DIAGNOSTIC METHODS IN THE INTERNAL MEDICINE

Workbook for students of the Dental Faculty

name, surname, patronymic

group №, faculty

Minsk BSMU 2025

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ПРОПЕДЕВТИКИ ВНУТРЕННИХ БОЛЕЗНЕЙ

МЕТОДЫ ИССЛЕДОВАНИЯ В КЛИНИКЕ ВНУТРЕННИХ БОЛЕЗНЕЙ DIAGNOSTIC METHODS IN THE INTERNAL MEDICINE

Практикум для студентов стоматологического факультета

4-е издание

Минск БГМУ 2025

УДК 616.1/.4.-71(076.5)(075.8)-054.6 ББК 54.1я73 М54

Рекомендовано Научно-методическим советом университета в качестве практикума 18.12.2024 г., протокол № 4

А в т о р ы: Э. А. Доценко, М. В. Шолкова, А. Г. Захарова, Ю. В. Репина, М. Н. Антонович, Г. М. Хващевская, И. Л. Арсентьева, Е. О. Полякова

Рецензенты: канд. мед. наук, доц. каф. общей врачебной практики с курсом гериатрии Белорусской медицинской академии последипломного образования А. В. Байда; 1-я каф. внутренних болезней Белорусского государственного медицинского университета

Методы исследования в клинике внутренних болезней = M54 Diagnostic methods in the internal medicine : практикум для студентов стоматологического факультета / Э. А. Доценко, М. В. Шолкова, А. Г. Захарова [и др.]. – 4-е изд. – Минск : БГМУ, 2025. – 75 с.

ISBN 978-985-21-1751-7.

Содержит справочный материал, учебные задания для самостоятельной работы и иллюстрации по лабораторной диагностике и электрокардиографии. Первое издание вышло в 2022 году.

Предназначен для студентов 3-го курса медицинского факультета иностранных учащихся, обучающихся на английском языке по специальности «Стоматология».

> УДК 616.1/.4.-71(076.5)(075.8)-054.6 ББК 54.1я73

ISBN 978-985-21-1751-7

© УО «Белорусский государственный медицинский университет», 2025

CHAPTER 1 LABORATORY DIAGNOSTISTICS

In the modern world in the process of treatment, patients meet with a variety of diagnostic examinations, among which an important place is occupied by clinical laboratory tests.

Laboratory tests are performed using biological material that is taken from the patient. The most popular tests doctors use in therapeutic practice are as follows:

- Complete blood count (CBC);
- Urinalysis;
- Sputum tests;
- Biochemical blood analysis;
- Examination of pleural fluid and other biological fluids;
- Stool tests.

It should be noted that the "normal values" of laboratory parameters are the values found in a carefully examined group of people without objective signs of pathology. Since the term "normal values" is difficult to interpret, it was proposed to replace it with the concept of "reference values", that is, the values given for comparison. The reference interval usually includes the central 95 % of the values, i. e. 2.5 % of the minimum and maximum values are discarded. Currently, due to the significant diversification of laboratory research methods, it is impossible for all indicators to provide unified reference values. In each laboratory, the reference interval may differ slightly (and sometimes significantly). Therefore, when interpreting the results of laboratory studies, it is necessary to rely not on abstract "normal values", but on the reference values of the particular laboratory that performed the analysis.

Therefore, when we interpret the results of laboratory and instrumental examinations, especially if these are new or rarely used methods, we must know the characteristics of the method: sensitivity and specificity.

Sensitivity measures the proportion of truly positive results that correctly indicate an underlying disease (the proportion of those who do have a disease who are correctly identified by the method as suffering from that disease).

Specificity measures the proportion of truly negative outcomes (the proportion of those who do not have the disease who are correctly identified as not having the disease).

Thus, if the sensitivity of the test is 98% and its specificity is 92%, the false-negative rate is 2%, and the false-positive rate is 8%.

Complete Blood Count (CBC)

An important condition for ensuring the quality of laboratory blood tests is taking the material on an empty stomach in the morning. 12 hours before examination patient should exclude alcohol, smoking, eating, and should limit physical activity. Blood tests are taken before radiological, endoscopic examinations or physiotherapy (if they are performed in one day). Patients should postpone medication intake (if it's impossible to stop taking the medication, it's necessary to inform the laboratory about it).

Complete blood count (CBC) is one of the main tests in Internal Medicine, it is used for diagnosis of various non-hematological hematological and pathologies. The purpose of this blood test is a quantitative and qualitative analysis of blood cells (erythrocytes, leukocytes, platelets), determination of hemoglobin and erythrocyte sedimentation rate (ESR). Currently, most indicators are performed on automatic hematology analyzers, which are able to simultaneously determine from 5 to 24 parameters of blood. The main ones are the number of leukocytes (white blood cells), hemoglobin concentration, hematocrit, erythrocytes (red blood cell), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), platelets, mean platelet volume (MPV), etc.

ESR is determined by the Panchenkov's method (in the Panchenkov's capillary) or by the Westergren's method (in a test tube). ESR count in mm for 1 hour and it depends on the age. The normal rate of ESR for male is 2–10 mm/hour, for female 2–15 mm/hour. The Westergren's method is an international method for determining ESR. It differs from the Panchenkov's method by the characteristics of the tubes used and the calibration of the result scale. But the Westergren's method is more sensitive to increased ESR, and the results in the zone of elevated ESR values will be more accurate than the results obtained by the Panchenkov's method. In many diseases, the ESR is increased, especially for those that are accompanied by changes in the protein fractions of the blood. This is explained by the fact that the greatest influence on the ESR is caused by the violation of the ratio of different fractions of blood proteins. Albumins prevent erythrocyte sedimentation, and globulins, on the contrary, accelerate it. Especially great influence on the erythrocyte sedimentation has fibrinogen. The increase in ESR is observed in various inflammatory processes and infectious diseases, in case of rheumatic and oncological diseases, tuberculosis, myocardial infarction. ESR decreases in case of diseases accomplained by blood clots (polycythemia, food toxicoinfection, cholera).

Hemoglobin is the red blood cell pigment. It's a carrier of oxygen from the lungs to the tissues and carbon dioxide from the tissues to the lungs. Currently, hemoglobin is determined automatically using the photometric method. The amount of hemoglobin is significantly reduced with anemia, other blood diseases, malignant tumors.

Erythrocytes (red blood cells, RBC) are the most numerous blood cells that don't contain nuclei and are the most special cells in the body, the main function of RBC is oxygen transport from the lungs to the tissues and transfer carbon dioxide from the tissues to the lungs. This process is carried out with the help of hemoglobin. The red blood cells shape (a biconcave disc) gives the optimum ratio of volume to surface for the gases exchange, and provides RBC with the ability to deform during microcirculationThe red blood cells count underlies the assessment of erythropoiesis.

Erythrocytes are the subject of further tests to determine the hemoglobin concentration and hematocrit value (the ratio of the erythrocytes volume to the total blood volume). Following erythrocyte indices characterize RBC quality: MCH — mean corpuscular hemoglobin, MCHC — mean corpuscular hemoglobin concentration, MCV — mean corpuscular volume. Low level of red blood cells indicates the presence of anemia. RBC number below than $1 \times 10^{12}/1$ is a life-threatening condition. In patients with erythremia, the number of erythrocytes increased to $8-12 \times 10^{12}/1$.

Platelets (thrombocytes) come from giant bone marrow cells-megakaryocytes. Platelets are round or oval in shape. They take part in a blood clot formation. The number of platelets (thrombocytosis) increases in case of bleeding, surgery, cancer. Thrombocytopenia occurs with Verlgof's disease, leukemia, and infectious diseases.

Leukocytes (white blood cells, WBC) are divided into groups: granulocytes and agranulocytes. The name of granulocytes is associated with the presence of specific granules in the cytoplasm. Three types of granulocytes are identified, depending on their color in blood smear: neutrophils, eosinophils, and basophils. Agranulocytes consist of lymphocytes and monocytes, they don't contain specific cytoplasmic granules, their nucleus is non-segmented. In healthy individuals, the number of leukocytes is $4-9\times10^{9}/1$. When the number of leukocytes exceeds 9×10^{9} /l, we are talking about leukocytosis; the number of white blood cells below 4×10^9 /l is called leukopenia. Leukocytosis is observed in many diseases of the blood system (leukemia, Hodgkin's disease), in purulent inflammation (abscess, appendicitis, cholangitis), pneumonia and myocardial infarction. Leukopenia presents in case of blood diseases, liver cirrhosis,

drug poisoning, radiation sickness, as well as with some infectious diseases (viral hepatitis, brucellosis, influenza, typhoid fever). The leukocyte count is the ratio between the various forms of white blood cells. It is counted in blood smear.

Neutrophils amount is 50–70 % of leukocytes. Their cytoplasm is colored in light pink, granules are purple. Neutrophils are divided into band and segmented. Eosinophils have a characteristic bright red grain and a segmented core. Basophils are the smallest granulocytes. The nucleus of their irregular shape occupies almost the entire cell.

Lymphocytes are non-granular cells. The nucleus is located centrally, has a round or bean-shaped form, is painted in blue-violet color.

Monocytes are the largest blood cells. Their horseshoeshaped or irregular shaped core are colored purple-red. Cytoplasm has a purple-blue color with a delicate reddish grain.

Neutrophils perform a protective function in the body. They fight against microbes and toxins. During infections, intoxication, their number increases significantly. At the same time, immature forms appear: the number of band is increased, young neutrophils appear, even myelocytes can occur in the smear. This neutrophilic rejuvenation is called left shift. Eosinophils are very active in allergic diseases and collagen diseases. Their number increases with parasitic diseases, scarlet fever, Hodgkin's disease. In some diseases their number, on the contrary, decreases (miliary tuberculosis, typhoid fever). Basophils are involved in immune response. Basophil number increases with myeloid leukemia. An increase in the number of lymphocytes (lymphocytosis) is observed in tuberculosis, thyrotoxicosis, and especially in lymphocytic leukemia. Lymphopenia occurs in case of Hodgkin's disease, viral infections, autoimmune diseases. Monocytes are cells of the innate immune response, after entering the blood they are in the bloodstream for 1–2 days, then they settle down in the tissues. Monocytosis is observed in malaria, tuberculosis. Monocytopenia occurs in case of severe sepsis, typhoid fever.

Biochemical Blood Analysis

A biochemical blood analysis includes a long list of indicators. The number of these indicators depends on the capacity of the clinical laboratory. In the practice of the hospital, there is an order that defines the minimum number of biochemical tests. This minimum volume usually includes:

1. Renal function parameters (urea and creatinine).

2. Liver function parametres: total bilirubin, direct and indirect bilirubin, alanine transaminase (alanine aminotransferase, ALT), aspartate transaminase (aspartate aminotransferase, AST), total protein, albumin. The activity of gamma-glutamyltransferase (GGTP), alkaline phosphatase (ALP) is also evaluated.

3. Peripheral blood glucose level.

4. Electrolytes: sodium, potassium, chlorides, calcium.

5. C-reactive protein (CRP) level is used to assess inflammatory changes.

6. Cardiovascular system state is estimated by different groups of parameters as follows:

6.1. Lipid metabolism parameters: total cholesterol, high density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides.

6.2. Myocardial damage parameters: troponin, myoglobin, creatine kinase (creatine phosphokinase, CK) and its MB fraction (CK-MB).

When making a diagnosis, we have wide variety of parameters in bochemical blood analysis: for example, the pancreas disorders can be diagnosed by the high activity of amylase; in case of anemia, it is useful to determine serum iron level, transferrin, ferritin, etc.

Urinalysis

Urinalysis is an important diagnostic test not only for kidney and cardiovascular diseases, but also for diseases of other organs and systems. Various pathological processes affect the urine test. The results of urine tests allow us to assess the disease course and effectiveness of treatment.

For urinalysis, it's necessary to collect strictly morning urine collected immediately after awakening. Patient shouldn't take diuretics, alcohol, spicy and salty meal, products that change the color of urine (beets, carrots) on the day before of urine collection. Before urine collection, patient should do genital hygiene without antiseptics. Women are not recommended to take a urine test in menstruation. In case of urgency, urine is taken with the catheter. Urine is collected in a sterile disposable container. The container after collecting is tightly closed, placed in a clean disposable bag and delivered to the laboratory. Nurse should fill direction for urinalysis, write patient's surname, name, patronymic, age, department, diagnosis.

For Urinalysis, the middle portion of morning urine is collected (at least 50 ml). Urinalysis includes determination of physical properties, chemical analysis and microscopic examination of the sediment.

Physical properties of urine. The color of urine is normally depending on its concentration and ranges from dark-yellow to slightly-yellow. Colorless urine is observed in case of polyuria (after taking diuretics, in case of diabetes). Dark-yellow urine color, like beer color, occurs in case of jaundice due to presence of bile pigments. The urine of the color of meat slop is observed in case of hematuria, for example in glomerulonephritis.

Normal urine is clear. Turbidity of the urine can be caused by the presence of salts, cells, mucus, fat, bacteria.

Smell: fresh urine of a healthy person has no smell. If the urine was in a warm room for a long time, it gets an ammonia smell. Acetone in the urine (in case of diabetes) provides fruity odor.

Reaction of urine: normal urine in case of mixed diet is acidic or neutral; in case of acidosis, it becomes more acidic, in case of alkalosis it becomes more alkaline. In case of diseases accompanied by the appearance of acidic metabolic products in the blood (uremia, diabetes, heart failure), urine becomes very acidic. The pH of urine is determined by titration, using a pH meter and litmus paper. The density of urine ranges from 1001 to 1040. The density of the primary urine is 1010–1012, i. e. it is equal to the plasma density. The excretion of urine with a density of 1010–1012 is called isostenuria, the excretion of urine with a lower density of hyposthenuria. Pro-longed hypostenuria is a poor prognostic sign. The amount of urine depends on the amount of fluid intake. A healthy person produces 1000–2000 ml of urine per 24 hours. In case of diabetes, the amount of urine can be 8 liters or more per 24 hours. Normally, most urine is excreted during the day. Excretion of urine mainly at night (nicturia) is observed in chronic kidney failure and in chronic heart failure.

Chemical examination of urine. The presence of protein, urobilin, glucose, acetone, salts is determined in the urine. Concentration of enzymes, hormones, metabolites of drugs, alcohol can be found by a special test. Protein: urine of a healthy person contains a trace amount of protein (0.03 g/l). Urinary protein excretion is called proteinuria. Proteinuria can be renal and extrarenal. In renal proteinuria, protein enters the urine from the blood plasma through nephron in case of damage (glomerulonephritis, nephrotic syndrome) or increased permeability due to external stimulus (cold, physical stress). Extrarenal proteinuria can have prerenal causes (associated with an excessive concentration of protein in the blood plasma, for example, in multiple myeloma) and postrenal causes (associated with diseases of the urinary tract).

Glucose: urine of a healthy person doesn't contain glucose. Glucosuria occurs in case of diabetes, hypophysis and adrenal gland diseases. Ketone bodies include acetone, acetoacetic acid and beta — oxybutyric acid. They appear in the urine in case of diabetic ketoacidosis, acute liver or kidney damage, intoxication.

Microscopic urine examination is done for estimation of the elements such as red blood cells, leukocytes, casts, epithelial cells. Red blood cells may be unchanged (isomorphic, contain hemoglobin), having a greenish-yellow color, and changed (dysmorphic, free from hemoglobin) --color-less. The presence of red blood cells in the urine is called hematuria. There is a macrohematuria, when the blood in the urine is so pronounced that the urine becomes the reddish color, and microhematuria, in which red blood cells are detected only in microscopy. Unchanged erythrocytes (isomorphic) indicate non-glomerular hematuria, they are found in kidney infarction, kidney stones, cancer, kidney tuberculosis, injuries, as well as in cystitis and urethritis. Dysmorphic (changed) erythrocytes indicate glomerular hematuria, they are detected when RBC enter the urine directly through nephron the (with glomerulonephritis). Leukocytes in the urine of healthy individuals are 3–5 cells per high-powered field (HPF) microscopy. If leukocytes cover the entire field of view, it called pyuria. It occurs in case of pyelonephritis, cystitis, and urinary tract infection.

Casts are protein structures are formed mainly from blood plasma globulins in the renal tubules. The appearance of casts in the urine (cylindruria) indicates the damage of the tubular kidney epithelium. Epithelial cells in urine can be squamous, transitional and renal cuboidal epithelium. Cells of the squamous epithelium have a round or polygonal shape with a small nucleus. They enter the urine from the external genitalia or urethra. The cells of the transitional epithelium cover the mucous membrane of the urinary tract. The presence of a large number of these cells in the urine indicates an inflammatory process in the pelvis or bladder. Renal cuboidal epithelial cells have an irregular shape, yellowish color. Their appearance is a sign of acute and chronic kidney damage. They are also found in infectious diseases and intoxications.

Sputum examination

Sputum is collected in the morning before meals and drugs, by coughing. Before sputum discharge, the patient should thoroughly rinse his mouth and throat with boiled water to prevent saliva collection. The patient needs to take two deep breaths, holding the breath for a few seconds after each inhalation and exhaling slowly. After the third breath, he should cough up well, collect the secreted sputum in a container and immediately close the lid.

A macroscopic examination determines the amount of sputum, smell, consistency, color, the presence of pathological substances. In bronchitis, bronchial asthma, lobar pneumonia, patients cough out sputum in a little portion. In the presence of bronchiectasis, the amount of sputum can be 0.5 liters or more per day. The consistency of spupum can be liquid, viscous and thick sputum. With bronchitis and bronchopneumonia, sputum is liquid or moderately viscous, and with lobar pneumonia it's thick, poorly coughed out. By the sputum character it can be mucous, mucous-purulent in case of bronchitis and bronchial asthma. In case of pulmonary edema, sputum is serous; it is purulent in case of bronchiectasis, lung abscess.

Bloody sputum contains blood in various quantities. In case of pulmonary bleeding, it consists of almost one blood, in case of tuberculosis, abscess, lung cancer, spupum contains some blood portions. The color of sputum depends on the disease: in case of lung cancer the color is a crimson, in case of lobar pneumonia — broun. Purulent sputum usually has a yellowish color, asthma patients have "glassy" sputum. The smell of sputum is often absent. Offensive odor arises from the purulent destruction of lung tissue (lung gangrene, lung cancer), as well as protein decomposition during sputum retention in the cavities (bronchiectasis, lung abscess).

Sputum can include fibrin in case of lobar pneumonia, Kurschman spirals and Charcot–Leyden crystals in case of asthma.

Microscopic examination of sputum is carried out in both native (unstained) and stained smears. In the first case, a portion of sputum is applied to a glass slide, covered with a cover glass and then examined under a microscope under different magnifications.

In the native smears are detected epithelial cells, leukocytes, erythrocytes, actinomycetes, hematoidin crystals

and fatty acids. Eosinophils are a rounded cells of light gray color. Charcot crystals are clistalls that are formed when eosinophils are destroyed. Spiral Kurshman represents the casts of transparent mucus, occurring in case of bronchial asthma. Elastic fibers are double-lumen shiny formations, they are formed in case of lung tissue breakdown and are found in tuberculosis and lung abscess. Hematoidin crystals have the rhomboid or star form, golden color and are found in case of hemorrhages in lung tissue. The cells of malignant tumors enter the sputum due to their disintegration. These cells are large, have a different shape, a large nucleus, and sometimes several nuclei. Actinomycetes consist of a central part, which is a plexus of mycelium, and a radiantly located flask-shaped formations surround-ing it.

Note!

The reference values given in the workbook are not universal and may vary at different laboratories.

COMPLETE BLOOD COUNT (CBC)

		1. CBC		
Daramatar	Refere	nce values	Unit	Noto
I al ameter	male	female	Omt	Note
RBC	3,8–5,7	3,5–5,1	$10^{12}/1$	
Hemoglobin	130-160	120-150	g/l	
Hematocrit	40-52	36-42	%	
MCV	8	0–95	fl.	
МСН	27	/-33,3	pg	
MCHC	30	0–370	g/l	
Reticulocytes	0,	2–1,5	%	
WBC		4–9	$10^{9}/1$	
Platelets	15	0–450	$10^{9}/1$	
ESR Panchenkov's		2–10	mm/h	male
method		2–15	mm/h	female
ESR Westergren's		1–15	mm/h	before 50 y.o.
method		1–20	mm/h	after 50 y.o.
	Leuk	ocyte count		
Parameter	%	10 ⁹ /l		Note
Basophils	0,5–1	0,01–0,065		
Eosinophils	1–5	0,02–0,5	fr	rom 5 y.o.
Neutrophils:				
band	1–6	0,04–0,57	fre	om 14 y.o.
segmented	47–72	1,8–6,5	fr	rom 5 y.o.
Lymphocytes	19–39	1,5–4	fr	rom 5 y.o.
Monocytes	2-11	0,05–0,8	fro	om 14 y.o.
Conclusion:				

	CBC		
AGE: 67 NO	PATIENT'S NAME: IVANOV II		
Parameter	Result Note		
RBC	$3.0 \times 10^{12}/1$	1000	
Hemoglobin	98 g/l		
Hematocrit	40 %		
MCV	80 fl.		
MCH	27 pg		
MCHC	310 g/l		
Reticulocytes	1 %		
WBC	$6,8 \times 10^{9}/l$		
Platelets	$357 \times 10^{9}/l$		
ESR	12 mm/h		
	Leukocyte count		
Basophils	1 %		
Eosinophils	1 %		
Neutrophils:			
band	3 %		
segmented	52 %		
Lymphocytes	37 %		
Monocytes	6 %		
Conclusion:			

3. CBC				
PATIENT'S NAME: IVANOVA II				
AGE: 78 y.o.	Sez	x: female		
Parameter	Result	Note		
RBC	$2,5 \times 10^{12}/1$			
Hemoglobin	77 g/l			
Hematocrit	37,5 %			
MCV	68 fl.			
МСН	25 pg			
MCHC	250 g/l			
Reticulocytes	0,5 %			
WBC	$4,7 \times 10^{9}/l$			
Platelets	$345 \times 10^{9}/l$			
ESR Westergren's	55 mm/h			
method				
	Leukocyte count			
Basophils	1 %			
Eosinophils	2 %			
Neutrophils:				
band	5 %			
segmented	49 %			
Lymphocytes	37 %			
Monocytes	6 %			
Morphology:	Poikilocytosis+			
	Microanisocytosis			
	++			
Conclusion:				

	4. CBC	
PATIENT'S NAME: I	VANOVA II	
AGE: 62 y.o.	Sex: fe	emale
Parameter	Result	Note
RBC	$3,03 \times 10^{12}/l$	
Hemoglobin	43 g/l	
Hematocrit	18,2 %	
MCV	60,1 fl.	
MCH	14,2 pg	
MCHC	236 g/l	
Reticulocytes	0,9 %	
WBC	$5,8 \times 10^{9}/l$	
Platelets	$369 \times 10^{9}/l$	
ESR	27 mm/h	
	Leukocyte count	
Basophils	0 %	
Eosinophils	1 %	
Neutrophils:		
band	7 %	
segmented	59 %	
Lymphocytes	23 %	
Monocytes	10 %	
Morphology:	Pronounced	
	anisocytosis	
	(microcytes),	
	poikilocytosis	
Conclusion:		

5. CBC			
PATIENT'S NAME: IVANOV II			
AGE: 37 y.o.	S	Sex: male	
Parameter	Result	Note	
RBC	$1,3 \times 10^{12}/l$		
Hemoglobin	60 g/l		
Hematocrit	25,3 %		
MCV	108 fl.		
MCH	39 pg		
MCHC	390 g/l		
Reticulocytes	0,1 %		
WBC	$3,5 \times 10^{9}/l$		
Platelets	$259 \times 10^{9}/l$		
ESR Westergren's	45 mm/h		
method			
	Leukocyte count	t	
Basophils	0 %		
Eosinophils	0 %		
Neutrophils:			
band	6%		
segmented	46 %		
Lymphocytes	42 %		
Monocytes	6 %		
Morphology:	Anisocytosis++		
	(macrocytes)		
Conclusion:			

6. CBC				
PATIENT'S NAME: IVANOVA II				
AGE: 69 y.o.	Sex: female			
Parameter	Result	Note		
RBC	$2,9 \times 10^{12}/l$			
Hemoglobin	70 g/l			
Hematocrit	23,6 %			
MCV	93 fl.			
MCH	33 pg			
MCHC	360 g/l			
Reticulocytes	10 %			
WBC	$12,0 \times 10^{9}/l$			
Platelets	480×10^{9} /l			
ESR	17 mm/h			
	Leukocyte count			
Basophils	0 %			
Eosinophils	2 %			
Neutrophils:				
Myelocytes	0%			
Metamyelocytes	6%			
band	12%			
segmented	60 %			
Lymphocytes	15 %			
Monocytes	6 %			
Normoblasts,				
polychromatophiles				
Conclusion:				

	7. CBC		
PATIENT'S NAME: I	VANOV II		
AGE: 35 y.o.	Sex: male		
Parameter	Result	Note	
RBC	$6,0 \times 10^{12}/l$		
Hemoglobin	180 g/l		
Hematocrit	58,9 %		
MCV	90,6 fl.		
МСН	30,5 pg		
MCHC	336 g/l		
Reticulocytes	2,0 %		
WBC	$4,8 \times 10^{9}/l$		
Platelets	$307 \times 10^{9}/1$		
ESR	8 mm/h		
	Leukocyte count		
Basophils	0 %		
Eosinophils	2 %		
Neutrophils:			
band	1 %		
segmented	68 %		
Lymphocytes	28 %		
Monocytes	1 %		
Conclusion:			

	8. CBC		
PATIENT'S NAME: I	VANOV II		
AGE: 20 y.o.	Sex: male		
Parameter	Result	Note	
RBC	$4,6 \times 10^{12}/l$		
Hemoglobin	143 g/l		
Hematocrit	37 %		
MCV	85 fl.		
МСН	28 pg		
MCHC	300 g/l		
Reticulocytes	0,8 %		
WBC	$16,5 \times 10^{9}/l$		
Platelets	200×10^{9} /l		
ESR Westergren's	40 mm/h		
method			
	Leukocyte count		
Basophils	1 %		
Eosinophils	2 %		
Neutrophils:			
band	12 %		
segmented	64 %		
Lymphocytes	20 %		
Monocytes	1 %		
Conclusion:			

9.				
CBC				
PATIENT'S NAME:	IVANOV II			
AGE: 55 y.o.	Sex	: male		
Parameter	Result	Note		
RBC	$4,4 \times 10^{12}/l$			
Hemoglobin	136 g/l			
Hematocrit	39 %			
MCV	86 fl.			
MCH	28 pg			
MCHC	300 g/l			
Reticulocytes	0,6 %			
WBC	$5,8 \times 10^{9}/1$			
Platelets	$322 \times 10^{9}/l$			
ESR	39 mm/h			
	Leukocyte count			
Basophils	0 %			
Eosinophils	15 %			
Neutrophils:				
band	4 %			
segmented	49 %			
Lymphocytes	29 %			
Monocytes	3 %			
Conclusion:				

	10.	
ΒΑΤΙΕΝΙΤ'ς ΝΙΑΜΕ, Ι		
$\frac{\text{PATIENT 5 NAME: I}}{\text{AGE: 57 vo}}$	VANOVA II Sex: fe	male
Parameter	Result Note	
RBC	$4.76 \times 10^{12}/1$	11010
Hemoglobin	125 g/l	
Hematocrit	41 %	
MCV	87 fl.	
MCH	31 pg	
MCHC	336 g/l	
Reticulocytes	0,9 %	
WBC	$2,2 \times 10^{9}/l$	
Platelets	$290 \times 10^{9}/l$	
ESR	18 mm/h	
	Leukocyte count	
Basophils	1 %	
Eosinophils	1 %	
Neutrophils:		
band	3 %	
segmented	80 %	
Lymphocytes	10 %	
Monocytes	5 %	
Conclusion:		

11. CBC				
ΕΔ ΡΑΤΙΕΝΤ'S ΝΑΜΕ· ΙVΑΝΟΥΑ ΙΙ				
Sex: female				
Result	Note			
$3,6 \times 10^{12}/l$				
100 g/l				
41 %				
89 fl.				
31 pg				
330 g/l				
0,6 %				
$16,3 \times 10^{9}/l$				
298×10^{9} /l				
37 mm/h				
Leukocyte count				
1 %				
2 %				
12 %				
43 %				
32 %				
10 %				
Toxic granularity of				
neutrophils+				
	11. CBC VANOVA II Sex: for Result $3,6 \times 10^{12}/1$ $100 g/1$ 41% $89 fl.$ $31 pg$ $330 g/1$ $0,6 \%$ $16,3 \times 10^{9}/1$ $298 \times 10^{9}/1$ $298 \times 10^{9}/1$ $37 mm/h$ Leukocyte count 1% 2% 12% 43% 32% 10% Toxic granularity of neutrophils+			

	12.	
	CBC	
PATIENT'S NAME: I	VANOV II	
AGE: 42 y.o.	Sex:	male
Parameter	Result	Note
RBC	$4,5 \times 10^{12}/l$	
Hemoglobin	146 g/l	
Hematocrit	42 %	
MCV	88 fl.	
MCH	30 pg	
MCHC	320 g/l	
Reticulocytes	0,7 %	
WBC	$6,8 \times 10^{9}/l$	
Platelets	$355 \times 10^{9}/l$	
ESR	10 mm/h	
	Leukocyte count	
Basophils	1 %	
Eosinophils	12 %	
Neutrophils:		
band	4 %	
segmented	35 %	
Lymphocytes	30 %	
Monocytes	8 %	
Conclusion:	· · ·	

	13.	
	CBC	
PATIENT'S NAME: IVA	NOVA II	
AGE: 72 y.o.	Sex: female	
Parameter	Result	Note
RBC	$1,1 \times 10^{12}/l$	
Hemoglobin	30 g/l	
Hematocrit	16 %	
MCV	71 fl.	
МСН	22 pg	
MCHC	280 g/l	
Reticulocytes	0 %	
WBC	$1 \times 10^{9}/l$	
Platelets	34×10^{9} /l	
ESR Westergren's	72 mm/h	
method		
]]	Leukocyte count	
Basophils	0 %	
Eosinophils	1 %	
Neutrophils:		
band	7 %	
segmented	56 %	
Lymphocytes	32 %	
Monocytes	4 %	
Conclusion:		

	14. CBC	
PATIENT'S NAME: IVAN	NOV II	
AGE: 69 y.o.	Se	ex: male
Parameter	Result	Note
RBC	$5,2 \times 10^{12}/1$	
Hemoglobin	148 g/l	
Hematocrit	41 %	
MCV	87 fl.	
МСН	29 pg	
МСНС	310 g/l	
Reticulocytes	0,7 %	
WBC	$4,8 \times 10^{9}/l$	
Platelets	75×10^{9} /l	
ESR Westergren's	12 mm/h	
method		
	Leukocyte count	
Basophils	1 %	
Eosinophils	1 %	
Neutrophils:		
band	5 %	
segmented	45 %	
Lymphocytes	45 %	
Monocytes	3 %	
Conclusion:		

	15. CBC	
PATIENT'S NAME: I	VANOVA II	
AGE: 65 v.o.	Sex: fe	emale
Parameter	Result	Note
RBC	$3,35 \times 10^{12}/l$	
Hemoglobin	105 g/l	
Hematocrit	33 %	
MCV	78 fl.	
МСН	25,7 pg	
MCHC	289 g/l	
Reticulocytes	0,5 %	
WBC	72×10^{9} /l	
Platelets	256×10^{9} /l	
ESR Westergren's	48 mm/h	
method		
	Leukocyte count	-
Basophils	0 %	
Eosinophils	1 %	
Neutrophils:		
band	1 %	
segmented	5 %	
Lymphocytes	93 %	
Monocytes	0 %	
Morphology	Shadow cells of	
	Botkin–Gumprecht +	
Conclusion:		

	16.	
	СВС	
PATIENT'S NAME: IVA	ANOV II	
AGE: 19 y.o.	<u> </u>	Sex: male
Parameter	Result	Note
RBC	$1,88 \times 10^{12}/l$	
Hemoglobin	69 g/l	
Hematocrit	36 %	
MCV	80 fl.	
MCH	25 pg	
MCHC	290 g/l	
Reticulocytes	1 %	
WBC	$2,0 \times 10^{9}/l$	
Platelets	$80 \times 10^{9}/1$	
ESR	45 mm/h	
	Leukocyte count	
Basophils	0 %	
Eosinophils	0 %	
Blasts	10 %	
Neutrophils:		
band	2 %	
segmented	16 %	
Lymphocytes	72 %	
Monocytes	0 %	
Morphology	Pronounced	
	anisocytosis,	
	poikilocytosis	
Conclusion:		

AGE: 68 y.o.	Sex: f	emale
Parameter	Result	Note
RBC	$3,3 \times 10^{12}/l$	
Hemoglobin	102 g/l	
Hematocrit	33 %	
MCV	78 fl.	
MCH	25,7 pg	
MCHC	289 g/l	
Reticulocytes	0,5 %	
WBC	$133 \times 10^{9}/l$	
Platelets	$145 \times 10^{9}/l$	
ESR	43 mm/h	
	Leukocyte count	
Basophils	7 %	
Eosinophils	9 %	
Promyelocytes	3 %	
Myelocytes	4 %	
Young neutrophils	13 %	
Neutrophils:		
band	15 %	
segmented	40 %	
Lymphocytes	3 %	
Monocytes	0 %	
Conclusion:	·	

FOR NOTES

Note!

The reference values given in the workbook are not universal and may vary at different laboratories.

URINALYSIS

18. URINALYSIS			
PATIENT'S NAME: I. II			
AGE: 50 y.o.	Sex:		
Parameter	Reference values		
Physical properties			
Amount	100 ml		
Color	pale yellow to deep amber		
Transparency	Transparent		
Ph	Acidic		
Relative density	1012–1025		
	Chemical properties		
Protein	less 0,033 g/l		
Glucose	Absent		
Ketone bodies	Absent		
Bilirubin	Absent		
Urobilin	Absent		
Microscopic examination			
Epithelium:			
squamous	0–5 per high-powered field		
transitional	Absent		
renal	Absent		
RBC	0–5 per high-powered field — female		
	0–2 per high-powered field — male		
WBC	0–6 per high-powered field — female		
	0–3 per high-powered field — male		
Casts (hyaline)	0–1 per high-powered field		
Casts (other types)	Absent		
Salts	Absent		
Bacteria	Absent		
Mucus	Absent		

	19.	
	URINALYSIS	
PATIENT'S NAM	IE: IVANOV II	
AGE: 30 y.o.	Sex: male	
Parameter	Result	Note
	Physical properties	
Amount	150,0	
Color	Straw-yellow	
Transparency	Cloudy	
Ph	Acidic	
Relative density	1035	
	Chemical properties	
Protein	Absent	
Glucose	++	
Ketone bodies	++	
Bilirubin	Absent	
Urobilin	Absent	
	Microscopic examination	
Epithelium:		
squamous	1-2 per high-powered field	
transitional	Absent	
renal	Absent	
RBC	0–1 per high-powered field	
WBC	0–2 per high-powered field	
Casts	Absent	
Salts	Absent	
Bacteria	Absent	
Baeterra		

	20.	
	URINALYSIS	
PATIENT'S NAME:	IVANOV II	
AGE: 50 y.o.	Sex: male	
Parameter	Result	Note
	Physical properties	
Amount	200,0	
Color	Straw-yellow	
Transparency	Cloudy	
Ph	Alkaline	
Relative density	1020	
	Chemical properties	
Protein	0,033 g/l	
Glucose	Absent	
Ketone bodies	Absent	
Bilirubin	Absent	
Urobilin	Absent	
	Microscopic examination	
Epithelium:		
squamous	Considerable amount	
transitional	_	
renal	_	
RBC	6–7 per high-powered field	
WBC	20–30 per high-powered field	
Casts	Absent	
Salts	Absent	
Bacteria	Absent	
	Abcont	

	21.	
	URINALYSIS	
PATIENT'S NAMI	E: IVANOVA II	
AGE: 36 y.o.	Sex: female	
Parameter	Result	Note
	Physical properties	
Amount	170,0	
Color	Straw-yellow	
Transparency	Transparent	
Ph	Acidic	
Relative density	1018	
	Chemical properties	
Protein	Absent	
Glucose	Absent	
Ketone bodies	+++	
Bilirubin	Absent	
Urobilin	Absent	
	Microscopic examination	
Epithelium:		
squamous	8–10 per high-powered field	
transitional	Absent	
renal	Absent	
RBC	0–3 per high-powered field	
WBC	2–4 per high-powered field	
Casts	Absent	
Salts	Absent	
Bacteria	Absent	
Mucus	Absent	
Conclusion:		

NALYSIS A II Sex: fen Result cal properties 200,0 Straw-yellow cloudy Alkaline 1016 cal properties 0,066 g/l Absent Absent	nale Note
A II Sex: fen Result cal properties 200,0 Straw-yellow cloudy Alkaline 1016 cal properties 0,066 g/l Absent Absent	nale Note
Sex: fen Result cal properties 200,0 Straw-yellow cloudy Alkaline 1016 cal properties 0,066 g/l Absent Absent	nale Note Note
Resultcal properties200,0Straw-yellowcloudyAlkaline1016cal properties0,066 g/lAbsentAbsent	Note
cal properties 200,0 Straw-yellow cloudy Alkaline 1016 cal properties 0,066 g/1 Absent Absent	
200,0 Straw-yellow cloudy Alkaline 1016 cal properties 0,066 g/l Absent Absent	
Straw-yellow cloudy Alkaline 1016 cal properties 0,066 g/l Absent Absent	
cloudy Alkaline 1016 cal properties 0,066 g/l Absent Absent	
Alkaline 1016 cal properties 0,066 g/l Absent Absent	
1016cal properties0,066 g/lAbsentAbsent	
cal properties 0,066 g/l Absent Absent	
0,066 g/l Absent Absent	
Absent Absent	
Absent	
Absent	
Absent	
pic examination	
r high-powered f	field
Absent	
Absent	
r high-powered f	field
er high-powered	field
Absent	
Absent	
++	
	Absent er high-powered f per high-powered Absent Absent ++

	23.	
	URINALYSIS	
PATIENT'S NAME	: IVANOVA II	
AGE: 68 y.o.	Sex: female	
Parameter	Result	Note
	Physical properties	
Amount	220,0	
Color	Straw-yellow	
Transparency	cloudy	
Ph	Alkaline	
Relative density	1017	
	Chemical properties	
Protein	0,087 g/l	
Glucose	Absent	
Ketone bodies	Absent	
Bilirubin	Absent	
Urobilin	Absent	
	Microscopic examination	
Epithelium:		
squamous	3–4 per high-powered field	
transitional	Absent	
renal	Absent	
RBC	0–3 per high-powered field	
WBC	30–40 per high-powered field,	
	aggregation till 50	
Casts	hyaline 0–2 per high-powered field	
Bacteria	+++	
Mucus	Considerable amount	
Conclusion:		

	24.	
	URINALYSIS	
PATIENT'S NAM	IE: IVANOV II	
AGE: 42 y.o.	Sex: male	
Parameter	Result	Note
	Physical properties	
Amount	230,0	
Color	Straw-yellow	
Transparency	cloudy	
Ph	Acidic	
Relative density	1007	
	Chemical properties	
Protein	1,66 g/l	
Glucose	Absent	
Ketone bodies	Absent	
Bilirubin	Absent	
Urobilin	Absent	
	Microscopic examination	
Epithelium:		
squamous	3–4 per high-powered field	
transitional		
renal	0–1 per high-powered field	
RBC	Changed 10–15 B per high-powered	
	field	
WBC	2–3 per high-powered field	
Casts	Hyaline: 2–3 per high-powered field	
	Granular: 2–3 per high-powered field	
Conclusion:		

25.		
URINALYSIS		
PATIENT'S NAM	E: IVANOVA II	
AGE: 20 y.o.	Sex: female	
Parameter	Result	Note
	Physical properties	
Amount	150,0	
Color	yellow	
Transparency	arency Transparent	
Ph	Faintly acidic	
Relative density	1022	
	Chemical properties	
Protein	Absent	
Glucose	Absent	
Ketone bodies	Absent	
Bilirubin	Absent	
Urobilin +++		
	Microscopic examination	
Epithelium:		
squamous	1–2 per high-powered field	
transitional	Absent	
renal	Absent	
RBC	0–1 per high-powered field	
WBC	0–2 per high-powered field	
Casts	Absent	
Salts	Absent	
Bacteria	Absent	
Mucus	Absent	
Conclusion:		

26.		
URINALYSIS		
PATIENT'S NAME	E: IVANOV II	
AGE: 46 y.o.	Sex: male	
Parameter	Result	Note
	Physical properties	
Amount	150,0	
Color	Bloody	
Transparency	Transparent	
Ph	Acidic	
Relative density	1020	
	Chemical properties	
Protein	0,056 g/l	
Glucose	Absent	
Ketone bodies	Absent	
Bilirubin	Absent	
Urobilin	Absent	
Microscopic examination		
Epithelium:		
squamous	10–15 per high-powered field	
transitional		
renal		
RBC	Considerable amount, fresh	
WBC	10–20 per high-powered field	
Casts		
Salts	Oxalates+++	
Bacteria	Absent	
Mucus	Absent	
Conclusion:		

27.		
URINALYSIS		
PATIENT'S NAM	E: IVANOV II	
AGE: 53 y.o.	Sex: male	
Parameter	Result	Note
	Physical properties	
Amount	100,0	
Color	Bear color	
Transparency	Transparent	
Ph	Acidic	
Relative density	1018	
Chemical properties		
Protein	Absent	
Glucose	Absent	
Ketone bodies	Absent	
Bilirubin	+++	
Urobilin absent		
	Microscopic examination	
Epithelium:		
squamous	1–2 per high-powered field	
transitional	Absent	
renal	Absent	
RBC	0–1 per high-powered field	
WBC	0–2 per high-powered field	
Casts	Absent	
Salts	Absent	
Bacteria	Absent	
Mucus	Absent	
Conclusion:		

28.		
URINALYSIS		
PATIENT'S NAM	E: IVANOVA II	
AGE: 60 y.o.	Sex: female	
Parameter	Result	Note
	Physical properties	
Amount	180,0	
Color	Bright yellow	
Transparency	Transparent	
Ph	Faintly acidic	
Relative density	1020	
Chemical properties		
Protein	Absent	
Glucose	Absent	
Ketone bodies	odies Absent	
Bilirubin ++		
Urobilin ++		
Microscopic examination		
Epithelium:		
squamous	1–2 per high-powered field	
transitional	Absent	
renal	Absent	
RBC	0–1 per high-powered field	
WBC	0–2 per high-powered field	
Casts	Absent	
Salts	Absent	
Conclusion:		

29.		
URINALYSIS		
PATIENT'S NAM	E: IVANOV II	
AGE: 63 y.o.	Sex: male	
Parameter	Result	Note
	Physical properties	
Amount	180,0	
Color	Bloody	
Transparency	Cloudy	
Ph	Acidic	
Relative density	1020	
	Chemical properties	
Protein	0,15 g/l	
Glucose	Absent	
Ketone bodies	Absent	
Bilirubin	Absent	
Urobilin Absent		
	Microscopic examination	
Epithelium:		
squamous	2–3 per high-powered field	
transitional	transitional 0–1 per high-powered field	
renal		
RBC	Considerable amount, fresh	
WBC	2–3 per high-powered field	
Casts	Absent	
Salts	Absent	
Mucus	Absent	
Conclusion:		
transitional0–1 per high-powered fieldrenalRBCConsiderable amount, freshWBC2–3 per high-powered fieldCastsAbsentSaltsAbsentMucusAbsentConclusion:		

30.		
URINALYSIS		
PATIENT'S NAME: IVANOV II		
AGE: 25 y.o.	Sex: male	
Parameter	er Result Note	
	Physical properties	
Amount	190,0	
Color	Meat slops	
Transparency	Cloudy	
Ph	Acidic	
Relative density	1024	
Chemical properties		
Protein	2,3 g/l	
Glucose	Absent	
Ketone bodies	Absent	
Bilirubin	Absent	
Urobilin Absent		
Microscopic examination		
Epithelium:		
squamous	2–3 per high-powered field	
transitional	Absent	
renal	Absent	
RBC	Considerable amount, changed	
WBC	5–10 per high-powered field	
Casts	Hyaline1–2 per high-powered field	
Salts	Absent	
Bacteria	Absent	
Conclusion:		

SPUTUM TEST

31.		
SPUTUM TEST		
PATIENT'S NAME: IVANOVA II		
Sex: female Age: 36 y.o.		
DEPARTMENT pulmonology		
Macroscopic	e examination	
Amount: 30 ml	Consistence: fluid	
Odor: odorless	Color: grayish-yellow	
Character: mucous	Admixture: absent	
Microscopic examination		
Native preparation		
WBC	18–20 per high-powered field	
RBC	absent	
Epithelium squamous	0–1 per high-powered field	
Epithelium cylindrical	1–2 per high-powered field	
Alveovar macrophage	absent	
Elastic fibers	absent	
Spirals of Kurshman	absent	
Crystals of Charcot–Leyden	absent	
Special stain		
Neutrophils	90 %	
Lymphocytes	10 %	
Eosinophils	absent	
Alveovar macrophage	absent	
Fungi	absent	
Acid Resistant Bacteria	absent	
Conclusion:		

32.		
SPUTUM TEST		
PATIENT'S NAME: IVANOVA II		
Sex: female	Age: 79 y.o.	
DEPARTMENT pulmonology		
Macroscopic	examination	
Amount: 20 ml	Consistence: viscous	
Odor: odorless	Color: grayish	
Character: mucous	Admixture: absent	
Microscopic	examination	
Native preparation		
WBC	20–25 per high-powered field	
RBC	absent	
Epithelium squamous	2–3 per high-powered field	
Epithelium cylindrical	3–4 per high-powered field	
Alveovar macrophage	absent	
Elastic fibers	absent	
Spirals of Kurshman	absent	
Crystals of Charcot–Leyden	absent	
Special stain		
Neutrophils	20 %	
Lymphocytes	80 %	
Eosinophils	0–1 per high-powered field	
Alveovar macrophage	absent	
Fungi	absent	
Acid Resistant Bacteria	absent	
Conclusion:		

33.		
SPUTUM TEST		
PATIENT'S NAME: IVANOVA	II	
Sex: female	Age: 58 y.o.	
DEPARTMENTpulmonology		
Macroscopi	c examination	
Amount: 15 ml	Consistence: viscous	
Odor: odorless	Color: rusty	
Character: hemorrhagic	Admixture: absent	
Microscopi	c examination	
Native preparation		
WBC	10–15 per high-powered field	
RBC	20–30 per high-powered field	
Epithelium squamous	0–1 per high-powered field	
Epithelium cylindrical	0–1 per high-powered field	
Alveovar macrophage	7–8 per high-powered field	
Fibrous tissues	1–2 per high-powered field	
Spirals of Kurshman	absent	
Crystals of Charcot–Leyden	absent	
Special stain		
Neutrophils	60 %	
Lymphocytes	30 %	
Eosinophils	single	
Alveovar macrophage	7–10 per high-powered field	
Fungi	absent	
Acid Resistant Bacteria	absent	
Conclusion:		

34.		
SPUTUM TEST		
PATIENT'S NAME: IVANOV II		
Sex: male	Age: 49 y.o.	
DEPARTMENTpulmonology		
Macroscopic	examination	
Amount: 315 ml	Consistence: viscous	
Odor: stinking	Color: grayish-yellow-green	
Character: serous-purulent	Admixture: 3 layers	
Microscopic	examination	
Native preparation		
WBC	cover all sight	
RBC	absent	
Epithelium squamous	0–1 per high-powered field	
Epithelium cylindrical	5–8 per high-powered field	
Alveovar macrophage	absent	
Elastic fibers	considerable amount	
Spirals of Kurshman	absent	
Crystals of Charcot–Leyden	absent	
Special stain		
Neutrophils	98 %	
Lymphocytes	2 %	
Eosinophils	absent	
Alveovar macrophage	absent	
Fungi	absent	
Acid Resistant Bacteria	absent	
Staphylococci	present	
Conclusion:		

35.		
SPUTUM TEST		
PATIENT'S NAME: IVANOVA I	I	
Sex: male	Age: 85 y.o.	
DEPARTMENTpulmonology		
Macroscopic	examination	
Amount: 15 ml	Consistence: fluid	
Odor: odorless	Color: pink	
Character: mucous	Foammy,gummous	
Microscopic	examination	
WBC	1–2 per high-powered field	
RBC	8–12 per high-powered field	
Epithelium squamous	1–2 per high-powered field	
Epithelium cylindrical	absent	
Alveovar macrophage	absent	
Elastic fibers	absent	
Spirals of Kurshman	absent	
Crystals of Charcot–Leyden	absent	
Special stain		
Neutrophils	single	
Lymphocytes	single	
Eosinophils	absent	
RBC	considerable amount	
Alveovar macrophage	absent	
Fungi	absent	
Acid Resistant Bacteria	absent	
Conclusion:		

36.		
SPUTUM TEST		
PATIENT'S NAME: IVANOV II		
Sex: male	Age: 34 y.o.	
DEPARTMENTpulmonology		
Macroscopic	examination	
Amount: 200 ml	Consistence: viscous	
Odor: odorless	Color: grayish-yellow	
Character: bloody	Admixture: absent	
Microscopic	examination	
WBC	5–6 per high-powered field	
RBC	1–2 per high-powered field	
Epithelium squamous	2–4 per high-powered field	
Epithelium cylindrical	absent	
Alveovar macrophage	absent	
Elastic fibers	1–2 per high-powered field	
Spirals of Kurshman	absent	
Crystals of Charcot–Leyden	absent	
Special stain		
Neutrophils	20 %	
Lymphocytes	80 %	
Eosinophils	absent	
Alveovar macrophage	absent	
Fungi	absent	
Acid Resistant Bacteria	3–4 in 100 sights	
Conclusion:		

37.				
SPUTU	SPUTUM TEST			
PATIENT'S NAME: IVANOV II				
Sex: male	Age: 74 y.o.			
DEPARTMENTpulmonology				
Macroscopic	examination			
Amount: 25 ml	Consistence: fluid			
Odor: odorless	Color: reddish-yellow			
Character: mucous-bloody	Admixture: absent			
Microscopic	examination			
WBC	20–30 per high-powered field			
RBC	considerable amount			
Epithelium squamous	0–1 per high-powered field			
Epithelium cylindrical	absent			
Alveovar macrophage	1–2 per high-powered field			
Elastic fibers	absent			
Spirals of Kurshman	absent			
Crystals of Charcot–Leyden	absent			
Crystals of hematoidin considerable amount				
Special stain				
Neutrophils	50 %			
Lymphocytes	50 %			
RBC	considerable amount			
Alveovar macrophage	absent			
Fungi	absent			
Acid Resistant Bacteria	absent			
Conclusion:				

38.			
SPUTU	JM TEST		
PATIENT'S NAME: IVANOV II			
Sex: male	Age: 43 y.o.		
DEPARTMENTpulmonology			
Macroscopi	c examination		
Amount: 350 ml	Consistence: semifluid		
Odor: stinking	Color: yellow-green		
Character: purulent	Creamy		
Microscopi	c examination		
WBC	40–50 per high-powered field		
RBC	2–3 per high-powered field		
Epithelium squamous	absent		
Epithelium cylindrical	absent		
Alveovar macrophage	absent		
Elastic fibers	absent		
Spirals of Kurshman	absent		
Crystals of Charcot–Leyden	absent		
Crystals of hematoidin considerable amount			
Special stain			
Neutrophils	99 %		
Lymphocytes	1 %		
RBC	2–3 per high-powered field		
Alveovar macrophage	absent		
Fungi	absent		
Acid Resistant Bacteria	absent		
Conclusion:			

39.			
SPUTUM TEST			
PATIENT'S NAME: IVANOVA II	[
Sex: female	Age: 50 y.o.		
DEPARTMENTpulmonology			
Macroscopic	examination		
Amount: 20 ml	Consistence: viscous		
Odor: odorless	Color: grayish-white		
Character: mucous	Admixture: absent		
Microscopic	examination		
WBC	5–10 per high-powered field		
RBC	absent		
Epithelium squamous	0–1 per high-powered field		
Epithelium cylindrical	0–1 per high-powered field		
Alveovar macrophage	absent		
Elastic fibers	absent		
Spirals of Kurshman	0–1 per high-powered field		
Crystals of Charcot–Leyden	2–3 per high-powered field		
Special stain			
Neutrophils	absent		
Lymphocytes	absent		
Eosinophils	5–10 per high-powered field		
Alveovar macrophage	absent		
Fungi	absent		
Acid Resistant Bacteria	absent		
Conclusion:			
Alveovar macrophage Fungi Acid Resistant Bacteria Conclusion:	absent absent		

FOR NOTES

BIOCHEMICAL BLOOD ANALYSIS

40.				
BIOCHEMI	CAL BLOOD ANALY	YSIS		
Parameter	Reference values Units			
Urea	2,5-8,3	mmol/l		
Creatinine	0,044–0,12	mmol/l		
Total protein	60-87 (after 65 y.o.)	g/l		
	65–87 (3–65 y.o.)			
Albumen	35–55	g/l		
Glucose	3,9–6,4	mmol/l		
Bilirubin total	5–21	mcmol/l		
Bilirubin direct	0,5–5,1	mcmol/l		
Bilirubin indirect	6,4–15,4	mcmol/l		
ALT	5–45	u/l		
AST	Less 45 u/l			
GGTP	Female: 4–38 u/l			
	Male: 2–55			
LDH	Less 248	u/l		
Alkaline phosphatase	Female: less 240 u/l			
	Male: less270			
Amylase	22–120	u/l		
CRP	0–6	mg/l		
Rheumatoid factor	Less 15	IU/ml		
ASL-O	Less 200	IU/ml		
Uric acid	Female: 0,24–0,36	mmol/l		
	Male: 0,3–0,42			
Creatine kinase	20–174	u/l		
Creatine kinase-MB	Less 24	u/l		
Troponine	Less 0,05	ng/ml		

Parameter	Reference values	Units
Total cholesterol	2,82–5,2	mmol/l
LDL	Less 3,36	mmol/l
HDL	0,78–1,63	mmol/l
Triglycerids	0,42–1,67	mmol/l
Atherogenic index	2–3	
Potassium	3–5,4	mmol/l
Calcium	2–2,75	mmol/l
Sodium	130–150	mmol/l
Chloride	95–110	mmol/l

41.					
BIOCHEMICAL BLOOD ANALYSIS					
PATIENT'S NAME: I	VANOVA II				
Sex: female	Age: 37 y.o.				
Height 168 sm	Weight 72 kg				
Parameter	Result	Units	Note		
Urea	16,4	mmol/l			
Creatinine	0,189	mmol/l			
Total protein	56	g/l			
Albumen	23	g/l			
Glucose	5,6	mmol/l			
Bilirubin total	10	mcmol/l			
ALT	13	u/l			
AST	16	u/l			
SRP	6	mg/l			
Potassium	5,7	mmol/l			
Calcium	2,25	mmol/l			
Sodium	131	mmol/l			
Chloride	100	mmol/l			

Conclusion:

	42.			
BIOCHEM	IICAL BLOO	D ANALYSI	[S	
PATIENT'S NAME: IV	ANOV II			
Sex: male	Age: 45 y.o.			
Height 182 sm	Weight 94 kg			
Parameter	Result	Units	Note	
Urea	4,2	mmol/l		
Creatinine	0,087	mmol/l		
Total protein	73	g/l		
Albumen	38	g/l		
Glucose	4,8	mmol/l		
Bilirubin total	20,5	mcmol/l		
Bilirubin direct	4,5	mcmol/l		
Bilirubin indirect	16	mcmol/l		
ALT	278	u/l		
AST	156	u/l		
LDH	460	u/		
GGTP	378	u/l		
Potassium	4,7	mmol/l		
Calcium	2,23	mmol/l		
Conclusion:				

	43.		
BIOCHEN	/ICAL BLOC	D ANALYSI	S
PATIENT'S NAME: IV	'ANOVA II		
Sex: female	Age: 48 y.o.		
Height 178 sm	Weight 75 kg		
Parameter	Result	Units	Note
Urea	6,5	mmol/l	
Creatinine	0,098	mmol/l	
Total protein	69	g/l	
Albumen	38	g/l	
Glucose	4,0	mmol/l	
Bilirubin total	48,5	mcmol/l	
Bilirubin direct	27,5	mcmol/l	
Bilirubin indirect	21	mcmol/l	
ALT	43	u/l	
AST	42	u/l	
GGTP	478	u/l	
Alkaline phosphatase	575	u/l	
Potassium	4,4	mmol/l	
Calcium	2,2	mmol/l	
Sodium	134	mmol/l	
Chloride	107	mmol/l	
Total cholesterol	8,2	mmol/l	

44.				
BIOCHEMICAL BLOOD ANALYSIS				
PATIENT'S NAME: IV	/ANOV II			
Sex: male	Age: 69 y.o.			
Height 174 sm	Weight 88 kg			
Parameter	Result	Units	Note	
Urea	3,9	mmol/l		
Creatinine	0,098	mmol/l		
Total protein	56	g/l		
Albumen	23	g/l		
Glucose	5,6	mmol/l		
Bilirubin total	28,6	mcmol/l		
Bilirubin direct	14	mcmol/l		
Bilirubin indirect	14,6	mcmol/l		
ALT	68	u/l		
AST	73	u/l		
LDH	315	u/l		
GGTP	278	u/l		
Alkaline phosphatase	297	u/l		
Potassium	4,4	mmol/l		
Calcium	2,26	mmol/l		
Sodium	130	mmol/l		
Chloride	103	mmol/l		
Total cholesterol	2,3	mmol/l		
Conclusion:				

	45.		
BIOCHEMICAL BLOOD ANALYSIS			
PATIENT'S NAME: IV	ANOVA II		
Sex: female	Age: 72 y.o.		
Height 164 sm	Weight 78 kg		
Parameter	Result	Units	Note
Urea	7,6	mmol/l	
Creatinine	0,077	mmol/l	
Total protein	62	g/l	
Uric acid	0,655	mmol/l	
Glucose	7,5	mmol/l	
Bilirubin total	14,3	mcmol/l	
Bilirubin direct	3,3	mcmol/l	
Bilirubin indirect	11,0	mcmol/l	
ALT	12	u/l	
AST	20	u/l	
GGTP	48	u/l	
Alkaline phosphatase	148	u/l	
Potassium	4,2	mmol/l	
Calcium	2,2	mmol/l	
Sodium	140	mmol/l	
Chloride	102	mmol/l	
Total cholesterol	8,3	mmol/l	
LDL-cholesterol	5,78	mmol/l	
HDL-cholesterol	0,62	mmol/l	
Triglycerids	4,9	mmol/l	
Aterogenic index	12,4		
Conclusion:			

46.			
BIOCHEMICAL BLOOD ANALYSIS			
PATIENT'S NAME: IV	/ANOV II		
Sex: male	Age: 54 y.o.		
Height 174 sm	Weight 109 kg		
Parameter	Result	Units	Note
Urea	5,4	mmol/l	
Creatinine	0,1	mmol/l	
Total protein	66	g/l	
Albumen	30	g/l	
Uric acid	0,59	mmol/l	
Glucose	6,8	mmol/l	
Bilirubin total	20,0	mcmol/l	
ALT	82	u/l	
AST	112	u/l	
LDH	448	u/l	
Potassium	4,8	mmol/l	
Calcium	2,15	mmol/l	
Sodium	142	mmol/l	
Chloride	104	mmol/l	
Troponin	1,25	нg/ml	
Creatine kinase	980	u/l	
Creatine kinase-MB	594	u/l	
Total cholesterol	5,9	mmol/l	
LDL-cholesterol	3,38	mmol/l	
HDL-cholesterol	1,1	mmol/l	
Triglycerids	2,5	mmol/l	
Conclusion:			

	47.			
BIOCHEMICAL BLOOD ANALYSIS				
PATIENT'S NAME: IV	VANOVA II			
Sex: female	Age: 25 y.o.			
Height 158 sm	Weight 69 kg			
Parameter	Result	Units	Note	
Urea	6,6	mmol/l		
Creatinine	0,068	mmol/l		
Total protein	55	g/l		
Uric acid	0,34	mmol/l		
Glucose	5,9	mmol/l		
Bilirubin total	19,5	mcmol/l		
CRP	22,4	mg/l		
Rheumatoid factor	48	IU/ml		
ASL-O	350	IU/ml		
ALT	18	u/l		
AST	22	u/l		
GGTP	50	u/l		
Potassium	4,0	mmol/l		
Calcium	2,2	mmol/l		
Sodium	142	mmol/l		
Chloride	103	mmol/l		
Total cholesterol	4,6	mmol/l		
Triglycerids	2,8	mmol/l		
Conclusion:				

48.			
BIOCHEMICAL BLOOD ANALYSIS			
PATIENT'S NAME: IVANOV II			
Sex: male	Age: 50 y.o.		
Height 181 sm	Weight 134 kg	T	
Parameter	Result	Units	Note
Urea	18,2	mmol/l	
Creatinine	0,38	mmol/l	
Total protein	50	g/l	
Albumen	24	g/l	
Uric acid	0,49	mmol/l	
Glucose	14,9	mmol/l	
Bilirubin total	23,0	mcmol/l	
ALT	48	u/l	
AST	40	u/l	
Potassium	5,8	mmol/l	
Calcium	2,1	mmol/l	
Sodium	140	mmol/l	
Chloride	101	mmol/l	
Creatine kinase	172	u/l	
Creatine kinase-MB	12	u/l	
Total cholesterol	6,9	mmol/l	
Triglycerids	4,5	mmol/l	
Conclusion:			
FOR NOTES

CHAPTER 2 ELECTROCARDIOGRAPHY

NORMAL ELECTROCARDIOGRAM

Indicate the elementss of a normal ECG

ECG analysis algorithm

1. Rhythm	Sinus rhythm	 wave P precedes every QRS complex, P is positive in standard lead II, the same in shape and direction in the same lead RR intervals are equal, regular If the difference between RR intervals is more than 10 %, arrhythmia presents 		
	Heart rate	Heart rate = 60 / RR (sec), 60–90 beats per minute — normocardia, less than 60 — bradycardia, more than 90 — tachycardia		
2. Voltage	Amplitude of waves RI -	RII + RIII < 15 mm - low voltage		
3. Position of the electrical axis of the heart	RII > RI > RIII — normal position of the electrical heart axis RI > RII > RIII — left axis deviation RIII > RII > RI — right axis deviation			
4. Analysis of waves and intervals in standard lead II	Wave P: normal duration Interval PQ: $0.02 \text{ sec} \times$ Wave Q — normally doe Transition zone (R = S) is The amplitude of the R a Interval QRS: $0.02 \text{ sec} \times$ QRS > 0.1 sec, but less t QRS > 0.12 sec — comp Segment ST: the position Normally, segment ST is Wave T: positive, negati Interval QT: $0.02 \text{ sec} \times$ Interval QT by Bazett for	n does not exceed 0.1 sec, amplitude — less than 2.5 mm mm = (0.12–0.20 sec) es not exceed 0.03 sec in duration, amplitude — $^{1}/_{4}$ R wave (in III — not more than $^{1}/_{2}$ R). In V3 (or between V3 and V4) nd T waves is maximum in V4. mm = (normally 0.06–0.1 sec); han < 0.12 sec — incomplete bundle brunch block; lete bundle brunch block in relation to the isoline (on the isoline, higher by mm, lower by mm). s on the isoline. ve, isoelectric — in what leads mm = (less than 0.44 sec) rmula = K × √ RR, with K (male) = 0.37 K (female) = 40		
5. Conclusion: For example Sinus rhythm, regular, with	: a heart rate of 66 per min	ute (normocardia), normal voltage, normal position of the electrical axis of the heart.		

Paper speed:			Name the marked wa	ives:
50 mm/sec 1	mm = 0,02	sec	1 -	7 –
25 mm/sec 1	mm = 0,04	sec	-	0
Rhythm (sinus or no	ot)		2 -	8 –
Heart rate: interval	RR		3 -	9 -
0,02 (or 0,04) sec ×	mm =	sec	4 –	10 –
0,02 (or 0,04) sec \times	mm =	sec	5 –	11 –
0,02 (or 0,04) sec \times	mm =	sec	6 -	12 –
HR = 60 / RR interva	l(sec) =			

Position	of the	electrical	axis	of	the	heart
-----------------	--------	------------	------	----	-----	-------

(underline the correct answer)

normal position

left axis deviation

right axis deviation

Paper speed:

50 mm/s	sec $1 \text{ mm} = 0$,	02 sec
25 mm/s	sec $1 \text{ mm} = 0$,	04 sec
Rhythm (sinus or no	ot)	
Heart rate: interval	RR	
0,02 (or 0,04) sec ×	mm =	sec
0,02 (or 0,04) sec ×	mm =	sec
0,02 (or 0,04) sec ×	mm =	sec
UD = 60 / DD interve	(aa) -	

Name	the	marked	waves:
Name	the	marked	waves:

V1 –

V2 –

V4 -

V5 –

V6 -

I –

II –

III –

aVL –

Position of the electrical axis of the heart

(underline the correct answer)

normal position left axis deviation

right axis deviation

HR = 60 / RR interval (sec) =

Р	RR	
PQ	QT	
QRS	ST	
Т	TP	

rite the segments a	nd intervals (in b	rackets) and com	pare their duration	n with normal values	Lead	Segments or intervals	Duration, sec
					Π		
			€}\ 		III		
aVL		\sim			aVF		
VI					V1		
V3	$\frac{1}{2}$		-	\rightarrow	V3		
V4					V6		
V6	\mathcal{M}			50 mm/s			

Paper speed: 50 mm/s $1 \text{ mm} = 0,02 \text{ sec}$ 25 mm/s $1 \text{ mm} = 0,04 \text{ sec}$			IV. Analy P wave —	versis of waves and - duration < 0,1 s	intervals ec amplitu	ıde < 2,5 mı	m
25 mm/s 1 mm = 0,04 sec I. Rhythm (sinus or not) Normal sinus rhythm: normal heart rate is between 60 and 90. Each QRS complex is preceded by a normal P wave. The RR intervals and PR intervals remains constant, the P waves are visible, positive at II lead and have the same morphology in each lead. RR (the same). The difference between RR intervals is more than 0.16 sec — arrhythmia. $0,02 \text{ (or } 0,04) \sec \times \text{ mm} = \sec 0,02 \text{ (or } 0,04) \sec \times \text{ mm} = \csc 0,02 \text{ (or } 0,04) \sec \times \text{ mm} = \csc 0,02 \text{ (or } 0,04) \sec \times \text{ mm} = \csc 0,02 \text{ (or } 0,04) \sec \times \text{ mm} = \csc 0,02 \text{ (or } 0,04) \sec \times \text{ mm} = \csc 0,02 \text{ (or } 0,04) \sec \times \text{ (or } 0,04) = \csc 0,02 \text{ (or } 0,04) = \csc 0,02 \text{ (or } 0,04) = \csc 0,04 \text{ (or } 0,04)$		QRS - 0,11 > 0,12 PQ QT QT by Kmale Kfema	- 0,02 (or 0,04) $0,12 sec - incom$ $2 sec - complete$ $- 0,02 (or 0,04) se$ $- 0,02 (or 0,04) se$ $7 Bazett formula$ $e = 0,37$ $ale = 0,40$	sec × nplete bund bundle bra ec × ec × K	mm = lle branch block mm = mm = $\times \sqrt{RR/sec}$	(less 0,1 sec) ock (0,12–0,20 sec) (less 0,44 sec)	
Heart Rate = $60 / RR$ interval (sec)			T wave — positive in leads				
 II. Voltage RI + RII + RIII < 15 mm — low voltage III. Axis normal position left axis deviation right axis deviation 			negative i segment S (on the iso I II	n leads T is characterized bline, higher by aVR aVL	d the positi . mm, low V1 V2	on in relation er by mm	n to the isoline) V4 V5
QT interval corresponds to What does Bazett formula c	alculate?	ventricles	III Q wave sl duration <	aVF hould be less than 0,03 sec	V3 $1/_4$ R wave	e in the same	V6 e lead,
V. Conclusion			Transition	zone $(R = S)$ in C	V3 (or betw	ween V3 and	. V4)

Transition zone (R = S) in V3 (or between V3 and V4) R increases from V1 to V4, then decreases

•					
Paper speed: 50 mm/s 25 mm/s	1 mm = 0.02 1 mm = 0.04	2 sec 4 sec	IV. Analysis of waves and int P wave — duration < 0,1 s	ervals ec amplitude < 2	2,5 mm
			QRS - 0.02 (or 0.04) sec 3	× mm =	(less 0,1 sec)
I. Rhythm (sinus or not)	I. Rhythm (sinus or not)			e bundle branch	block
Fach ORS complex is pre-	ceded by a norm	nal P wave	> 0.12 sec - complete bun	dle branch block	DIOCK
The RR intervals and PR i	intervals remains	s constant, the P waves are	PO = 0.02 (or 0.04) sec x	mm –	(0.12 - 0.20 sec)
visible, positive at II lead	and have the sar	ne morphology in each lead.		111111 —	(0,12-0,20 sec)
RR (the same).			QT = 0,02 (or 0,04) sec ×	mm =	(till 0,44 sec)
The difference between R	R intervals is mo	ore than 0.16 sec — arrhythmia.	Name the impulse source for	each QRS comp	lex:
RR (minimum and ma	ximum)		1 –		
0.02 (or 0.04) sec \times	mm =	sec	2 -		
0.02 (or 0.04) sec x	mm –	sac	3 –		
0,02 (01 0,04) Sec ~	111111 —	sec	4 –		
0,02 (or 0,04) sec \times	mm =	sec	5 –		
Heart Rate = $60 / RR$ inter	rval (sec) (minin	num and maximum)	6 – 7		
			/ - 8 _		
II. Voltage RI + RII + RI	II < 15 mm - 10	ow voltage	9 <u>–</u>		
III Avic			10 -		
			11 –		
normal position			12 -		
left axis deviation			13 -		
right axis deviation			14 -		
			15 –		
V. Conclusion			16 –		
			17 –		
			18 -		

25 mm/s

Paper speed:	50 mm/s	1 mm = 0,02 sec
	25 mm/s	1 mm = 0,04 sec

I. Rhythm (sinus or not) Normal sinus rhythm:

Each QRS complex is preceded by a normal P wave The RR intervals and PR intervals remains constant P waves are visible, positive at II lead

RR (minimum and maximum)

0,02 (or 0,04) sec \times	mm =	sec
0,02 (or 0,04) sec \times	mm =	sec
Heart Rate = $60 / RR$ inter	rval (sec) (minin	um and maximum)

II. Voltage RI + RII + RIII < 15 mm — low voltage

III. Axis

normal position

left axis deviation

right axis deviation

V. Conclusion

IV. Analysis of waves and intervals

P wave — duration < 0,1 sec amplitude < 2,5 mm

QRS — 0,02 (or 0,04) sec \times	mm =	(less 0,1 sec)
PQ — 0,02 (or 0,04) sec \times	mm =	(0,12–0,20 sec)
QT — 0,02 (or 0,04) sec \times	mm =	(till 0,44 sec)

Name the impulse source for each QRS complex:

1 –	7 –
2 –	8 –
3 –	9 –
4 –	10 -
5 –	11 –
6 –	12 –

What is the arrhythmia type when after each sinus contraction a premature contraction follows?

Paper speed: 50 mm/s 25 mm/s	1 mm = 0.02 sec 1 mm = 0.04 sec	IV. Analysis of waves and intervals P wave — duration < 0.1 sec. amplitude <	< 2.5 mm
I Dhuthun (sinne on not)		QRS — 0,02 (or 0,04) sec \times mm =	(less 0,1 sec)
Normal sinus rhythm:		Measure all QRS complexes in lead II	
Each QRS complex is prece The RR intervals and PR int P waves are visible, positive	ded by a normal P wave ervals remains constant e at II lead	 QRS - 0,02 (or 0,04) sec × mm QRS= QRS= 	= (less 0, 1 sec)
RR (minimum and maximum	1)	4) QRS=	
0,02 (or 0,04) sec \times	mm = sec	5) QRS= 6) ORS=	
0,02 (or 0,04) sec \times	mm = sec	7) QRS=	
Heart Rate = $60 / RR$ in	terval (sec) (minimum and maximum)	8) QRS=	
II. Voltage RI + RII + RIII	< 15 mm — low voltage	9) QRS=	
TTT A •		Name the impulse source for each QRS con	nplex
III. Axis		1 –	
normal position		2 -	
left axis deviation		3 -	
right axis deviation		4 – 5 –	
V. Conclusion		6 –	
		7 –	
		8 -	
		9 –	

• Sign all P waves in lead V2

• Indicate a compensatory pause in lead III

ECG SIGNS OF RHYTHM AND CONDUCTION DISORDERS

Write the signs

Give a definition Extrasystole is	Types of extrasystoles by origin	General ECG signs of extrasystole

ECG SIGNS OF BUNDLE BRANCH BLOCK

Write

Right bundle branch block		Left bundle branch block	
incomplete QRS =	complete QRS =	complete QRS =	

Paper speed:	50 mm/s	1 mm = 0,02 sec
	25 mm/s	1 mm = 0,04 sec

I. Rhythm (sinus or not) Normal sinus rhythm:

Each QRS complex is preceded by a normal P wave The RR intervals and PR intervals remains constant P waves are visible, positive at II lead

RR

0,02 (or 0,04) sec \times	mm =	sec
0,02 (or 0,04) sec \times	mm =	sec
Heart Rate = $60 / RR$ in	nterval (sec)	

II. Voltage (underline)

Sufficient or low

III. Axis

normal position

left axis deviation

right axis deviation

V. Conclusion

IV. Analysis of waves and intervals

P duration	sec	
P amplitude	sec	
QRS — 0,02 (or 0,04) sec	×	mm =

(less 0,1 sec)

Mark the r and R waves in lead V1, V2, V3 and V4

Note the QRS duration in leads I, III, V1 and V2

Ι	QRS	0,02 (or 0,04) sec \times	mm =	sec
III	QRS	0,02 (or 0,04) sec \times	mm =	sec
V1	QRS	0,02 (or 0,04) sec \times	mm =	sec
V2	QRS	0,02 (or 0,04) sec \times	mm =	sec

QRS

0,11–0,12 sec — incomplete bundle branch block > 0,12 sec — complete bundle branch block

Paper speed:	50 mm/s	1 mm = 0,02 sec
	25 mm/s	1 mm = 0,04 sec

I. Rhythm (sinus or not)

Normal sinus rhythm:

Each QRS complex is preceded by a normal P wave The RR intervals and PR intervals remains constant P waves are visible, positive at II lead

RR

0,02 (or 0,04) sec \times	mm =	sec
0,02 (or 0,04) sec \times	mm =	sec
Heart Rate = $60 / RR i$	nterval (sec)	

II. Voltage (underline)

Sufficient or low

III. Axis

normal position

left axis deviation

right axis deviation

V. Conclusion

IV. Analysis of waves and intervals

P duration sec		
P amplitude sec		
PQ — 0,02 (or 0,04) sec \times	mm =	(0,12–0,20 sec)
QRS — 0,02 (or 0,04) sec \times	mm =	(less 0,1 sec)

Note the QRS duration in leads I, III, V1 and V6

Ι	QRS	0,02 (or 0,04) sec \times	mm =	sec
III	QRS	0,02 (or 0,04) sec \times	mm =	sec
V1	QRS	0,02 (or 0,04) sec \times	mm =	sec
V6	QRS	0,02 (or 0,04) sec \times	mm =	sec

Find the Transition zone (chest lead where R = S)

Normally, Transition zone is in the lead _____

ECG SIGNS OF ATRIAL FIBRILLATION AND FLATTER, VENTRICULAR FIBRILLATION

Write

Atrial fibrillation	Atrial flutter	Ventricular fibrillation

Conclusion:

ECG SIGNS OF MYOCARDIAL ISCHEMIA

Leads	Localization
Ι	
II	
III	
aVL	
aVF	
V_1, V_2	
V ₃	
V_4	
V_5, V_6	

Write the appropriate anatomical relations of the leads in a standart 12 leads ECG

ST segment elevation and depression options

		Signs	ECG
Normal ECG		 Q wave is less than ¹/₄ R wave, duration < 0,03 sec ST segment is at the isoline T-wave is positive ST elevation (single monophasic deflection) 	$-\Lambda$
	The most acute period (first hours)	• ST elevation (single monophasic deflection)	$\sim \sim$
Evolution of STEMI	Acute period (till 7–10 days)	 Pathological Q wave Segment ST gradually decreases, but remains above the isoline Formation of a negative T wave 	\sim
	Subacute period (till 28 th day)	 Pathological Q wave (QS) Segment ST on isoline Wave T negative 	
	Infarct scar period (after 29 th day)	 Pathological Q wave (QS) Segment ST on isoline Wave T positive, negative or flat 	$-\sqrt{-2}$

Signs of ST-elevation Acute Myocardial Infarction (STEMI)

Paper speed: 50 mm/s 25 mm/s		1 mm = 0.02 sec 1 mm = 0.04 sec		IV. Analysis of waves and intervals		
				QRS — 0,02 (or 0,04) sec \times mm =		
I. Rhythm (sinus or not) RR			PQ - 0,02 (or 0,04) sec \times mm =			
0,0	02 (or 0,04) sec \times	mm =	sec	Draw an isoline in all leads		
0,0	02 (or 0,04) sec \times	mm =	sec	Wave T — positive in leads		
0,0	02 (or 0,04) sec \times	mm =	sec	flat in leads		
HR = 60 / RR interval (sec)				negative in leads		
II. Vol	$\mathbf{I}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}} $			Segment ST is on the isoline in leads		
	itage (underline)					
Su	ifficient or low			elevation by mm in leads		
Su III. Ax	itage (underline)			elevation by mm in leads depression by mm in leads		
Su III. Ax no	itage (underline) ifficient or low xis prmal position			elevation by mm in leads depression by mm in leads Wave Q in leads		
Su III. Ax no lef	Itage (<i>underline</i>) officient or low xis frmal position ft axis deviation			elevation by mm in leads depression by mm in leads Wave Q in leads Duration sec		
Su III. Ax no lef rig	Itage (underline) ifficient or low xis prmal position ft axis deviation ght axis deviation			elevation by mm in leads depression by mm in leads Wave Q in leads Duration sec Amplitude (<i>what part</i>) of R wave		

V. Conclusion

Localization of the ischemia _____

Paper speed: 50 mm/s $1 \text{ mm} = 0,02 \text{ sec}$	IV. Analysis of waves and intervals		
25 mm/s 1 mm = 0,04 sec	QRS — 0,02 (or 0,04) sec \times mm =		
I. Rhythm (sinus or not)	$PQ - 0,02 \text{ (or } 0,04) \text{ sec } \times \text{mm} =$		
$RR = 0,02 \text{ (or } 0,04) \text{ sec} \times \text{mm} = \text{sec}$	Draw an isoline in all leads		
HR = 60 / RR interval (sec)			
	Wave T — positive in leads		
II. Voltage (underline)	flat in leads		
Sufficient of low	negative in leads		
III. Axis			
normal position	Segment ST is on the isoline in leads		
left axis deviation	elevation by mm in leads		
richt avia deviation	depression by mm in leads		
light axis deviation			
Ischemia — (write in the definition)	Wave Q in leads		
	Duration sec		
	Amplitude (what part) from R wave		
	-		

V. Conclusion

Localization of the ischemia	

Paper speed: 50 mm/s $1 \text{ mm} = 0.02 \text{ sec}$	
25 mm/s 1 mm = 0,04 sec	
I. Rhythm (sinus or not)	
$RR = 0.02 \text{ (or } 0.04) \text{ sec} \times \text{mm} =$	sec
HR = 60 / RR interval (sec)	
II. Voltage <i>(underline)</i> Sufficient or low	
III. Axis	
normal position	
left axis deviation	
right axis deviation	
Ischemia — (write in the definition)	

V. Conclusion

IV. Analysis of waves and intervals

P duration sec		
P amplitude sec		
QRS — 0,02 (or 0,04) sec \times	mm =	(less 0,1 sec)
PQ — 0,02 (or 0,04) sec \times	mm =	(0,12–0,20 sec)
QT — 0,02 (or 0,04) sec \times	mm =	(less 0,44 sec)

Draw an isoline in all leads

Wave T — positive in leads
flat in leads
negative in leads
Segment ST is on the isoline in leads
elevation by mm in leads
depression by mm in leads
Wave Q is pathological in leads Duration sec Amplitude (<i>what part</i>) of R wave

Localization of the ischemia

Paper spee	d: 50 mm/s	1 m	m = 0,02 sec	
	25 mm/s	1 m	m = 0,04 sec	
I. Rhythm	(sinus or not)			
$\mathbf{R}\mathbf{R}=0$,02 (or 0,04) se	$c \times$	mm =	sec
HR = 6	0 / RR interval	(sec)		
II. Voltage Sufficie	(<i>underline</i>) ent or low			
III. Axis				
normal	position			
left axis	s deviation			
right ax	is deviation			
Reciprocal	changes on E	CG —	(write in the	definition)

V. Conclusion

IV. Analysis of waves and intervals

P duration sec		
P amplitude sec		
QRS — 0,02 (or 0,04) sec \times	mm =	(less 0,1 sec)
PQ — 0,02 (or 0,04) sec \times	mm =	(0,12–0,20 sec)
QT — 0,02 (or 0,04) sec \times	mm =	(less 0,44 sec)

Draw an isoline in all leads

Wave T — positive in leads
flat in leads
negative in leads
Segment ST is on the isoline in leads elevation by mm in leads depression by mm in leads
Wave Q is pathological in leads
Duration sec
Amplitude (what part) of R wave

Localization of the ischemia

Paper speed: 50 mm/s $1 \text{ mm} = 0,02 \text{ sec}$
25 mm/s 1 mm = 0,04 sec
I. Rhythm (sinus or not)
$\mathbf{RR} = 0,02 \text{ (or } 0,04) \sec \times \qquad \mathbf{mm} = \qquad \mathbf{sec}$
HR = 60 / RR interval (sec)
II. Voltage (underline)
Sufficient or low
III. Axis
normal position
left axis deviation
right axis deviation
Biochemical markers of myocardial damage are (write down the names of indicators that increase in myocardial necrosis)

V. Conclusion

IV. Analysis of waves and intervals

P duration sec		
P amplitude sec		
QRS — 0,02 (or 0,04) sec \times	mm =	(less 0,1 sec)
PQ — 0,02 (or 0,04) sec \times	mm =	(0,12–0,20 sec)
QT — 0,02 (or 0,04) sec \times	mm =	(less 0,44 sec)

Draw an isoline in all leads

Wave T — positive in leads
flat in leads
negative in leads
Segment ST is on the isoline in leads
elevation by mm in leads
depression by mm in leads
Wave Q is pathological in leads
Duration sec
Amplitude (what part) of R wave

Localization of the ischemia

15

Paper speed:	50 mm/s	1 mm = 0.02 sec				
	25 mm/s	1 mm	= 0,04 sec			
I. Rhythm (sin	nus or not)					
RR = 0,02	(or 0,04) sec	×	mm =	sec		
HR = 60 / RR interval (sec)						
II Voltago (m	n doulin o)					
II. Voltage (u	naerine)					
Sufficient	or low					
III. Axis						
normal po	sition					
left axis de	eviation					
right axis	deviation					
Pathological Q wave on the ECG corresponds to (write what changes in the myocardium)						

V. Conclusion

IV. Analysis of waves and intervals

P duration sec		
P amplitude sec		
QRS — 0,02 (or 0,04) sec \times	mm =	(less 0,1 sec)
PQ — 0,02 (or 0,04) sec \times	mm =	(0,12–0,20 sec)
QT — 0,02 (or 0,04) sec \times	mm =	(less 0,44 sec)

Draw an isoline in all leads

Wave T — positive in leads
flat in leads
negative in leads
Segment ST is on the isoline in leads
elevation by mm in leads
depression by mm in leads
Wave Q is pathological in leads
Duration sec
Amplitude (what part) of R wave

Localization of the ischemia

TABLE OF CONTENTS

CHAPTER 1. LABORATORY DIAGNOSTISTICS	3
COMPLETE BLOOD COUNT (CBC)	.10
URINALYSIS	.19
SPUTUM TEST	.26
BIOCHEMICAL BLOOD ANALYSIS	.31
CHAPTER 2. ELECTROCARDIOGRAPHY	.37
ECG SIGNS OF RHYTHM AND CONDUCTION DISORDERS	.52
ECG SIGNS OF MYOCARDIAL ISCHEMIA	.60

Учебное издание

Доценко Эдуард Анатольевич Шолкова Мария Владимировна Захарова Анна Геннадьевна и др.

МЕТОДЫ ИССЛЕДОВАНИЯ В КЛИНИКЕ ВНУТРЕННИХ БОЛЕЗНЕЙ DIAGNOSTIC METHODS IN THE INTERNAL MEDICINE

Практикум для студентов стоматологического факультета

На английском языке

4-е издание

Ответственный за выпуск Э. А. Доценко Переводчик М. В. Шолкова Компьютерная вёрстка Н. М. Федорцовой

Подписано в печать 12.02.25. Формат 60×84/8. Бумага писчая «Снегурочка». Ризография. Гарнитура «Times». Усл. печ. л. 8,83. Уч.-изд. л. 3,51. Тираж 55 экз. Заказ 73.

Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный медицинский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/187 от 24.11.2023. Ул. Ленинградская, 6, 220006, Минск.

