.

Результаты и выводы. В результате процесса моделирования мы получили 9 пространственных структур белка с одноаминокислотными заменами. В ходе их докинга с молекулой гентифиниба были получены и отобраны конформации белка-лиганда с наиболее энергетически выгодными изменениями свободной энергии Гиббса. Мутации в позиции G719 демонстрировали большее изменение свободной энергии Гиббса в результате связывания с препаратом по сравнению с нормальным белком (до 0,9 kcal/mol). Для мутации T790M был осуществлен дополнительный раунд докинга с АТФ (с целью изучения наличия конкурентного связывания).

Большинство наиболее распространённых одноаминокислотных замен в EGFR не оказывают существенного негативного влияния на сродство белка к препарату. Мутации группы G719 повышает сродство к гентифинибу. Мутация рецептора T790M сопровождается снижением его сродства к гентифинибу. Механизм такого взаимодействия, согласно полученным нами данным, заключается в повышенном связывании рецептором ATФ. Последний конкурирует с гентифинибом за центр связывания в EGFR.

МИНЗДРАВ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (ФГБОУ ВО ДВГМУ Минздрава России)

АКТУАЛЬНЫЕ ВОПРОСЫ СОВРЕМЕННОЙ МЕДИЦИНЫ

Материалы VII Дальневосточного медицинского молодежного форума

(Дальневосточный государственный медицинский университет, г. Хабаровск, 2–14 октября 2023 года)

Хабаровск Издательство ДВГМУ 2023