DOI: https://doi.org/10.51922/2616-633X.2025.9.1.2491

РОЛЬ МАГНИТНО-РЕЗОНАНСНОЙ ТОМОГРАФИИ В ДИАГНОСТИКЕ АМИЛОИДОЗА СЕРДЦА

А. Д. Модель, Т. В. Горбат, Т. В. Русак

Республиканский научно-практический центр кардиологии, Минск, Беларусь tatq2016@yandex.ru

УДК 616-073:537.52:616.12-003.821

Ключевые слова: миокард, амилоидоз, магнитно-резонансная томография.

ДЛЯ ЦИТИРОВАНИЯ. А. Д. Модель, Т. В. Горбат, Т. В. Русак. Роль магнитно-резонансной томографии в диагностике амилоидоза сердца. *Неотложная кардиология и кардиоваскулярные риски*, 2025, Т. 9, № 1, С. 2491–2496.

милоидоз сердца характеризуется внеклеточным отложением неправильно свернутых белков в миокарде. Проявлением сердечного амилоидоза является быстрое прогрессирование сердечной недостаточности и развитие жизнеугрожающих нарушений ритма, фибрилляции предсердий, эмболических инсультов. Диагноз амилоидоза сердца должен быть исключен у всех пациентов с быстропрогрессирующей

сердечной недостаточностью, ассоциированной с рестриктивным фенотипом ремоделирования в сочетании с гипертрофией миокарда. Магнитно-резонансная томография (МРТ) сердца считается чувствительным и специфичным методом диагностики. В данной статье рассмотрены диагностические MP-критерии сердечного амилоидоза и приведены подтвержденные клинические случаи.

THE ROLE OF MAGNETIC RESONANCE IMAGING IN THE DIAGNOSIS OF CARDIAC AMYLOIDOSIS

H. Model, T. Horbat, T. Rusak

Republican Scientific and Practical Center of Cardiology, Minsk, Belarus

Key words: myocardium, amyloidosis, magnetic resonance imaging.

FOR REFERENCES. H. Model, T. Horbat, T. Rusak. The role of magnetic resonance imaging in the diagnosis of cardiac amyloidosis. *Neotlozhnaya kardiologiya i kardiovaskulyarnye riski* [Emergency cardiology and cardiovascular risks], 2025, vol. 9, no. 1, pp. 2491–2496.

ardiac amyloidosis is characterized by extracellular deposition of abnormal proteins in the myocardium. A manifestation of cardiac amyloidosis is the rapid progression of heart failure and the development of life-threatening arrhythmias, atrial fibrillation, and embolic strokes. The diagnosis of cardiac amyloidosis should be excluded in all patients with rapidly

progressive heart failure associated with a restrictive remodeling phenotype in combination with myocardial hypertrophy. Cardiac magnetic resonance imaging (MRI) is considered to be an accurate and specific diagnostic method. This article reviews the diagnostic MR-criteria for cardiac amyloidosis and provides confirmed clinical cases.

Амилоидоз представляет собой группу состояний, связанных с отложением в различных органах и тканях амилоидных фибрилл, имея как изолированные, так и сочетанные органные проявления. На сегодняшний день известно более 30 белков-предшественников, вовлеченных в различные амилоидные заболевания, которые поражают разные системы органов и имеют вариативные прогнозы. Поражение сердца является наиболее значимым предиктором неблагоприятного прогноза у пациентов с системным амилоидозом. Амилоидные фибриллы аккумулируются в межклеточном пространстве, способствуя постепенной атрофии кардиомиоцитов, что

в итоге приводит сначала к диастолической, а затем и к систолической дисфункции сердца. Отложения амилоидных фибрилл могут быть не только в интерстиции миокарда, а также в сосудах, эндокарде, эпикарде и париетальном листке перикарда. Также происходит поражение проводящей системы, клапанного аппарата сердца. Все это способствует быстрому развитию сердечной недостаточности и может проявляться выраженной одышкой в покое, периферическими отеками, гидротораксом и асцитом на более поздних стадиях заболевания, дискомфортом в грудной клетке, внезапной сердечной смертью [1].

На сегодняшний день выделяют девять амилоидогенных белков, способных аккумулироваться в миокарде и приводить к амилоидозу сердца. Более 85% случаев приходится на амилоидоз сердца (АС), предшественником которого являются легкие цепи иммуноглобулинов (light chain amyloidosis – AL-амилоидоз) и транстиретин (transthyretin amyloidosis – ATTR-амилоидоз) [2].

АТТК-амилоидоз представлен в двух формах: приобретенной форме, развивающейся на фоне аномального накопления белка транстиретина (ТТК) дикого типа, так называемый транстиретиновый амилоидоз дикого типа (АТТК), и генетически обусловленной наследственной формой, так называемый вариантный транстеритиновый амилоидоз (АТТК), причиной которой являются известные на данный момент более 140 вариантов мутаций в гене ТТК и которая также известна как мутантная форма транстиретинового амилоидоза (АТТК m) [2].

В обоих случаях происходит распад тетрамеров транстиретина до мономеров, обладающих выраженной конформационной нестабильностью. ATTR-амилоидоз является необратимо прогрессирующим заболеванием с высокой степенью инвалидизации вследствие тяжелого поражения сердца, периферической и/или автономной полинейропатии.

Транстиретиновый амилоидоз мутантного типа (ATTR_m), также известный как семейная амилоидная полинейропатия, представляет собой наследственное заболевание, вызываемое преимущественно продукцией мутантной формы TTR. TTR представляет собой белок-переносчик, вырабатываемый печенью. TTR транспортирует тироксин и поддерживает скорость диссоциации тетрамер-мономер, обычно образуя свернутые мономеры. Эти мономеры могут частично неправильно сворачиваться из-за аномальных условий, таких, как точковые мутации. Эти неправильно свернутые мономеры образуют префибриллярные типы белков, а затем и амилоидные фибриллы. Возраст пациента на момент начала заболевания и клинические проявления зависят от конкретной мутации. Медиана выживаемости у пациентов с ATTR_m находится в пределах от 10 до 20 лет после начала заболевания. Следует отметить, что поражение сердца ухудшает прогноз [1].

АТТК дикого типа (АТТК $_{\rm wt}$) также известен как старческий системный амилоидоз. По сравнению с AL и АТТК $_{\rm m}$ АТТК $_{\rm wt}$ имеет отсроченное начало и в первую очередь поражает лиц старше 65 лет. Большинство пациентов – мужчины. При этом соотношение мужчин и женщин оценивается от 20:1 до 50:1 [1]. Эту форму АС часто неправильно диагностируют, поскольку она имеет клинические проявления, напоминающие симпто-

мы других патологий, таких как артериальная гипертензия и гипертрофическая кардиомиопатия. По сравнению с пациентами с AL-амилоидозом пациенты с $ATTR_{\rm wt}$ обычно имеют менее агрессивные сердечные проявления со средней выживаемостью 43–47 месяцев после постановки диагноза [1].

AL-амилоидоз - самая распространенная и агрессивная форма системного амилоидоза. При AL-амилоидозе поражение сердца наблюдается более чем в 90% случаев, при этом у 5% пациентов оно носит изолированный характер. Эта патология вызвана отложением амилоидных фибрилл, происходящих из неправильно свернутых легких цепей моноклональных иммуноглобулинов, генерируемых аномальными плазматическими клетками. Множественная миелома, первичная макрогаммаглобулинемия и моноклональная гаммапатия неустановленного значения представляют собой основной спектр патологий, связанных с АL-амилоидозом. AL-амилоидоз обычно поражает сердце и почки, но может сопровождаться вовлечение в процесс других органов и систем. Поражение сердца является наиболее важным фактором, определяющим прогноз. При этом типе амилоидоза отложение амилоида в миокарде вызывает некроз кардиомиоцитов и интерстициальный фиброз. Более того, прямая токсичность циркулирующих легких цепей является важным фактором сердечной дисфункции, вызванной окислительным стрессом. Повозрастная заболеваемость AL-амилоидозом растет с каждым десятилетием у лиц старше 40 лет. Средний возраст пациентов с установленным диагнозом составляет 64 года. Только менее 5% заболевших пациентов моложе 40 лет. Мужчины болеют чаще женщин в соотношении 3:2. [3].

Высокая смертность при отсутствии своевременного лечения подчеркивает важность ранней диагностики амилоидоза легких цепей.

АС часто ошибочно диагностируют как гипертрофию миокарда на фоне артериальной гипертензии или гипертрофическую кардиомиопатию, а поздняя диагностика имеет неблагоприятные последствия для пациентов. Однако недавние достижения в области визуализации сердца привели к увеличению выявления скрытых форм АС у пациентов с диагнозом сердечной недостаточности. Это предполагает, что фактическая заболеваемость АС недооценена. Прогноз АС обычно неблагоприятный, особенно у пациентов с выраженной сердечной недостаточностью.

При отсутствии специфического лечения амилоидоза прогрессирование сердечной недостаточности (СН) наступит значительно раньше и многие лечебные стратегии медикаментозной терапии не дадут значимого эффекта. Поэтому ранняя диагностика

и верификация типа амилоидоза являются важными задачами. Следует отметить, что диагноз амилоидоза сердца должен быть исключен у всех пациентов с быстропрогрессирующей СН, ассоциированной с такими типами ремоделирования, как сочетание гипертрофического фенотипа с рестриктивным.

Для определения сердечного амилоидоза необходимо обнаружить амилоидные фибриллы в сердечной ткани. Предложены как инвазивные, так и неинвазивные диагностические методы. Инвазивные диагностические критерии применимы ко всем формам сердечного амилоидоза, тогда как неинвазивные критерии в основном используются только для транстиретинового типа.

К инвазивным методам диагностики сердечного амилоидоза относится эндомио-кардиальная биопсия с последующим типированием амилоида гистологическими, иммуногистохимическими или масс-спектрометрическими исследованиями. А также экстракардиальная биопсия, как правило, биопсия подкожно-жировой клетчатки, слюнных желез, слизистой оболочки прямой кишки, почек, при наличии положительных критериев эхокардиографии (ЭхоКГ) и/или магнитно-резонансных (МР) критериев.

К неинвазивным методам диагностики относятся сцинтиграфия (показывает степень поглощения миокардом радиофармпрепарата), а также определение амилоида легких цепей (моноклональных белков) в сыворотке крови и белков Бенс-Джонса в моче.

Согласно консенсусному алгоритму неинвазивной диагностики амилоидоза сердца у пациентов с характерными признаками амилоидоза по данным ЭхоКГ/магнитно-резонансной томографии (МРТ), Grade 2/3 по данным сцинтиграфии сердца и без положительных гематологических тестов, подтверждающих наличие AL-амилоидоз (клональных аномалий), диагноз АТТR-амилоидоза может считаться установленным без проведения биопсии [4].

Позитронно-эмиссионная томография с использованием трейсеров, тропных к костной ткани, может подтвердить диагноз транстиретиновой семейной амилоидной кардиомиопатии без биопсии сердца при условии, что AL-амилоидоз исключен.

В данной статье рассмотрены диагностические МР-критерии сердечного амилоидоза и приведены подтвержденные клинические случаи.

МРТ сердца считается чувствительным и специфичным методом диагностики AL и ATTR типов амилоидоза сердца. Однако диагностическая ценность и важность результатов МРТ зависят от предтестовой вероятности, которая основывается на клинико-лабораторных данных и стадии заболевания. Так, раннее поражение сердца обнаружить

труднее, а отличить подтипы сердечного амилоидоза сложно. Таким образом, результаты МРТ сердца следует интерпретировать в клиническом контексте и в свете результатов других исследований. МРТ сердца обладает диагностической и прогностической ценностью при верификации таких заболеваний как гипертрофическая кардиомиопатия, болезнь Андерсона-Фабри, перегрузка сердца железом.

MPT сердца с контрастированием является уникальной модальностью для неинвазивной морфометрической и структурной оценки ткани сердца, что позволяет дифференцировать амилоидоз от неамилоидного поражения миокарда.

Основными диагностическими МРТ-критериями амилоидоза сердца являются:

- 1) диффузное субэндокардиальное или трансмуральное накопление контраста при отсроченном контрастировании (late gadolinium enhancement LGE);
 - 2) аномальная кинетика гадолиния;
 - 3) повышение Т1-времени релаксации;
- 4) повышение экстрацеллюлярного объема (extracellular volume ECV) \geq 0,40% (значимый критерий, но не является обязательным) [5].

Отсроченное контрастирование с использованием контрастных веществ на основе гадолиния является основным методом диагностики АС. LGE чаще встречается при ATTR, чем при AL-амилоидозе. Для количественной характеристики фиброза используется Query Amyloid Late Enhancement Score (QALE) (рисунок 1). Данная шкала не только помогает в дифференциальной диагностике типов АС, но и является прогностическим маркером АС.

В зависимости от предложенного паттерна накопления контраста в сегментах левого желудочка (ЛЖ) и правого желудочка (ПЖ) определяется количество баллов по сегментам миокарда, максимальное количество 17 баллов.

Традиционные методы визуализации аномальной кинетики гадолиния требуют опре-

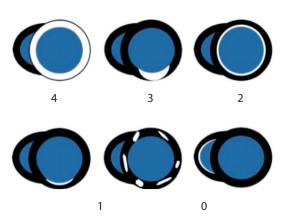


Рисунок 1. Шкала QALE для дифференциальной диагностики ALи ATTR-амилоидоза [4]

Figure 1.

QALE scale for differential diagnosis of AL and ATTR amyloidosis [4]

деления оператором нулевой точки, которая представляет собой время восстановления после инверсии, при котором нормальный миокард выглядит черным или «обнуленным». Это может быть затруднительно при АС, и трудности с обнулением миокарда или обнулением миокарда перед пулом крови (аномальная кинетика гадолиния) – 2 диагностический критерий, который свидетельствует об АС с высокой чувствительностью 86% и специфичностью 92% [6].

Т1-картирование миокарда позволяет неинвазивно обнаружить и количественно оценить повреждение миокарда на более ранних стадиях заболевания, чем LGE. Значения времени нативного Т1 выше в области отложения амилоида (или диффузного фиброза) по сравнению с нормальными тканями. В отличие от ECV (экстрацеллюлярный обьем), который характеризует внеклеточное пространство, нативное Т1-картирование миокарда обеспечивает комбинированный сигнал от миоцитов и внеклеточного пространства и отражает изменения в одном или обоих этих тканевых компартментах. Нативные значения времени Т1 заметно увеличиваются при АС и хорошо коррелируют с маркерами систолической и диастолической дисфункции с высокой чувствительностью 92% и специфичностью 91% верификации АС [6].

Однако основным ограничением нативного Т1-картирования миокарда является отсутствие установленных референсных значений времени Т1-релаксации для МРТ аппаратов разных производителей и напряженности магнитного поля (1,5 Тл против 3,0 Тл).

Постконтрастное Т1-картирование и оценка ECV выполняются после введения гадолиния, причем ECV более воспроизводимы для разных MPT аппаратов, чем абсолютные значения Т1-релаксометрии [6].

Значения ECV заметно повышены при AC и коррелируют с другими маркерами тяжести, но не дифференцируют его подтипы.

Количественная оценка ECV является более ранним маркером поражения сердца у пациентов с амилоидозом. Однако значения ECV повышаются и при других кардиомиопатиях, что ограничивает его специфичность в выявлении раннего амилоидоза.

Параметрические последовательности для измерения времени релаксации Т2 миокарда не подвергались такой тщательной оценке при АС по сравнению с нативными значениями Т1-релаксометрии или ЕСV. В таблице представлены характеристики диагностических МР-критериев АС в зависимости от типа амилоидоза (таблица) [4].

Таким образом, МРТ сердца с контрастированием является незаменимый методом выявления сердечного амилоидоза и его следует использовать для верификации или диагностики поражения сердца на ранних стадиях в случаях неясной гипертрофии ЛЖ, а также играет центральную роль в мониторинге неинвазивной терапии у пациентов с амилоидозом, получающих специфическую терапию, благодаря своим уникальным возможностям в отношении неинвазивной характеристики ткани миокарда, включая описание и количественную оценку амилоидной нагрузки [7].

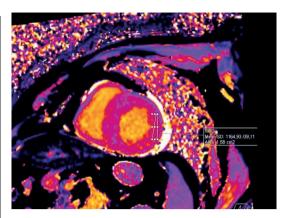
Таблица. Диагностические магнитно-резонансные критерии амилоидоза сердца в зависимости от типа амилоидоза

Table.
Diagnostic magnetic resonance criteria for cardiac amyloidosis depending on the type of amyloidosis

	AL-амилоидоз AL-amyloidosis	ATTR-амилоидоз ATTR-amyloidosis
Macca миокарда ЛЖ LV mass	Умеренное увеличение Mildly increased < 100 г/м²	Значительное увеличение Markedly increased > 100 г/м²
Утолщение МЖП Septum thickness	МЖП при AL-амилоидозе < МЖП при ATTR-амилоидозе Septum AL< Septum ATTR	
Отсроченное контрастное накопление LGE	– менее обширное LGE; less extensive LGE – часто глобальный субэндокардиальный паттерн LGE; often (global) subendocardial pattern – QALE score < 13.	– более обширное LGE; more extensive LGE – часто более диффузный и трансмуральный паттерн LGE; often more diffuse and transmural pattern – QALE score ≥ 13
Преконтрастное T1-картирование (T1-Mapping) Native T1	> 1050–1150 мс Преконтрастный Т1-Mapping AL > Преконтрастный Т1-Mapping ATTR Native T1 AL > Native T1 ATTR	
Экстрацеллюлярный объем ECV	0.40 ECV AL < ECV ATTR	
Лечение Therapy	Химиотерапия Chemotherapy	лечение, специфичное для TTR (Фаза III) Novel TTR-specific treatment
Прогноз Prognosis	Неблагоприятный (не смотря на менее обширное LGE) Worse (despite less extensive LGE)	Более благоприятный (не смотря на более обширное LGE) Better (despite more extensive LGE)

Примечания: МЖП – межжелудочковая перегородка.

Клинический случай 1


Мужчина 59 лет поступил в РНПЦ «Кардиология» с жалобами на одышку при физической нагрузке, приступы сердцебиения, быструю утомляемость. Болеет с 2020 г., когда впервые был выявлен пароксизм фибрилляции предсердий.

Согласно результатом коронароаграфии коронарные артерии без гемодинамически значимого стенозирования.

По данным ЭхоКГ: аорта не расширена, умеренно уплотнена. Аортальный клапан: фиброз створок, регургитация с клапана 1-2 степени. Левое предсердие (ЛП) значительно расширено, объем ЛП = 119 мл, индекс объема $\Pi\Pi = \hat{6}0 \text{ мл/м}^2$. ЛЖ не расширен. Асимметричная гипертрофия миокарда ЛЖ и межжелудочковой перегородки (МЖП) более выраженная в базальных сегментах передне-перегородочной (21 мм), перегородочной области (23 мм) без сужения выходного тракта левого желудочка (ВТЛЖ), систолический градиент в выносящем тракте ЛЖ (ВТЛЖ) равен 5 мм рт.ст. Гипертрофия папиллярных мышц. Внутрижелудочковый градиент на уровне верхушечных сегментов = 0 мм рт.ст., на уровне средних сегментов = 2 мм рт.ст. Незначительное сужение полости левого желудочка в систолу на уровне средних сегментов. Нарушение локальной сократимости миокарда ЛЖ. Фракция выброса (ФВ) ЛЖ = 57%. Митральный клапан: створки неравномерно утолщены, избыточны, хорды значительно избыточны, митральная регургитация 2 степени с градиентом регургитации = 76 мм рт.ст. Правые отделы не расширены. Фракция изменения площади = 36% (норма 35%), толщина миокарда правого желудочка (ПЖ) 6 мм, гипертрофия миокарда ПЖ. Внутрижелудочковый градиент на уровне верхушечных сегментов – 1 мм рт.ст. Объем праого предсердия (ПП) = 62 мл, индекс объема $\Pi\Pi = 31 \text{ мл/m}^2$, венозный синус расширен. Трикуспидальный клапан: створки не изменены, трикуспидальная регургитация 2 степени узким потоком, систолическое давление в легочной артерии (ДЛА сист) = 34 мм рт.ст., среднее давление в легочной артерии (ДЛА ср) = 23 мм рт.ст.

По данным МРТ сердца: ЛЖ: Толщина межжелудочковой перегородки (МЖП) в диастолу 20–25 мм, в систолу 31 мм. Толщина боковой стенки ЛЖ в диастолу 16 мм, в систолу 33 мм. Гипертрофия папиллярных мышц. ПЖ: Толщина стенки ПЖ 5 мм. Толщина межпредсердной перегородки (МПП) до 3–4 мм. Сократимость миокарда ЛЖ: гипокинез всех сегментов.

Преконтрастная Т1-релаксометрия (Т1-Марріпд): при релаксометрии значения времени нативной Т1-релаксации миокарда ЛЖ диффузно повышены 1130–1205 мсек (рисунок 2). Отсроченное накопление контрастного вещества, постконтрастная Т1-релаксометрия

(Т1-Марріпд): диффузное интрамиокардиальное накопление контрастного вещества полисегментарно в миокарде ЛЖ (до 50%), ПЖ, ЛП, ПП (рисунок 3). Выпот в правой плевральной полости до 300 мл, в левой – до 100 мл. Выпот в полости перикарда объемом до 100 мл.

По данным эндомиокардиальной биопсии миокарда: имеет место амилоидоз. Результаты иммуногистохимического исследования: Ата (маркер АА-амилоидоза): отсутствует экспрессия данного маркера в представленных эндомиокардиальных биоптатах.

Общий анализ мочи: белок 600 мг/дл.

Учитывая клинико-лабораторные данные, данные биопсии и МРТ сердца был выставлен клинический диагноз: первичный системный амилоидоз (Ата – негативный). Артериальная гипертензия 2, риск 4. Н II А. Пароксизмальная форма фибрилляции предсердий. Нефротический синдром.

Пациенту назначена соответствующая медикаментозная терапия.

Клинический случай 2

Пациент 65 лет поступил на плановую госпитализацию в РНПЦ «Кардиология» с жалобами на слабость, одышку при бытовой нагрузке, сухой кашель. Считает себя больным в течение последних двух лет.

По данным ЭхоКГ: аортальная регургитация 1 степени. ЛП расширено. ЛЖ не расширен. Нарушение локальной сократимости

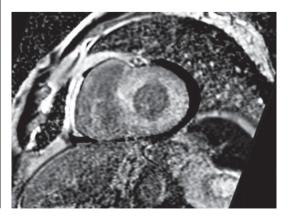


Рисунок 2. Преконтрастная Т1-релаксометрия (Т1-Марріпд): диффузное повышение значения времени нативной Т1-релаксации миокарда левого желудочка 1130—1205 мсек

Figure 2.
Precontrast T1 relaxometry (T1-Mapping): diffuse increase in the value of the native T1 relaxation time of the left ventricle myocardium 1130–1205 ms

Рисунок 3. Отсроченное накопление контрастного вещества (LGE): диффузное интрамиокардиальное накопление контрастного вещества полисегментарно в миокарде левого желудочка (до 50% левого желудочка)

Figure 3.
Delayed enhancement (DE): diffuse intramyocardial DE in a polysegmental in the left ventricle myocardium (fibrosis of up to 50% of the left ventricle)

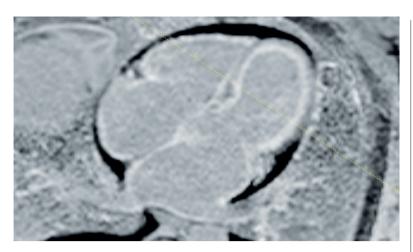
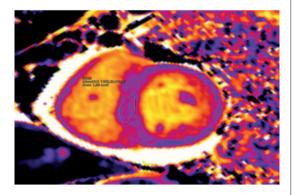



Рисунок 4. Отсроченное накопление контрастного вещества (LGE): диффузное субэндокардиальное накопление контрастного вещества в миокарде левого желудочка, правого желудочка (до 75% в левом желудочке, до 100% в правом желудочке), диффузное накопление контрастного вещества стенками предсердий

Figure 4. Delayed enhancement (DE): diffuse subendocardial LGE in the left ventricle, right ventricle myocardium (fibrosis of up to 50% of the left ventricle and up to 100% of the right ventricle), diffuse DE by the walls of the atria

Рисунок 5. Преконтрастная Т1-релаксометрия (Т1-Марріпд): диффузное повышение значения времени нативной Т1-релаксации миокарда левого желудочка до 1168 мсек

Figure 5.
Precontrast T1 relaxometry
(T1-Mapping): diffuse
increase in the value
of the native T1 relaxation
time of the left ventricle
myocardium to 1168 ms

миокарда ЛЖ с выраженным снижением ФВ до 48% (Sympson). Нарушение диастолической функции ЛЖ по 3 типу. Митральная регургитация 2–3 степени. ПП расширено. ПЖ не расширен. Фракция изменения площади ПЖ = 37% (норма 35%). Трикуспидальная регургитация 2–3 степени. Признаки легочной гипертензии. Выпот в полости перикарда малого объема. Выпот в плевральных полостях: слева – до 700 мл, справа – до 500 мл.

На электрокардиограмме ритм синусовый, средняя частота сердечных сокращений 82 уд/мин.

REFERENCES

- Oda S., Kidoh M., Nagayama Y. et al. Trends in Diagnostic Imaging of Cardiac Amyloidosis: Emerging Knowledge and Concepts. *RadioGraphics*, 2020, vol. 40, pp. 961–981. doi: org/10.1148/rg.2020190069.
- Tereshchenko S.N., Zhirov I.V., Moiseeva O.M. et al. Practical guidelines for the diagnosis and treatment of transthyretin amyloid cardiomyopathy (ATTR-CM or transthyretin cardiac amyloidosis). *Terapevticheskii arkhiv*, 2022, vol 94(4), pp. 584–595. doi: 10.26442/00403660.2022.04.201465. (in Russian).
- Baker K.R. Light Chain Amyloidosis: Epidemiology, Staging, and Prognostication. Methodist Debakey. Cardiovasc J. 2022, vol. 18(2), pp. 27–35. doi: 10.14797/mdcvj.1070.

На рентгенограмме органов грудной клетки выявлено нарушение гемодинамики в малом круге кровообращения 2 степени, расширение тени сердца, двусторонний гидроторакс.

Данные коронароангиографии: коронарные артерии диффузно атеросклеротически изменены без значимого стенозирования.

На МРТ сердца: снижение локальной и глобальной сократимости миокарда ЛЖ, диффузный фиброз миокарда ЛЖ, ПЖ неишемического характера, фиброз стенок предсердий (рисунок 4), повышение значений нативного Т1-маппинга (рисунок 5), повышение значения ECV (внеклеточного объёма) миокарда ЛЖ до 61%, гипертрофия миокарда ЛЖ (индекс массы миокарда 61 г/м²), выпот в плевральных полостях, полости перикарда.

Патогистологическое исследование фрагмента слизистой щеки: имеет место периколлагеновый амилоидоз. Требует типирования амилоида при иммуногистохимическом исследовании.

Иммунофиксация белков сыворотки крови: в исследуемом материале в центральной области бета-зоны обнаружен моноклональный компонент, представленный легкими цепями, лямбда (свободными?), вклад которого ориентировочно составляет 3,6% (2,0 г/л) от общего белка сыворотки; в образце присутствуют и поликлональные иммуноглобулины.

Анализ на TTR-амилоидоз (ген TTR): отрицательный.

В общем анализе крови изменений не выявлено, в моче обнаружены глюкоза, эритроциты, белок (200 нг/мл). Функция почек не нарушена (скорость клубочковой фильтрации в пределах нормы); повышен уровень лактатдегидрогеназы 244 ед/л. Уровень тропонина I при поступлении – 46 нг/л (норма до 29 нг/л), в динамике – 65,9 нг/л. Резко повышен уровень натрийуретического пептида (NT-proBNP) (7857 пг/мл и в динамике 11522 пг/мл).

Учитывая клинико-лабораторные данные, данные биопсии и МРТ сердца был выставлен клинический диагноз: Первичный системный амилоидоз (AL-амилоидоз) с поражением почек, сердца.

Пациенту назначена соответствующая медикаментозная терапия.

Конфликт интересов: не заявлен. **Conflict of interest:** nothing to declare.

- Dorbala S., Ando Y., Bokhari S., et al. ASNC/AHA/ASE/EANM/ HFSA/ISA/SCMR/ SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2— evidence base and standardized methods of imaging. J Nucl Cardiol, 2019, vol. 26(6), pp. 2065—2123. doi:10.1007/s12350-019-01760-6.
- Garcia-Pavia P., Rapezzi C., Adler Y. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 2021, vol. 42(16), pp 1554—1568. doi: 10.1093/eurhearti/ehab072.
- Dorbala S., Cuddy S., Falk R.H. How to Image Cardiac Amyloidosis: A Practical Approach. JACC Cardiovasc Imaging, 2020, vol. 13(6), pp. 1368

 —1383. doi: 10.1016/j.jcmg.2019.07.015.

Поступила 22.01.2025