МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА БИОЛОГИИ

В. Э. БУТВИЛОВСКИЙ, В. В. ДАВЫДОВ, В. В. ГРИГОРОВИЧ

МЕДИЦИНСКАЯ БИОЛОГИЯ

Практикум для иностранных студентов, обучающихся по специальности «Стоматология»

3-е издание, исправленное и дополненное

Минск БГМУ 2025

УДК 57:61(076.5)(075.8) ББК 28.70я73 Б93

Рекомендовано Научно-методическим советом университета в качестве практикума 18.12.2024 г., протокол № 4

Рецензенты: канд. биол. наук, доц. А. В. Колб; каф. биоорганической химии

Бутвиловский, В. Э.

Б93 Медицинская биология : практикум для иностранных студентов, обучающихся по специальности «Стоматология» / В. Э. Бутвиловский, В. В. Давыдов, В. В. Григорович. — 3-е изд., испр. и доп. — Минск : БГМУ, 2025. — 107 с.

ISBN 978-985-21-1805-7.

Включены контрольные вопросы 19 тем практических занятий; термины и понятия; задачи; схемы биологических процессов; рисунки изучаемых объектов и препаратов; экзаменационные вопросы. Первое издание вышло в 2023 году. В данном издании переработаны и дополнены контрольные вопросы и задачи. Добавлены требования кафедры к студентам, представлен список лауреатов Нобелевской премии по медицине и физиологии, а также бланки для выполнения заданий по практическим навыкам

Предназначен для студентов 1-го курса медицинского факультета иностранных учащихся, обучающихся по специальности «Стоматология».

УДК 57:61(076.5)(075.8) ББК 28.70я73

ISBN 978-985-21-1805-7

- © Бутвиловский В. Э., Давыдов В. В., Григорович В. В., 2025
- © УО «Белорусский государственный медицинский университет», 2025

УЧЕБНО-УЧЕТНАЯ КАРТА

Студента	курса	гn.		(ФИО)
Студонта	. KJ P • • _	· P ·	 	(,

№ заня- тия	Тема практического занятия	Итоговая аттестация	
1.	Медицинская биология как наука, ее роль в подготовке врача. Предмет, задачи и методы цитологии	1. НИРС	
2.	Структурно-функциональная организация клетки. Организация потока вещества и энергии в клетке		
3.	Структурная организация генома	2. УИРС	
4.	Клеточный цикл		
5.	Поток генетической информации в клетке	3. Практический навык № 1	
6.	Регуляция экспрессии генов у прокариот и эукариот		
7.	Геномика. Методы изучения ДНК	4. Практический навык № 2	
8.	Генетическая инженерия		
9.	Закономерности наследования признаков. Взаимодействие генов	5. Коллоквиум	
10.	Сцепление генов. Биология и генетика пола	6. Средний балл	
11.	Изменчивость. Мутагенез. Канцерогенез	7. Рейтинг	
12.	Генетика популяций	8. Бонус за НИРС	
13.	Генетика человека		
14.	Итоговое занятие по молекулярной биологии и генетике	9. Допуск к экзамену	
15.	Размножение организмов		
16.	Генетические основы онтогенеза	Дата «»202 г.	
17.	Основы общей паразитологии		
18.	Основы частной паразитологии (часть 1)		
19.	Основы частной паразитологии (часть 2)		

ВВЕДЕНИЕ

Практикум разработан на основе учебной программы дисциплины «Медицинская биология и общая генетика» для студентов, обучающихся по специальности «Стоматология», и предназначен для самостоятельной работы иностранных студентов при подготовке к практическим занятиям и выполнения практической работы на занятиях.

Издание содержит учебно-учетную карту, отражающую план занятий на весь курс обучения, успеваемость студента и его исследовательскую работу на кафедре. Далее следуют требования, предъявляемые кафедрой к студентам, критерии оценки, информация о лауреатах Нобелевской премии в области биологии (физиологии и медицины).

Основная часть — это методические разработки к каждой теме практических занятий, включающие цель занятия, перечень контрольных вопросов, основные термины и понятия, закрытые и открытые тестовые задания и практическую работу. В зависимости от темы занятия практическая работа может состоять из набора схем и рисунков, на которые нужно нанести обозначения, заполняемых таблиц, задач для решения и др.

Подготовку к практическому занятию студент должен начинать с изучения теоретического материала соответственно контрольным вопросам данной темы, используя учебник или учебно-методические пособия, а также конспект лекции. Затем студент выполняет тесты на сайте http://etest.bsmu.by.

Изучив материал, студент заполняет раздел «термины» и выполняет тест (задания закрытого и открытого типа) — это домашняя работа, которая необходима для закрепления знаний и самоконтроля. Данный раздел работы проверяется преподавателем в ходе опроса. Раздел «Практическая работа» — конечный этап занятия; он выполняется в аудитории под контролем преподавателя.

В издание включены вопросы к итоговому занятию «Молекулярная биология и генетика». Завершает практикум перечень экзаменационных вопросов.

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ КАФЕДРОЙ БИОЛОГИИ К СТУДЕНТАМ

- **1.** Соблюдать правила техники безопасности в аудиториях кафедры (инструктаж по технике безопасности проведен), выполнять правила внутреннего распорядка УО «БГМУ».
 - 2. На практические занятия приходить без опозданий, согласно расписанию. Опоздавшие студенты на практические занятия не допускаются.
- **3.** На практических занятиях студенты должны иметь **халаты, практикумы, цветные карандаши.** Студенты без халатов и практикумов на практические занятия не допускаются.
- **4.** К каждому занятию студент обязан пройти 3 теста для самоподготовки и контроля знаний (входной, обучающий и контролирующий) на http://etest.bsmu.by.
- **5.** Пропущенные занятия должны быть отработаны в течение **2 недель после пропуска.** Студенты, не отработавшие в течение 2 недель пропущенные практические занятия, к последующим занятиям, итоговому занятию без разрешения декана факультета **не допускаются.**
- **6.** Средний балл академической успеваемости за семестр по решению заседания кафедры для отдельных студентов может быть увеличен, в случае их активного участия в работе CHO (бонус за НИРС, согласно решению кафедры).
- 7. На кафедре используется накопительный принцип выставления итоговой оценки по дисциплине. Итоговая оценка выставляется на основе суммирования оценок, полученных студентом на коллоквиуме (итоговом занятии) (доля этой оценки 10 %), оценок 2 практических навыков (доля этих оценок 20 %) (среднего балла успеваемости (доля этой оценки 10 %) и экзаменационной оценки (60 %).

Критерии оценки результатов учебной деятельности обучающихся в БГМУ по десятибалльной шкале

10 (десять) баллов, зачтено:

систематизированные, глубокие и полные знания по всем разделам учебной программы по учебной дисциплине, а также по основным вопросам, выходящим за ее пределы;

точное использование научной терминологии (в том числе на иностранном языке), грамотное, логически правильное изложение ответа на вопросы;

безупречное владение инструментарием учебной дисциплины, умение эффективно использовать его в постановке и решении научных и профессиональных задач;

выраженная способность самостоятельно и творчески решать сложные проблемы в нестандартной ситуации;

полное и глубокое усвоение основной, и дополнительной литературы, по изучаемой учебной дисциплине;

умение свободно ориентироваться в теориях, концепциях и направлениях по изучаемой учебной дисциплине и давать им аналитическую оценку;

творческая самостоятельная работа на практических, лабораторных занятиях, активное творческое участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

9 (девять) баллов, зачтено:

систематизированные, глубокие и полные знания по всем разделам учебной программы по учебной дисциплине;

точное использование научной терминологии (в том числе на иностранном языке), грамотное, логически правильное изложение ответа на вопросы;

владение инструментарием учебной дисциплины, умение эффективно его использовать в постановке и решении научных и профессиональных задач;

способность самостоятельно и творчески решать сложные проблемы в нестандартной ситуации в рамках учебной программы;

полное усвоение основной и дополнительной литературы, рекомендованной учебной программой по учебной дисциплине;

умение ориентироваться в теориях, концепциях и направлениях по изучаемой учебной дисциплине и давать им аналитическую оценку;

систематическая, активная самостоятельная работа на практических, лабораторных занятиях, творческое участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

8 (восемь) баллов, зачтено:

систематизированные, глубокие и полные знания по всем разделам учебной программы по учебной дисциплине;

использование научной терминологии (в том числе на иностранном языке), грамотное, логически правильное изложение ответа на вопросы, умение делать обоснованные выводы и обобщения;

владение инструментарием учебной дисциплины (методами комплексного анализа, техникой информационных технологий), умение его использовать в решении научных и профессиональных задач;

способность самостоятельно решать сложные проблемы в рамках учебной программы по учебной дисциплине;

усвоение основной и дополнительной литературы, рекомендованной учебной программой по учебной дисциплине;

умение ориентироваться в теориях, концепциях и направлениях по изучаемой учебной дисциплине и давать им аналитическую оценку;

активная самостоятельная работа на практических, лабораторных занятиях, систематическое участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

7 (семь) баллов, зачтено:

систематизированные, глубокие и полные знания по всем разделам учебной программы по учебной дисциплине;

использование научной терминологии (в том числе на иностранном языке), грамотное, логически правильное изложение ответа на вопросы, умение делать обоснованные выводы и обобщения;

владение инструментарием учебной дисциплины, умение его использовать в постановке и решении научных и профессиональных задач;

свободное владение типовыми решениями в рамках учебной программы по учебной дисциплине;

усвоение основной и дополнительной литературы, рекомендованной учебной программой по учебной дисциплине;

умение ориентироваться в основных теориях, концепциях и направлениях по изучаемой учебной дисциплине и давать им аналитическую оценку;

самостоятельная работа на практических, лабораторных занятиях, участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

6 (шесть) баллов, зачтено:

достаточно полные и систематизированные знания в объеме учебной программы по учебной дисциплине;

использование необходимой научной терминологии, грамотное, логически правильное изложение ответа на вопросы, умение делать обобщения и обоснованные выводы;

владение инструментарием учебной дисциплины, умение его использовать в решении учебных и профессиональных задач;

способность самостоятельно применять типовые решения в рамках учебной программы по учебной дисциплине;

усвоение основной литературы, рекомендованной учебной программой;

умение ориентироваться в базовых теориях, концепциях и направлениях по изучаемой дисциплине и давать им сравнительную оценку;

активная самостоятельная работа на практических, лабораторных занятиях, периодическое участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

5 (пять) баллов, зачтено:

достаточные знания в объеме учебной программы по учебной дисциплине; использование научной терминологии, грамотное, логически правильное изложение ответа на вопросы, умение делать выводы;

владение инструментарием учебной дисциплины, умение его использовать в решении учебных и профессиональных задач;

способность самостоятельно применять типовые решения в рамках учебной программы по учебной дисциплине;

усвоение основной литературы, рекомендованной учебной программой;

умение ориентироваться в базовых теориях, концепциях и направлениях по изучаемой учебной дисциплине и давать им сравнительную оценку;

самостоятельная работа на практических занятиях, фрагментарное участие в групповых обсуждениях, достаточный уровень культуры исполнения заданий.

4 (четыре) балла, зачтено:

достаточный объем знаний в рамках образовательного стандарта высшего образования;

усвоение основной литературы, рекомендованной учебной программой; использование научной терминологии, логическое изложение ответа на вопросы, умение делать выводы без существенных ошибок;

владение инструментарием учебной дисциплины, умение его использовать в решении стандартных (типовых) задач;

умение под руководством преподавателя решать стандартные (типовые) задачи; умение ориентироваться в основных теориях, концепциях и направлениях по

умение ориентироваться в основных теориях, концепциях и направлизучаемой учебной дисциплине и давать им оценку;

работа под руководством преподавателя на практических, лабораторных занятиях, допустимый уровень культуры исполнения заданий.

3 (три) балла, не зачтено:

недостаточно полный объем знаний в рамках образовательного стандарта высшего образования;

знание части основной литературы, рекомендованной учебной программой по учебной дисциплине;

использование научной терминологии, изложение ответа на вопросы с существенными, логическими ошибками;

слабое владение инструментарием учебной дисциплины, некомпетентность в решении стандартных (типовых) задач;

неумение ориентироваться в основных теориях, концепциях и направлениях изучаемой учебной дисциплины;

пассивность на практических и лабораторных занятиях, низкий уровень культуры исполнения заданий.

2 (два) балла, не зачтено:

фрагментарные знания в рамках образовательного стандарта высшего образования:

знания отдельных литературных источников, рекомендованных учебной программой по учебной дисциплине;

неумение использовать научную терминологию учебной дисциплины, наличие в ответе грубых, логических ошибок;

пассивность на практических и лабораторных занятиях, низкий уровень культуры исполнения заданий.

1 (один) балл, не зачтено:

отсутствие знаний и (компетенций) в рамках образовательного стандарта высшего образования, отказ от ответа, неявка на аттестацию без уважительной причины.

Постановление Министерства образования Республики Беларусь 29.05.2012 № 53 «Правила проведения аттестации студентов, курсантов, слушателей при освоении содержания образовательных программ высшего образования».

	ЛАУРЕАТЫ НОБЕЛЕВСКОЙ ПРЕМИИ ПО ФИЗИОЛОГИИ И МЕДИЦИНЕ				
Год	Имя	Тема			
1901	Эмиль Адольф фон Беринг	«За работу по сывороточной терапии, за ее применение при лечении дифтерии, что открыло новые пути в медицинской науке и дало в руки врачей оружие против болезни и смерти»			
1902	Рональд Росс	«За работу по малярии, в которой он показал, как возбудитель попадает в организм, и тем самым заложил основу для разработки методов борьбы с малярией»			
1903	Нильс Рюберг Финзен	«За лечение волчанки с помощью концентрированного светового излучения»			
1904	И. П. Павлов	«За работу по физиологии пищеварения»			
1905	Роберт Кох	«За исследования и открытия, касающиеся лечения туберкулеза»			
1906	К. Гольджи, С. Рамон-и-Кахаль	«В знак признания трудов о структуре нервной системы»			
1907	Шарль Луи Альфонс Лаверан	«За исследование роли простейших в заболеваниях»			
1908	И. И. Мечников, Пауль Эрлих	«За труды по иммунитету»			
1909	Эмиль Теодор Кохер	«За работы в области физиологии, патологии и хирургии щитовидной железы»			
1910	Альбрехт Коссель	«За вклад в изучение химии клетки, внесенный исследованиями белков, включая нуклеиновые вещества»			
1911	Альвар Гульстранд	«За работу по диоптрике глаза»			
1912					
1913					
1914	Роберт Барани	«За работы по физиологии и патологии вестибулярного аппарата»			
1915		Премия не присуждалась			
1916		Премия не присуждалась			
1917		Премия не присуждалась			
1918		Премия не присуждалась			
1919	Жюль Борде	«За открытия, связанные с иммунитетом»			
1920	Август Крог	«За открытие механизма регуляции просвета капилляров»			
1921		Премия не присуждалась			
1922	Арчибалд Хилл Отто Мейергоф	«За открытия в области теплообразования в мышце». «За открытие взаимосвязи между поглощением кислорода и метаболизмом молочной кислоты в мышце»			
1923	Ф. Бантинг, Джон Маклеод	«За открытие инсулина»			
1924	Виллем Эйнтховен	«За открытие механизма электрокардиограммы»			
1925		Премия не присуждалась			
1926	Йоханнес Фибигер	«За открытие карциномы, вызываемой Spiroptera»			
1927	Юлиус Вагнер–Яурегг	«За открытие терапевтического эффекта заражения малярией при лечении прогрессивного паралича»			

Год	Имя	Тема
1928	Шарль Николь	«Установление переносчика сыпного тифа — платяной вши»
1929	Христиан Эйкман	«За вклад в открытие витаминов».
1929	Фредерик Гоуленд Хопкинс	«За открытие витаминов, стимулирующих процессы роста»
1930	Карл Ландштейнер	«За открытие групп крови человека»
1931	Отто Генрих Варбург	«За открытие природы и механизма действия дыхательного фермента»
1932	Ч. Скотт Шеррингтон, Э. Дуглас Эдриан	«За открытия, касающиеся функций нейронов»
1933	Томас Хант Морган	«За открытия, связанные с ролью хромосом в наследственности»
1934	Дж. Уипл, Дж. Майнот, У. Мёрфи	«За открытия, связанные с применением печени в лечении пернициозной анемии»
1935	Ханс Шпеман	«За открытие организующих эффектов в эмбриональном развитии»
1936	Генри Дейл, Отто Лёви	«За открытия, связанные с химической передачей нервных импульсов»
1937	Альберт Сент-Дьёрди	«За открытия в области процессов биологического окисления, связанные в особенности с изучением
1937	Альоерт Сент-Дьерди	витамина С и катализа фумаровой кислоты»
1938	Корней Хейманс	«За открытие роли синусного и аортального механизмов в регуляции дыхания»
1939	Герхард Домагк	«За открытие антибактериального эффекта пронтозила»
1940		Премия не присуждалась
1941	Премия не присуждалась	
1942	Премия не присуждалась	
1943	Хенрик Карл Петер Дам	«За открытие витамина К».
	Эдуард Адальберт Дойзи	«За открытие химической структуры витамина К»
1944	Дж. Эрлангер, Г. Спенсер Гассер	«За открытия высокодифференцированных функций отдельных нервных волокон»
1945	А. Флеминг, Э. Борис Чейн, X. Уолтер Флори	«За открытие пенициллина и его действия при различных инфекционных болезнях»
1946	Герман Джозеф Мёллер	«За открытие появления мутаций под влиянием рентгеновского облучения»
1947	К. Фердинанд Кори, Г. Тереза Кори	«За открытие каталитического превращения гликогена».
	Бернардо Альберто Усай	«За открытие роли гормонов передней доли гипофиза в метаболизме глюкозы»
1948	Пауль Герман Мюллер	«За открытие высокой эффективности ДДТ как контактного яда»
1949	Уолтер Гесс	«За открытие роли промежуточного мозга как координатора активности внутренних органов».
	Эгаш Мониш	«За открытие терапевтического действия лейкотомии при некоторых психических заболеваниях»
1950	Э. Кендалл, Т. Рейхштейн, Ф. Хенч	«За открытия структуры и биологических эффектов гормонов коры надпочечников»
1951	Макс Тейлер	«За открытия, связанные с желтой лихорадкой, и борьбу с ней»
1952	Зельман Ваксман	«За открытие стрептомицина, первого антибиотика, эффективного при лечении туберкулеза»
1953	Ханс Адольф Кребс	«За открытие цикла лимонной кислоты».
1755	Фриц Альберт Липман	«За открытие кофермента А и его значения для промежуточных стадий метаболизма»

Год	Имя	Тема
1954	Д. Эндерс, Т. Уэллер, Ф. Роббинс	«За открытие способности вируса полиомиелита расти в культурах различных тканей»
1955	Хуго Теорелль	«За открытия природы и механизма действия окислительных ферментов»
1956	А. Курнан, В. Форсман, Д. Ричардс	«За открытия катетеризации сердца и патологических изменений в системе кровообращения»
1957	Даниеле Бове	«За открытия синтетических соединений, блокирующих действие некоторых веществ организма, и за
1)31		обнаружение их действия на сосудистую систему и мышцы»
1958	Дж. Бидл, Э. Тейтем	«За открытия роли генов в специфических биохимических процессах»
	Дж. Ледерберг	«За открытия генетической рекомбинации и организации генетического материала у бактерий»
1959	Северо Очоа, А. Корнберг	«За открытие механизмов биологического синтеза РНК и ДНК»
1960	М. Бёрнет, П. Брайан Медавар	«За открытие искусственной иммунной толерантности (переносимости)»
1961	Георг Бекеши	«За открытие физических механизмов восприятия раздражения улиткой»
1962	Ф. Крик, Дж. Уотсон, М. Уилкинс	«За открытия молекулярной структуры нуклеиновых кислот и их значения для передачи информации
1702	•	в живых системах»
1963	Дж. Эклс, А. Ходжкин, Э. Филдинг	«За открытия ионных механизмов возбуждения и торможения в периферических и центральных участ-
	Хаксли	ках нервных клеток»
1964	Конрад Блох, Феодор Линен	«За открытия механизмов и регуляции обмена холестерина и жирных кислот»
1965	Ф. Жакоб, Андре Львов, Ж. Моно	«За открытия, касающиеся генетического контроля синтеза ферментов и вирусов»
1966	Фрэнсис Пейтон Роус	«За открытие онкогенных вирусов».
1,00	Чарлз Брентон Хаггинс	«За открытия, касающиеся гормонального лечения рака предстательной железы»
1967	Рагнар Гранит, Кеффер Хартлайн,	«За открытия, связанные с первичными физиологическими и химическими зрительными процессами,
	Джордж Уолд	происходящими в глазу»
1968	Р. Холли, Х. Гобинд Корана, М. Нирен-	«За расшифровку генетического кода и его роли в синтезе белков»
	берг	1 1 1
1969	М. Дельбрюк, А. Херши, С. Лурия	«За открытия, касающиеся механизма репликации и генетической структуры вирусов»
1970	Бернард Кац, Ульф фон Ойлер, Джу-	«За открытия, касающиеся гуморальных передатчиков в нервных окончаниях и механизмов их хране-
	лиус Аксельрод	ния, выделения и инактивации»
1971	Эрл Сазерленд	«За открытия, касающиеся механизмов действия гормонов»
1972	Джералд Эдельман, Родни Портер	«За открытия, касающиеся химической структуры антител»
1973	К. фон Фриш, К. Лоренц, Н. Тинберген	«За открытия моделей индивидуального и группового поведения животных»
1974	А. Клод, Кр. де Дюв, Дж. Паладе	«За открытия, касающиеся структурной и функциональной организации клетки»
1975	Д. Балтимор, Р. Дульбекко, Х. Темин	«За открытия взаимодействия между онкогенными вирусами и генетическим материалом клетки»
1976	Барух Бламберг, Карлтон Гайдузек	«За открытия новых механизмов происхождения и распространения инфекционных заболеваний»
1977	Роже Гиймен, Эндрю Шалли	«За открытия, связанные с секрецией пептидных гормонов мозга».
	Розалин Сасмен Ялоу	«За развитие радиоиммунологических методов определения пептидных гормонов»

Год	Имя	Тема
1978	В. Арбер, Д. Натанс, Х. Смит	«За обнаружение рестрикционных ферментов и их применение в молекулярной генетике»
1979	Аллан Кормак, Годфри Хаунсфилд	«За разработку компьютерной томографии»
1980	Б. Бенасерраф, Ж. Доссе, Дж. Снелл	«За открытия генетически структур на клеточной поверхности, регулирующих иммунные реакции»
1981	Роджер Сперри	«За открытия, касающиеся функциональной специализации полушарий головного мозга».
1901	Д. Хьюбел, Торстен Визел	«За открытия, касающиеся принципов переработки информации в нейронных структурах»
1982	С. Бергстрём, Б. Самуэльсон, Дж. Вейн	«За открытия простагландинов и близких к ним биологически активных веществ»
1983	Барбара Мак-Клинток	«За открытие транспозирующих генетических систем»
1984	Н. Ерне, Г. Кёлер, С. Мильштейн	«За открытие и разработку принципов выработки моноклональных антител»
1985	Майкл Браун, Джозеф Голдштейн	«За открытия обмена холестерина и лечения нарушений уровня холестерина в крови»
1986	С. Коэн, Рита Леви–Монтальчини	«За открытия, имеющие значение для раскрытия механизмов регуляции роста клеток и органов»
1987	Судзуми Тонегава	«За открытие генетического принципа для генерации разновидности антител»
1988	Дж. Блэк, Г. Элайон, Дж. Хитчингс	«За открытие важных принципов лекарственной терапии»
1989	Дж. Майкл Бишоп, Харолд Вармус	«За открытие клеточной природы ретровирусных онкогенов»
1990	Дж. Марри, Эдуард Донналл Томас	«За открытия, касающиеся трансплантации органов и клеток при лечении болезней»
1991	Эрвин Неэр, Берт Закман	«За открытия, касающиеся функций одиночных ионных каналов в клетках»
1992	Эдмонд Фишер, Эдвин Кребс	«За открытия обратимой белковой фосфориляции как механизма биологической регуляции»
1993	Ричард Робертс, Филлип Шарп	«За открытие, независимо друг от друга, прерывистой структуры гена»
1994	Альфред Гилман, Мартин Родбелл	«За открытие G-протеинов и роли этих протеинов в сигнальной трансдукции в клетке»
1995	Э. Льюис, К. Нюсляйн–Фольхард, Э. Вишаус	«За открытия генетического контроля на ранней стадии эмбрионального развития»
1996	П. Доэрти, Р. Цинкернагель	«За открытия способности иммунной системы человека выявлять клетки, пораженные вирусом»
1997	Стенли Прузинер	«За открытие прионов, нового биологического принципа инфекции»
1998	Р. Ферчготт, Л. Игнарро, Ф. Мурад	«За открытие роли оксида азота как сигнальной молекулы в регуляции сердечно-сосудистой системы»
1999	Гюнтер Блобель	«За обнаружение в белковых молекулах сигнальных аминокислот последовательностей, ответственных
1999	т юнтер влюсель	за адресный транспорт белков в клетке»
	Арвид Карлссон	«За открытие нейромедиатора допамина и его роли для контроля двигательных функций у человека».
2000	Пол Грингард	«За открытие механизма действия допамина и других нейромедиаторов».
	Эрик Кандел	«За открытие молекулярных механизмов работы синапсов»
2001	Л. Хартвелл, Т. Хант, П. Нерс	«За открытие ключевых регуляторов клеточного цикла»
2002	С. Бреннер, Р. Хорвиц, Дж. Салстон	«За открытия в области генетического регулирования развития человеческих органов»
2003	Пол Лотербур, Питер Мэнсфилд	«За изобретение метода магнитно-резонансной томографии»
2004	Ричард Эксел, Линда Бак	«За исследования обонятельных рецепторов и организации системы органов обоняния»
2005	Барри Маршалл и Робин Уоррен	«За изучение влияния бактерии Helicobacter pylori на возникновение гастрита и язвы желудка и двенадцатиперстной кишки»

Год	Имя	Тема
2006	Эндрю Файер и Крейг Мелло	«За открытие РНК-интерференции — эффекта гашения активности определенных генов»
2007	М. Капекки, О. Смитис и М. Эванс	«За «открытие принципов введения специфических генных модификаций в организм мышей посред-
	ŕ	ством эмбриональных стволовых клеток» (открытие метода нокаута генов)»
2008	Харалд цур Хаузен	«За открытие вируса папилломы шейки матки».
2000	Ф. Барре-Синусси и Люк Монтанье	«За открытие ВИЧ»
2009	Э. Блэкберн, К. Грейдер и Дж. Шостак	«За открытие того, как теломеры и теломераза защищают хромосомы от укорачивания при делении»
2010	Роберт Эдвардс	«За исследования проблем бесплодия и разработку метода экстракорпорального оплодотворения»
2011	Брюс Бойтлер, Жюль Хоффманн	«За открытие в области врожденного иммунитета».
2011	Ральф Штайнман	«За открытие роли дендритных клеток в приобретенном иммунитете»
2012	Джон Б. Гердон и Шинья Яманака	«За открытие индуцированных плюрипотентных стволовых клеток (иПСК)»
2013	Т. Зюдхоф, Р. Шекман, Дж. Ротман	«За исследование механизмов, регулирующих везикулярный транспорт»
2014	Дж. О'Киф, М. Мозер, Э. Мозер	«За открытие клеток навигационной системы мозга»
2015	У. Кембелл и С. Омура	«За лечение филяриатозов».
2015	Юю Ту	«За лечение малярии»
2016	Ёсинори Осуми	«За открытие аутофагии — процесса переработки и реутилизации клеточных компонентов»
2017	Джеффри Холл, Майкл Росбаш, Майкл Янг	«За открытия молекулярных механизмов, контролирующих циркадные ритмы»
2018	Джеймс Эллисон и Тасука Хондзё	«За новый метод иммунотерапии рака»
2019	Уильям Кэлин, Грегг Семенза, Питер	«За открытие механизмов, посредством которых клетки воспринимают доступность кислорода и адап-
2019	Рэтклифф	тируются к ней»
2020	Харви Джей Алтер, Майкл Хаутон, Чарльз Райс	«За открытие вируса гепатита С»
2021	Дэвид Джулиус, Ардем Патапутян	«За открытие рецепторов температуры и прикосновения»
2022	Сванте Паабо	«За открытия, связанные с геномами вымерших гоминид и эволюцией человека»
2023	Каталин Карико, Дрю Вайсман	«За открытия, касающиеся модификаций нуклеозидных оснований, которые позволили разработать эф-
	* * * * * * * * * * * * * * * * * * * *	фективные мРНК-вакцины против COVID-19»
2024	Виктор Эмброс, Гэри Равкан	«За открытие микроРНК и ее роли в посттранскрипционной регуляции генов»
2025		

Занятие № 1. Тема: МЕДИЦИНСКАЯ БИОЛОГИЯ КАК НАУКА, ЕЕ РОЛЬ В ПОДГОТОВКЕ ВРАЧА. «___»______202__г. ПРЕДМЕТ, ЗАДАЧИ И МЕТОДЫ ЦИТОЛОГИИ

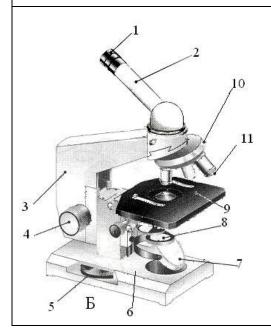
Цель занятия: изучить задачи биологии в подготовке врача, особенности человека как биологического и социального существа; ознакомиться с методами изучения клетки.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- **1.** Сущность жизни, роль белков и нуклеиновых кислот в организации живых систем.
- 2. Уровни организации живой материи.
- 3. Роль биологии в системе медицинского образования.
- 4. Человек как биологическое и социальное существо.
- 5. Клеточная теория.
- **6.** Предмет, задачи и методы цитологии (световая, электронная, люминесцентная микроскопия, гистохимический и иммуногистохимический, дифференциальное центрифугирование, авторадиография, морфометрия и др.).
- **7.** Метод световой микроскопии. Устройство светового микроскопа. Правила работы с микроскопом.
- 8. Вирусы. Прокариоты и эукариоты.

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

- 1. Вирион —
- 2. Жизнь —
- 3. Прокариоты —
- 4. Разрешающая способность микроскопа —
- 5. Цитология —
- 6. Эукариоты —


ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Основные задачи цитологии изучение: 1 способов передачи генетической информации, 2 строения тканей, 3 строения и функций ядра клетки, 4 деления клеток, 5 функций биологической мембраны и органелл: а) все перечисленные; б) 1, 3, 4, 5; в) 3, 4, 5; г) 2, 3, д) 3, 4.
- **2. Методы исследования в цитологии:** а) световая и электронная микроскопия и цитогенетический; б) авторадиография и дифференциальное центрифугирование; в) цитогенетический и микрохирургия; г) генеалогический и цитохимический; д) рентгеноструктурный анализ и близнецовый.
- **3.** Выделить отдельные компоненты клетки позволяют методы: а) световой и электронной микроскопии; б) гистохимический и биохимический; в) генеалогический и гибридологический; г) дифференциального центрифугирования; д) рентгеноструктурного анализа и авторадиографии.
- **4.** Признаки отряда Приматы у человека: а) наличие ногтей; б) бинокулярное зрение и наличие плаценты; в) волосяной покров; г) противопоставление большого пальца руки остальным; д) рука хватательного типа и дифференцированные зубы.
- **5.** Видовые признаки Человека разумного: а) высокая степень развития головного мозга; б) наличие мышления и сознания, прямохождение; в) наличие волосяного покрова и ногтей; г) рука хватательного типа и прямохождение; д) высокая степень противопоставления большого пальца руки.
- **6. Человек как биологическое существо характеризуется:** а) наследственностью и изменчивостью; б) общественным образом жизни; в) борьбой за существование; г) обменом веществ, мышлением и сознанием; д) наличием второй сигнальной системы.
- **7. Человек как социальное существо характеризуется:** а) наследственностью и изменчивостью, мышлением; б) наличием второй сигнальной системы и общественным характером труда; в) обменом веществ, ростом и развитием, способностью к труду; г) ростом и развитием, способностью к труду; д) общественным образом жизни и сознанием.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Свойство изменять параметры собственной жизнедеятельности в соответствии с изменением условий окружающей среды называется ...
- 2. Химический состав клеток и локализацию в них различных химических веществ изучают ... методом.
- **3.** Тончайшие структуры клеток вплоть до макромолекул изучают методом ... микроскопии.
- **4.** Химический состав клеток и химические реакции, протекающие в них, изучают ... методом.
- **5.** Выделять отдельные компоненты и структуры клеток для последующего изучения позволяет метод ... центрифугирования.
- 6. Человек разумный относится к семейству ...

Рис. 1. Устройство светового микроскопа БИОЛАМ:

1 — окуляр,

2 — тубус,

3 — тубусодержатель,

4 — макрометрический винт,

5 — микрометрический винт,

6 — подставка,

7 — зеркало,

8 — конденсор, ирисовая диафрагма и светофильтр,

9 — предметный столик,

10 — револьверное устройство,

11 — объектив

ПРАВИЛА РАБОТЫ С МИКРОСКОПОМ НА МАЛОМ УВЕЛИЧЕНИИ (7 × 8)

- 1. На рабочем месте микроскоп устанавливают колонкой к себе, а зеркалом (его плоской стороной) к источнику света; примерно на ширину ладони от края стола.
- 2. Вращая макрометрический винт, устанавливают объективы на 2–3 см от поверхности предметного столика.
- 3. Проверяют установку объектива *малого увеличения* $(8\times)$ «на щелчок»: он должен быть зафиксированным в положении напротив отверстия в предметном столике.
- 4. Перемещают конденсор в среднее положение и полностью открывают диафрагму.
- 5. Глядя в окуляр, направляют поверхность зеркала на источник света, чтобы осветить поле зрения. При правильно настроенном микроскопе поле зрения выглядит как равномерно и ярко светящийся круг.
- 6. Помещают микропрепарат на предметный столик *покровным стеклом вверх* (!).
- 7. Глядя со стороны (!), макрометрическим винтом опускают объектив до расстояния 0,5 см от поверхности микропрепарата.
- 8. Глядя в окуляр, и медленно вращая *макрометрический винт «на себя»* (!), получают изображение объекта; вращая в ту и другую стороны макровинт, добиваются его четкого изображения.
- 9. Изучают объект. Перемещение микропрепарата под объективом производят с помощью координатных винтов столика.

Примечания

- ✓ Покровное стекло микропрепарата часто загрязняется отпечатками пальцев и пылью, поэтому предварительно его рекомендуется протереть чистой мягкой тряпочкой.
- ✓ Фокусное расстояние объектива $8 \times$ составляет *примерно 1 см*. Если вы его «прошли», то п.п. 7 и 8 придется повторить.
- ✓ Если объект настолько мал, что его практически не видно, то сфокусировать оптику можно *на край покровного стекла*. Получив четкое изображение края стекла, далее перемещаются на рабочее поле в поисках объекта.

ПРАВИЛА РАБОТЫ С МИКРОСКОПОМ НА БОЛЬШОМ УВЕЛИЧЕНИИ (7 × 40)

- 1. Получают четкое изображение объекта на малом увеличении (см. выше).
- 2. Интересующий участок микропрепарата *центрируют* передвигают в центр поля зрения.
- 3. Поворотом револьвера переводят *до щелчка* объектив *большого увеличения* (40x), устанавливая его напротив микропрепарата.
- 4. Переводят конденсор в верхнее положение. Глядя в окуляр, слегка поворачивают макрометрический винт «на себя» (!) до появления изображения.
- 5. Для получения более четкого изображения используют микрометрический винт, вращая его в ту или другую сторону не более чем на полоборота.
- 6. Изучают интересующий участок микропрепарата.

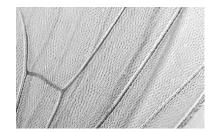
Примечания

- ✓ Фокусное расстояние объектива $40 \times$ составляет примерно 0.1–0.2 см, поэтому макрометрический винт необходимо вращать очень медленно и плавно. При необходимости повторной фокусировки, эту операцию проводят в такой последовательности:
- глядя сбоку, макрометрическим винтом аккуратно опускают объектив большого увеличения почти до касания поверхности покровного стекла; повторяют действия п.п. 5 и 6.
- ✓ Если объект плохо контрастируется, то для получения четкого изображения нужно прикрыть диафрагму в конденсоре или слегка его опустить.

ПРАВИЛА РАБОТЫ С ИММЕРСИОННЫМ ОБЪЕКТИВОМ (7 × 90)

- 1. На большом увеличении центрируют интересующий участок микропрепарата. При этом конденсор находится в крайнем верхнем положении, а зеркало направлено на источник света вогнутой стороной.
- 2. Поворотом револьвера смещают объектив большого увеличение в свободное (нефиксированное) состояние.
- 3. На покровное стекло микропрепарата наносят каплю иммерсионного масла.
- 4. Фиксируют иммерсионный объектив над объектом.
- 5. Наблюдая в окуляр, с помощью макро- и микрометрических винтов добиваются четкого изображения объекта.

ПРАКТИЧЕСКАЯ РАБОТА


Задание 1. Найдите соответствие между методом цитологии и его возможностями.

- 1. Удаление органелл из одной клетки и пересаживание в другую клетку.
- 2. Позволяет изучить распределение изучаемого вещества в исследуемом образце.
- 3. Разделение органелл клетки, выделение из клетки химических веществ с помощью центрифуги.
- 4. Исследование компонентов клетки с помощью микроскопа, действие которого основано на прохождение света через объект.
- 5. Изучение химического состава клеток и протекающих в них реакций.
- 6. Установление местонахождения макромолекул цитоплазмы с помощью специальных красителей, либо антител с красителями.
- 7. Получение информации о строении биологических молекул в их кристалле.
- 8. Анализ биологических объектов за счет их способности к флуоресценции при облучении светом.
- 9. Выращивание отдельных клеток многоклеточных организмов на питательных средах в стерильных условиях.
- 10. Исследование ультраструктур клетки с помощью микроскопа, действие которого основано на прохождении пучка электронов.
- 11. Получение объемного изображения исследуемого объекта.

- А. Световая микроскопия.
- Б. Просвечивающая электронная микроскопия.
- В. Дифференциальное центрифугирование.
- Г. Гистохимия и иммуногистохимия.
- Д. Рентгеноструктурный анализ (рентгеновская кристаллография).
- Е. Культура клеток.
- Ж. Микрургия.
- 3. Сканирующая электронная микроскопия.
- И. Биохимический.
- К. Авторадиография.
- Л. Флуоресцентная микроскопия.

1	2	3	4	5	6	7	8	9	10	11

Задание 2. Изучите микропрепараты, сделайте обозначения.

 $Puc.\ 2.\ Участок крыла мухи (7 <math>\times$ 8)

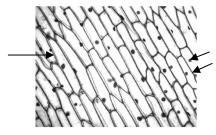


Рис. 3. Клетки кожицы лука (7 \times 8): 1 — оболочка; 2 — ядро; 3 — цитоплазма

 $Puc.\ 4$. Кровь лягушки (7×40) : 1 — оболочка; 2 — цитоплазма; 3 — ядро

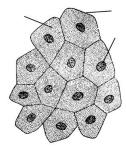


Рис. 5. Эпителий кожи лягушки (7×40) :1 — оболочка; 2 — цитоплазма;3 — ядро

Рис. 6. Чешуя крыла бабочки (7×40)

Задание 3. Сделайте подписи к рисункам.

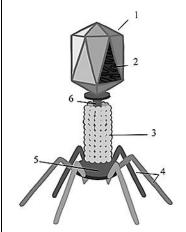


Рис. 7. Схема строения бактериофага:

- 1 2 —
- 3 —
- 1
- 5 —
- 6 —

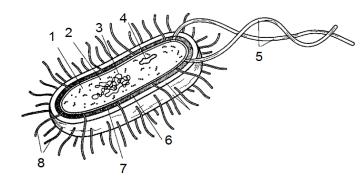


Рис. 8. Схема строения бактерии:

- _ 5 —
- 2 6
- ___ 8 __

Признак	Прокариоты	Эукариоты
Представители		
Наличие ядра (+/–)		
Наличие мембранных органелл (+/–)		
Наличие цитоплазмы (+/-)		
Особенности рибосом		
Наличие плазмалеммы (+/-)		
Особенности цитоскелета		
Особенности строения жгутиков		
Наличие и состав клеточной стенки		
Наличие слизистой капсулы (+/-)		
Многоклеточность		
Типичные размеры		
Особенности метаболизма		
Структурная организация ДНК		
Плоидность		
Способность к фагоцитозу (+/-)		
Основной тип деления клетки		
Половое размножение (+/-)		

Подпись преподавателя

Занятие № 2. Тема: СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ КЛЕТКИ. ОРГАНИЗАЦИЯ ПОТОКА ВЕЩЕСТВА И ЭНЕРГИИ В КЛЕТКЕ

« <u> </u>	202	Γ.
------------	-----	----

Цель занятия: изучить отличительные признаки про- и эукариотических клеток; анаболическую и катаболическую системы клетки; уметь читать электронограммы.

контрольные вопросы	4. Глиоксисомы —
 Модели элементарной биологической мембраны. Строение, свойства и функции плазмалеммы. Транспорт веществ через мембрану: пассивный транспорт (диффузия осмос, облегченная диффузия), активный транспорт (ионные каналы, и 	
функции, эндоцитоз, экзоцитоз). Ионные каналы и их функции. 4. Цитозоль. Цитоскелет: микротрубочки, промежуточные филаменть микрофиламенты. Внутриклеточный транспорт веществ. 5. Ассимиляция и диссимиляция. Пластический обмен в клетке. Рибосомы	6. Диссимиляция —
 Эндомембранная система клетки (мембрана ядра, ЭПС, КГ, лизосомь пероксисомы, эндосомы, везикулы). Характеристика этапов энергетического обмена в клетке. Митохондрии Ферментные системы митохондрий. 	7. Oovoo
8. Болезни человека, обусловленные нарушениями на клеточном уровн (лизосомные и пероксисомные).	8. Пероксисомы —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ 1. Ассимиляция —	9. Плазмалемма —
2. Гликокаликс —	10. Цитозоль —
3. Гликолиз —	11. Эндоцитоз —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1.** Свойства элементарной мембраны: а) пластичность; б) непроницаемость и текучесть; в) полупроницаемость; г) эластичность; д) способность самозамыкаться.
- **2.** Транспорт веществ в клетку с затратой энергии АТФ: а) поступление в клетку ионов по градиенту концентрации; б) фагоцитоз; в) пиноцитоз и диффузия; г) осмос и эндоцитоз; д) поступление в клетку веществ против градиента концентрации.
- **3.** Органеллы анаболической системы клетки: а) митохондрии и эндоплазматическая сеть; б) рибосомы и комплекс Гольджи; в) эндоплазматическая сеть; г) лизосомы и пероксисомы; д) глиоксисомы и рибосомы.
- **4. Органеллы катаболической системы клетки:** а) митохондрии; б) рибосомы, глиоксисомы и эндоплазматическая сеть; в) эндоплазматическая сеть и митохондрии; г) комплекс Гольджи и пероксисомы; д) пероксисомы и лизосомы.
- **5. Рибосомы располагаются:** а) на мембранах ЭПС и в гиалоплазме; б) в гиалоплазме и кариоплазме; в) на внутренней ядерной мембране и в хлоропластах; г) на наружной ядерной мембране и в митохондриях; д) в матриксе митохондрий и лизосомах.
- **6.** Функции агранулярной ЭПС: а) синтез белков; б) синтез ДНК и компартментализация; в) синтез жиров и углеводов; г) компартментализация и транспорт веществ; д) образование пероксисом и синтез РНК.
- **7.** Функции комплекса Гольджи: а) сортировка, упаковка и секреция веществ; б) образование комплексных соединений органических веществ и первичных лизосом; в) синтез АТФ, белков и глиоксисом; г) синтез цитоплазматических мембран; д) синтез белков и секреция веществ.
- **8.** Функции митохондрий: а) синтез специфических белков; б) расщепление белков до аминокислот; в) синтез моносахаридов и $AT\Phi$; г) синтез $AM\Phi$; д) расщепление органических соединений до H_2O и CO_2 .
- **9.** Анаэробный этап энергетического обмена протекает в: а) кишечнике; б) цитоплазме и митохондриях; в) цитоплазме и ЭПС; г) цитоплазме клеток; д) комплексе Гольджи и ядре клеток.
- **10. Аэробный этап энергетического обмена протекает в:** а) кишечнике; б) митохондриях; в) цитоплазме и ЭПС; г) цитоплазме и рибосомах; д) комплексе Гольджи и ядре клеток.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Разделение цитоплазмы мембранами на отсеки называется ...
- 2. Опорно-сократительный комплекс клетки представлен: промежуточными филаментами, микрофиламентами и ...
- 3. Выделение из клетки веществ, заключенных в мембрану, называется ...
- 4. Транспортную систему клетки образуют: ЭПС и ...
- 5. Пероксисомы образуются в...
- 6. Разрушение лизосомами собственных структур клетки называется ...
- 7. Реакции пластического обмена протекают в ... системе клетки.
- **8.** Органеллы животной клетки, содержащие генетический материал, называются ...
- 9. Расщепление полимеров до мономеров происходит на ... этапе энергетического обмена.
- 10. Конечным акцептором электронов в дыхательной цепи является ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите рисунок.

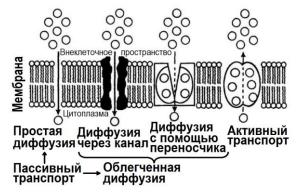
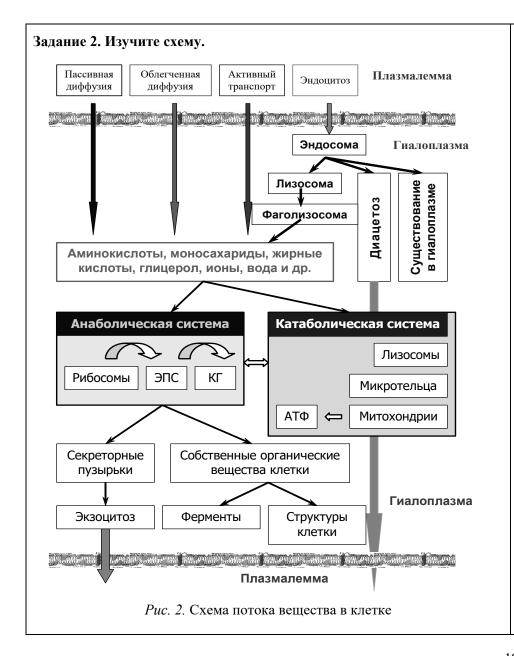
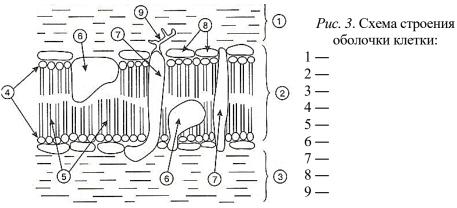




Рис. 1. Типы транспорта веществ через мембрану

Задание 3. Изучите схему, сделайте обозначения.

Задание 4. Обозначьте присутствие или отсутствие указанных в таблице структур у соответствующих органелл знаками «+» или «-».

Структура	ЭПС	Рибосомы	Комплекс Гольджи	Лизо- сомы	Митохон- дрии
Мембрана					
Цистерны					
2 мембраны					
Пузырьки					
Кристы					
Гидролазы					
АТФ-сомы					
Субъединицы					

Залание 5. Решите залачи.

Задача № 1. Участвуют ли митохондрии в биосинтезе белков?

Задача № 2. Взрослый человек не растет. Обязательно ли он должен получать с пищей белки или их можно заменить равноценным по калорийности количеством углеводов и жиров?

Задача № 3. Какие свойства мембраны объясняют ее участие в эндоцитозе?

Задача № 4. При беге со средней скоростью за 1 минуту мышцы ног расходуют примерно 24 кДж энергии. Определите, сколько потребуется граммов глюкозы при полном ее окислении для энергообеспечения 20 минут бега (М глюкозы = 180 г/Моль). В мышцах утилизация 1 Моль глюкозы позволяет создать 30 Моль АТФ; при окислении 1 Моль АТФ до АДФ высвобождается 30,5 кДж энергии.

Задача № 5. При некоторых заболеваниях в клетке накапливаются нерасщепленные вещества. С нарушением функций каких органелл это связано?

Задание 6. Изучите электронограммы, сделайте обозначения.

Рис. 4. Электронограмма элементарной мембраны:

1 — белковый слой;

2 — липидный слой

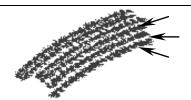


Рис. 5. Электронограмма гранулярной эндоплазматической сети: I — мембрана; 2 — канал;

3 — рибосомы

Рис. 6. АТФ-синтаза на кристах митохондрий:
 1 — внутренняя мембрана;
 2 — АТФ-синтаза

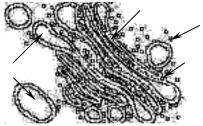


Рис. 7. Электронограмма комплекса Гольджи:

1 — мембрана; 2 — канал;3 — цистерна; 4 — лизосома;

5 — пузырек

Рис. 8. Электронограмма митохондрии: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — матрикс; 4 — кристы; 5 — рибосомы

Подпись преподавателя

Занятие № 3. Тема: СТРУКТУРНАЯ ОРГАНИЗАЦИЯ ГЕНОМА

«___»_____202__ г.

Цель занятия: изучить строение ядра клетки; хромосом, кариотип человека, уровни упаковки генетического материала.

контрольные вопросы	5. Нуклеоид —
 Доказательства роли ДНК в передаче наследственной информации. Строение и функции ДНК. Правила Чаргаффа. Организация наследственного материала у неклеточных и прокариотических форм жизни. Строение и функции ядра клетки. 	6. Нуклеосома —
5. Организация генетического материала эукариот (генный, хромосомный и геномный уровни).6. Упаковка генетического материала эукариот. Эухроматин и гетерохроматин.	7. Нуклеотид —
7. Строение метафазной хромосомы. Типы хромосом. Правила хромосом. 8. Кариотип и идиограмма. Классификации хромосом человека. 9. Плазмогены. Цитоплазматическая наследственность.	8. Плазмогены —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ 1. Гистоны —	9. Теломеры хромосом —
2. Идиограмма —	10. Трансдукция —
3. Кариотип —	11. Хроматин —
4. Ламины —	12. Центромера —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1. К группе В по Денверской классификации относятся хромосомы человека:** а) большие субметацентрические, ЦИ 24-30; б) малые субметацентрические, ЦИ 24-30; в) малые метацентрические, ЦИ 27-35; г) большие метацентрические, ЦИ 34; д) малые акроцентрические, спутничные.
- **2.** Структурные компоненты интерфазного ядра: а) кариолемма и строма; б) кариолимфа и граны, ядрышки; в) кариолимфа, хроматин и ядрышки; г) хроматин и тилакоиды; д) строма, кариолемма и хроматин.
- **3. Кариотип** это: а) набор хромосом соматической клетки; б) любой набор хромосом; в) диплоидный набор хромосом организма; г) совокупность генов в диплоидном наборе хромосом; д) набор генов половой клетки.
- **4.** Особенности генома митохондрий человека: а) транскрибируются обе цепочки, содержит гены цитохрома b; б) кольцевая молекула ДНК, содержащая около 16 500 пар нуклеотидов; в) кольцевая молекула ДНК, содержащая около 50 000 пар нуклеотидов, входят гены рРНК; г) содержит информацию о 22 различных тРНК, кольцевая молекула ДНК содержит 160 500 пар нуклеотидов; д) транскрибируется одна цепочка, входят гены рРНК.
- **5. Мономером молекулы ДНК является:** а) аминокислота; б) ген; в) кодон; г) нуклеотид; д) пара нуклеотидов.
- **6. Аденин комплементарен:** а) аденину и тимину; б) гуанину и урацилу; в) цитозину и тимину; г) тимину и урацилу; д) гуанину и цитозину.
- 7. Согласно одному из правил Чаргаффа, сумма $A + \Gamma$ равна сумме: а) A + T; б) $\coprod + T$; в) $\Gamma + T$; г) $A + \coprod$; д) $\Gamma + \coprod$.
- **8.** Для нуклеосомного уровня упаковки генетического материала характерно: а) укорочение нити ДНК в 20 раз; б) образование нитью ДНК 2-х витков вокруг белкового октамера; в) петли и изгибы нуклеосомной нити; г) диаметр нуклеосомной нити около 25 нм; д) укорочение нити ДНК в 5–7 раз.
- **9. Уровни организации генетического материала:** а) генный и геномный; б) хромосомный, клеточный и геномный; в) геномный и субклеточный; г) клеточный, организменный и генный; д) организменный и популяционный.
- **10. Идиограмма это:** а) несистематизированный кариотип; б) систематизированный кариотип; в) порядок расположения генов в хромосоме; г) порядок расположения нуклеотидов в гене; д) расположение хромосом кариотипа по мере убывания их величины.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Ядерную пластинку образуют преимущественно белки ...
- **2.** В области первичной перетяжки метафазной хромосомы располагается ..., к которому прикрепляются нити веретена деления.
- **3.** Участок молекулы ДНК в области вторичной перетяжки спутничных хромосом называется ядрышковый ...
- 4. В состав хроматина входят: гистоновые и негистоновые белки и ...
- 5. Оболочка ядра клетки называется ...
- **6.** Запись локализации гена, который находится в первой полосе второго района длинного плеча 17-й хромосомы: ...
- 7. Пиримидиновые основания ДНК ... и ...
- 8. Пуриновые основания ДНК ... и ...
- **9.** На первом уровне упаковки генетического материала длина молекулы ДНК уменьшается в ... раз.
- 10. Гистоновый октамер вместе с прикрепленным к нему участком ДНК называется ...
- **11.** Уменьшение длины ДНК в 10–20 раз при упаковке происходит на ... уровне.
- **12.** В результате всех уровней упаковки молекула ДНП укорачивается в ... раз.
- **13.** Отношение (в процентах) длины короткого плеча к длине всей хромосомы это ... индекс.
- 14. Болезнь Лебера обусловлена мутациями генов ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите рисунки, сделайте обозначения.

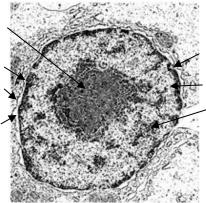
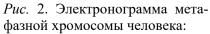
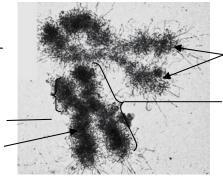




Рис. 1. Электронограмма ядра клетки:

- 1 наружная мембрана ядерной оболочки;
- 2 внутренняя мембрана;
- 3 перинуклеарное пространство;
- 4 пора;
- 5 эухроматин;
- 6 гетерохроматин;
- 7 ядрышко

- 1 плечо;
- 2 центромера;
- 3 хроматида;
- 4 теломеры

Задание 2. Решите задачи.

Задача № 1. В молекуле ДНК на долю цитозиновых нуклеотидов приходится 18 %. Определите процентное содержание других нуклеотидов, входящих в молекулу ДНК.

Задача № 2. Сколько содержится адениновых, тиминовых и гуаниновых нуклеотидов во фрагменте молекулы ДНК, если в нем обнаружено 950 цитозиновых нуклеотидов, составляющих 20 % от общего количества нуклеотидов в этом фрагменте ДНК?

Задача № 3. В одной из цепей ДНК содержится 16 % аденина, 28 % гуанина и 34 % тимина. Определите (в %) суммарное содержание пиримидиновых азотистых оснований в комплементарной цепи ДНК.

Задача № 4. Участок цепи ДНК содержит 1200 нуклеотидов, из которых 25 % приходится на аденин, 10 % — на тимин, 30 % — на гуанин. Сколько гуаниновых нуклеотидов будет содержать комплементарная цепь ДНК?

Задача № 5. Фрагмент молекулы ДНК (двойная спираль) имеет длину 51 нм и содержит 46 цитидиловых нуклеотидов. Рассчитайте процентное содержание адениловых нуклеотидов, входящих в состав данного фрагмента ДНК, учитывая, что один виток двойной спирали ДНК содержит 10 пар нуклеотидов и имеет длину 3,4 нм.

Задание 3. Изучите рисунок.

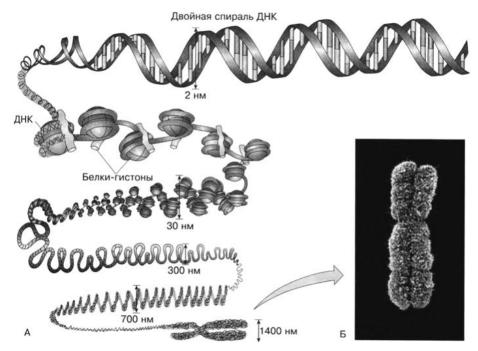


Рис. 3. Конденсация ДНК с образованием метафазной хромосомы

Задание 4. Проанализируйте идиограмму (кариотип) человека и заполните таблицу.

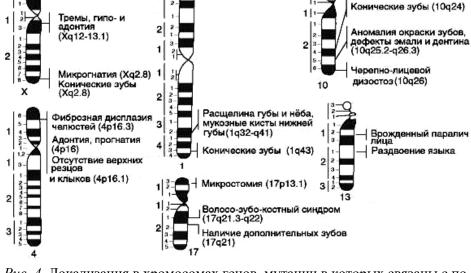
Рис. 4. Идиограмма человека

Группы и пары хромосом	ци	Размеры и типы хромосом
A (1-3)		
B (4–5)		
C (6–12, X)		
D (13–15)		
E (16–18)		
F (19–20)		
G (21–22, Y)		

Задание 5. Установите соответствие между названием групп и пар хромосом согласно Денверской классификации:

А) группа С	1. Хромосомы 1–3 пары
Б) группа F	2. Хромосомы 6–12 пары, Х-хромосома
В) группа D	3. Хромосомы 13–15 пары
Г) группа А	4. Хромосомы 19–20 пары
Д) группа G	5. Хромосомы 21–22 пары, Ү-хромосома

	A	Б	В	Γ	Д
Ī					


Задание 6. Установите соответствие между уровнем организации наследственного материала и явлением, которое он допускает:

	1. Дискретное наследование признаков		
А) Генный	2. Кроссинговер		
	3. Межалельное взаимодействие генов		
	4. Хромосомные мутации		
Б) Хромосомный	5. Мутации генов		
	6. Геномные мутации		
	7. Сцепление генов		
В) Геномный	8. Внутриаллельное взаимодействие генов		
	9. Независимое наследование признаков		

Б

Α

В

Задание 7. Изучите рисунок и на его основании заполните таблицу.

(1p36.1)

Гипоплазия эмали

(Xp22.2)

Гипоплазия эмали

 $Puc.\ 4$. Локализация в хромосомах генов, мутации в которых связаны с пороками развития начального отдела пищеварительной системы человека

Патология	№ хромосомы	Плечо	Район	Полос	Субполоса
Гипоплазия эмали					
Конические зубы					

Подпись преподавателя

Занятие № 4. Тема: КЛЕТОЧНЫЙ ЦИКЛ

~	>>	202	г.

Цель занятия: изучить клеточный цикл и сущность интерфазы, способы деления клеток; уметь делать запись содержания генетического материала в разные периоды интерфазы и на разных стадиях митоза и мейоза.

7. Некроз — КОНТРОЛЬНЫЕ ВОПРОСЫ 1. Клеточный цикл. Интерфаза. 2. Полуконсервативный механизм репликации ДНК. Репликон. 8. Хиазмы — 3. Регуляторы клеточного цикла (циклины и циклинзависимые киназы). 4. Виды и типы деления клеток: митоз, амитоз, эндомитоз. Политения. Бинарное деление прокариот. 9. Хроматин — 5. Митоз: характеристика фаз, распределение генетического материала, биологическое значение. 6. Мейоз как разновидность митоза: характеристика фаз, распределение 10. Циклинзависимые киназы генетического материала, биологическое значение. 7. Клеточная пролиферация и гибель клеток. Некроз и апоптоз. Каспазы. ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ 1. В пресинтетический период интерфазы происходит: а) синтез РНК, 1. Апоптоз белков и ферментов; б) синтез ДНК, РНК, белков и АТФ; в) синтез АТФ и рост клетки; г) накопление нуклеотидов ДНК, синтез белков ахроматино-2. Бивалент вого веретена; д) синтез белков ахроматинового веретена, ДНК и РНК. 2. В синтетический период интерфазы происходит: а) удвоение пластид и митохондрий; б) синтез ДНК и р-РНК; в) синтез АТФ и белков; 3. Каспаза г) накопление нуклеотидов ДНК, синтез и-РНК и белков; д) синтез белков ахроматинового веретена и ДНК. 3. В постсинтетический период интерфазы происходит: а) синтез ДНК 4. Конъюгация хромосом и ферментов; б) синтез ДНК, р-РНК, рост клетки; в) синтез АТФ; г) накопление нуклеотидов ДНК; д) синтез белков ахроматинового веретена. 4. Содержание генетического материала в клетке в пресинтетический **5.** Мейоз **период интерфазы:** a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1nbiv4chr4c. 5. Содержание генетического материала в клетке в конце синтетичес-6. Митоз кого периода интерфазы: a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c;

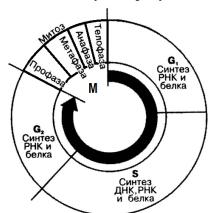
д) 1n4chr4c.

- **6.** Основные причины митоза: а) увеличение ядерно-цитоплазменного отношения; б) уменьшение ядерно-цитоплазменного отношения; в) репликация молекулы ДНК и «раневые гормоны»; г) «раневые гормоны» и митогенетические лучи; д) нарушение целостности ядерной оболочки.
- **7.** Содержание генетического материала на полюсе клетки в анафазу митоза: a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n4chr4c.
- **8. Мейозом делятся клетки:** а) соматические и стареющие; б) половые и клетки эмбриона; в) гаметоциты; г) клетки опухолей; д) клетки регенерирующих тканей.
- **9.** Последовательность стадий профазы мейоза **I**: а) диакинез, диплотена, пахитена, зиготена, лептотена; б) лептотена, диакинез, диплотена, пахитена, зиготена, в) лептотена, зиготена, диакинез, диплотена, пахитена; г) лептотена, зиготена, пахитена, диплотена, диакинез; д) диплотена, пахитена, зиготена, лептотена, диакинез.
- **10. В метафазу мейоза І происходит:** а) расхождение центриолей к полюсам клетки; б) деспирализация хромосом; в) биваленты располагаются на экваторе клетки; г) конъюгация хромосом; д) кроссинговер.
- **11.** Содержание генетического материала в клетке в профазу мейова **II:** a) 1n1chr1c; б) 1n2chr2c; в) 2n1chr2c; г) 2n2chr4c; д) 1n_{biv}2chr2c.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- **1.** ДНК-полимераза может передвигаться вдоль матричных цепей от ... конца к ... концу.
- 2. Период между двумя митотическими делениями называется ...
- **3.** На стадии диплотены профазы мейоза I биваленты связаны между собой только в участках, называемых \dots
- **4.** Конъюгация гомологичных хромосом начинается на стадии ... профазы мейоза I.
- **5.** В метафазе мейоза II в экваториальной плоскости располагаются ...

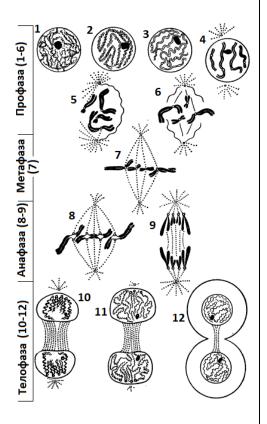

- **6.** Многократное удвоение числа хроматид без их расхождения приводит к образованию ... хромосом.
- 7. Период между двумя делениями мейоза называется...
- **8.** Конъюгирующие гомологичные хромосомы образуют структуру, которая называется...
- 9. Первое деление мейоза называется...
- 10. Второе деление мейоза называется...
- **11.** Разновидность митоза, которая приводит к образованию полиплоидных клеток, называется...

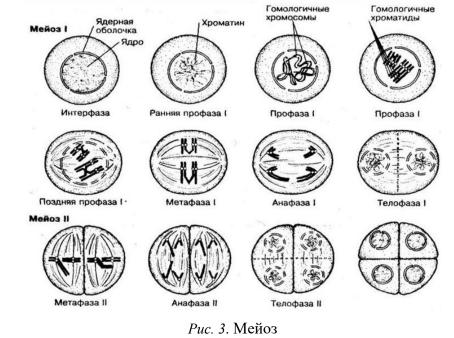
ПРАКТИЧЕСКАЯ РАБОТА

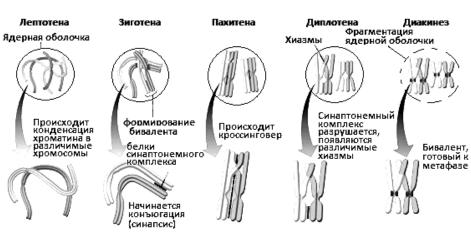
Задание 1. Установите соответствие между белками и выполняемыми ими функциями.

А. Каспа	азы	1	1. Образуют ядерный поровый комплекс					
Б. Цикл	ины	2	2. Образу	уют нукл	еосомы			
В. Когез	вины		3. Фосфорилируют другие белки, регулируя и активность					уя их
Г. Гисто	НЫ		4. Участвуют в процессе гибели клетки путём апоптоза			/тём		
Д. Кина	зы	4	5. Образуют ядерную пластинку					
Е. Конд	енсины	(6. Связывают гомологичные хромосомы					
Ж. Лами	ны		7. Связывают сестринские хроматиды					
3. Нукле	еопорин	ы 8	3. Регули	руют кл	еточный	цикл		
И. Сина комплек			9. Участвуют в образовании метафазной хромо сомы и образуют ее каркас				кромо-	
A	Б	В	Г Д Е Ж З И					И

Задание 2. Изучите рисунки.

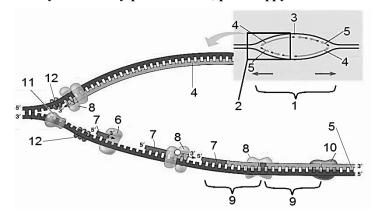



Puc. 2. Схема клетки в различные периоды фаз митоза:


- 1–4 профаза;
- 5-6 прометафаза;
- 7 метафаза;
- 8 начало анафазы;
- 9 анафаза в момент расхождения сестринских хроматид к полюсам;
- 10, 11 телофаза;
- 12 цитокинез

Puc. 1. Схематичное изображение клеточного цикла:

- G_1 пресинтетический период;
- S синтетический период;
- G_2 постсинтетический период;
- М митоз



Puc. 4. Стадии профазы мейоза I

Задание 3. Изучите схему репликации, расшифруйте обозначения.

1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 —

10 — 11 — 12 —

Рис. 5. Репликация ДНК

Задание 4. Укажите функции ферментов репликации.

1. ДНК-полимераза			
2. Праймаза			
3. Хеликаза			
4. Топоизомераза			
5. Лигаза			

Задание 5. Решите задачи.

Задача № 1. Рассмотрим гипотетическую ситуацию, когда клетки A и B полностью потеряли способность синтезировать ДНК-полимеразу. Какова теоретическая вероятность передачи этой мутации хотя бы одной из дочерних клеток, если она произошла у клетки A в период G_1 , а у клетки B — в период G_2 митотического цикла?

Задача № 2. В клетках A и B в интерфазе произошла мутация в одном из генов. Они завершили митотический цикл, но после митоза клетки A обе дочерние клетки получили мутантный ген, а после митоза клетки B мутантный ген оказался в одной из дочерних клеток. Чем это можно объяснить?

Задание 6. Впишите в таблицу формулы содержания генетического материала в фазы митотического цикла, фазы митоза и мейоза.

Интерфаза I	Митоз	Мейоз I	Мейоз II
І. Пресинтетический	А. Профаза:	А. Профаза:	А. Профаза:
(G_1) :		• лептотена	
II. Синтетический	Б. Метафаза:		Б. Метафаза:
(S):		• зиготена	
III. Постсинтетиче-	В. Анафаза:	• пахитена	В. Анафаза:
ский (G ₂):		• диплотена	
	Г. Телофаза	• диакинез	Г. Телофаза
	(цитокинез):	Б. Метафаза:	(цитокинез):
		В. Анафаза:	_
		Г. Телофаза	
		(цитокинез):	
		П	

Подпись преподавателя

Занятие № 5. Тема: ПОТОК ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ В КЛЕТКЕ

‹ ‹	>>	202	Γ.

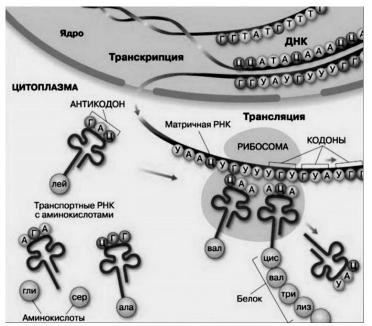
Цель занятия: изучить первичные функции генов; свойства гена; научиться решать задачи по репликации, транскрипции, трансляции.

КОНТРОЛЬНЫЕ ВОПРОСЫ		6. Трансляция —
 3. 4. 5. 	Центральная догма молекулярной биологии. Ген, его свойства и функции. Рибонуклеиновая кислота, ее виды, функции РНК. Генетический код и его свойства. Транскрипция. Транскрипционные факторы. Синтез иРНК у эукариот: первичный транскрипт, процессинг про-иРНК. Рекогниция. Трансляция: инициация, элонгация и терминация. Посттрансляционные изменения белков, фолдинг белков (шапероны).	7. Транскрипция — 8. Шапероны —
	ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ
1.	Альтернативный сплайсинг —	1. РНК содержится: а) в рибосомах и лизосомах; б) хроматине ядра, ядрышке и пероксисомах; в) гиалоплазме, хлоропластах и ядрышках; г) митохондриях, рибосомах и кариолимфе; д) в хлоропластах, гиало-
2.	Ген —	плазме и лизосомах 2. Функции тРНК: а) хранит генетическую информацию; б) транспортирует аминокислоты к рибосоме; в) передает генетическую информацию
3.	Генетический код —	дочерним молекулам тРНК; г) катализирует образование пептидных связей; д) переносит генетическую информацию от ДНК к рибосоме. 3. Функции иРНК: а) является хранилищем генетической информации,
4.	Протеасома —	передаваемой из поколения в поколение; б) транспортирует аминокислоты к рибосоме; в) передает генетическую информацию дочерним молекулам иРНК; г) определяет порядок аминокислот в молекуле полипеп-
5.	Ревертаза —	тида; д) переносит генетическую информацию от ДНК к рибосоме. 4. Кодоны-терминаторы в иРНК: а) УАА и УГА; б) УАЦ, УАА и АЦА; в) УАГ; г) УГА, УГЦ и УЦА; д) УГЦ и УАГ.
		5. Инициирующий кодон в иРНК: а) АГУ; б) УАЦ; в) УАГ; г) АУГ; п) АVА

- **6. Фермент РНК-полимераза:** а) расщепляет ДНК на 2 цепочки; б) синтезирует дочернюю цепочку ДНК при репликации; в) синтезирует цепочку иРНК при транскрипции; г) сшивает нуклеотиды ДНК при репликации или репарации; д) вырезает поврежденные участки ДНК при репарации.
- **7.** Свойства гена: а) стабильность и лабильность; б) целостность и плейотропность; в) целостность, специфичность и однозначность; г) дискретность и неспецифичность; д) специфичность, триплетность и универсальность.
- **8.** Специфичность это свойство гена: а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **9. Плейотропия это свойство гена:** а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **10. Лабильность это свойство гена:** а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **11.** Экспрессивность это свойство гена: а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **12. Пенетрантность это свойство гена:** а) мутировать; б) детерминировать синтез определенного полипептида; в) отвечать за проявление нескольких признаков; г) изменять степень своего фенотипического проявления; д) иметь разную частоту фенотипического проявления.
- **13.** Элементарной функциональной единицей гена является: а) один нуклеотид; б) пара комплементарных нуклеотидов; в) кодон; г) транскриптон; д) триплет нуклеотидов.
- **14.** Гетеросинтетическая функция гена это: а) транскрипция и репликация; б) трансляция и транскрипция; в) репликация ДНК и репарация; г) трансформация и трансляция; д) только трансляция.

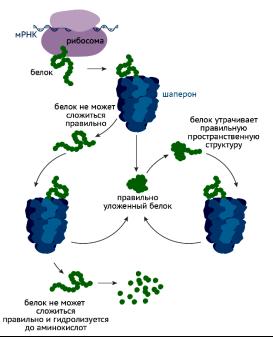
ОТКРЫТЫЕ ТЕСТЫ

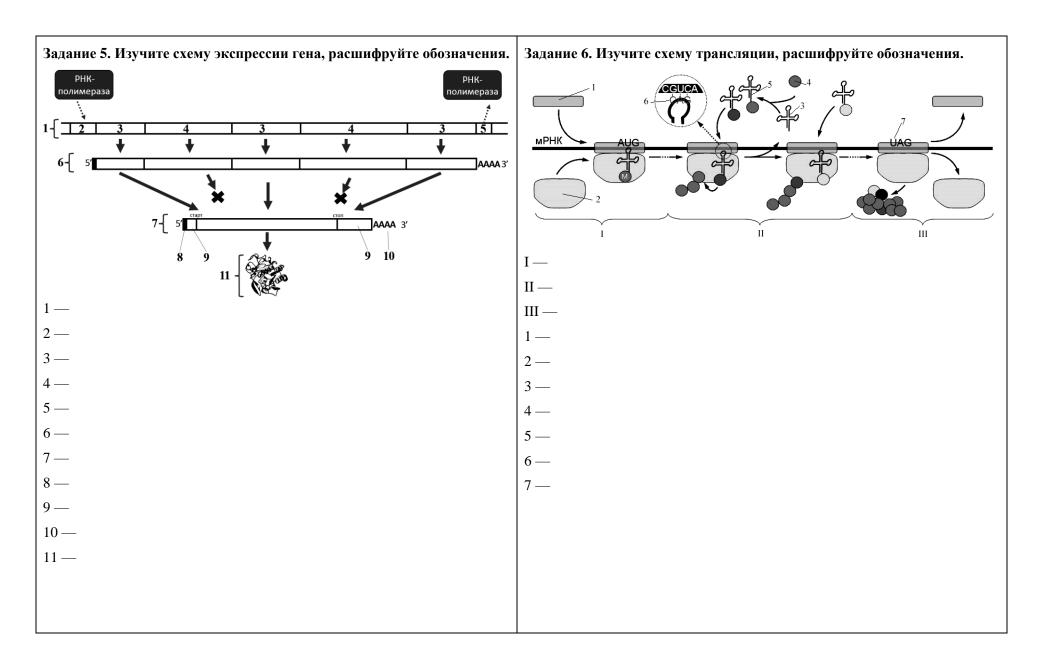
Вставьте пропущенное слово или понятие.


- **1.** РНК-полимераза может передвигаться вдоль матричных цепей от ... конца к ... концу.
- 2. Процесс узнавания тРНК своей аминокислоты это ...
- **3.** Во время инициации при трансляции в пептидильном центре рибосомы находится стартовый триплет иРНК ...
- **4.** Процесс, который начинается образованием первой пептидной связи и заканчивается присоединением последней аминокислоты к молекуле полипептида называется ...
- 5. Антибиотики являются ... биосинтеза белка.
- **6.** Свойство генетического кода, заключающееся в том, что он одинаков у всех живых существ, называется ...
- **7.** Свойство генетического кода, заключающееся в том, что несколько разных кодонов могут кодировать одну и ту же аминокислоту, называется ...
- **8.** Направление считывания генетической информации от 5'- к 3'-концу матрицы является свойством генетического кода, которое называется ...
- **9.** Свойство генетического кода, заключающееся в том, что ген может изменять свою структуру, называется ...
- **10.** Свойство генетического кода, заключающееся в том, что рибосома читает его в определенном направлении, называется ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите схему «Центральная догма молекулярной эволюции».


Задание 2. Изучите схему «Биосинтез белка».



Задание 3. Изучите схему «Типы РНК».

Тип РНК	Количество РНК, %	Фермент, участвую- щий в синтезе	Стабильность существования молекул	
иРНК	10	РНК-полимераза II	Самые нестабильные	
рРНК	50-70	РНК-полимераза I	Относительно	
			стабильные	
тРНК	25	РНК-полимераза III	Стабильные	
мяРНК	5	РНК-полимераза II, III	Стабильные	
			и долгоживущие	
митРНК	15	Митохондриальные РНК синтезируются		
		в самих митохондриях независимо от синтеза		
		РНК в ядре		

Задание 4. Изучите схему «Фолдинг белка».

Задание 7. Решите задачи. Задача № 1. Участок транскрибируемой цепи ДНК имеет последовательность: ТГТАЦЦГАТАЦЦЦГАТАЦТЦГАЦЦГАТАЦЦСАТАЦА. Определите процентный состав аденина в молекуле мРНК, образующейся на основе данной генетической информации.	Задача № 3. Одноцепочечная ДНК некого фага имеет молекулярную массу порядка 10 ⁷ дальтон. Какое максимальное количество белков теоретически может быть закодировано в ней, если принять, что типичный белок этого фага состоит в среднем из 400 мономеров, а молекулярная масса нуклеотида около 300 дальтон? Некодирующими областями для простоты подсчета можно пренебречь?
Задача № 2. Каждый виток спирали ДНК имеет длину 3,4 нм и содержит 10 пар нуклеотидов. Фрагмент белка состоит из 30 аминокислотных остатков. Какую длину (в нм) имеет участок гена, кодирующий данный фрагмент белка?	Задача № 4. Участок молекулы белка имеет следующую последовательность аминокислот: сер-лиз-гис-вал. Сколько возможных вариантов строения фрагмента молекулы ДНК может кодировать этот полипептид?

Соответствие кодонов и-РНК аминокислотам

Второе азотистое основание

	второе азотистое основание							
		\mathbf{y}	Ц	A	Γ			
	y	фен	cep	тир	цис	\mathbf{y}		
		фен	cep	тир	цис	Ц		
1)		лей	cep	non	non	A		
НИ(лей	cep	non	тр	Γ		
основание	ц	лей	про	гис	арг	\mathbf{y}		
снс		лей	про	гис	арг	Ц		
e 00		лей	про	ГЛН	арг	A		
T0(лей	про	ГЛН	арг	Γ		
Первое азотистое	A	иле	тре	асн	cep	\mathbf{y}		
130		иле	тре	асн	cep	Ц		
e a		иле	тре	лиз	арг	A		
эвс		мет	тре	лиз	арг	Γ		
Пеј	Γ	вал	ала	асп	ГЛИ	\mathbf{y}		
		вал	ала	асп	ГЛИ	Ц		
		вал	ала	глу	ГЛИ	A		
		вал	a a	глу	ГЛИ	Γ		

Третье азотистое основание

Задача № 5. Одна из цепей молекулы ДНК имеет следующий порядок нуклеотидов: **ГАГГЦТЦТАГГТАЦЦАГТ**

- а) определите последовательность нуклеотидов в комплементарной цепи.
- б) определите последовательность кодонов и-РНК, синтезированной на комплементарной цепи;
- в) определите последовательность аминокислот в полипептиде, закодированном в данном гене.

Исходная цепочка ДНК:

ГАГГЦТЦТАГГТАЦЦАГТ

a)

б)

в)

Подпись преподавателя

Занятие № 6. Тема: РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНОВ У ПРОКАРИОТ И ЭУКАРИОТ «___»_____202__г.

Цель занятия: изучить международные научные проекты изучения генома человека; различные механизмы регуляции работы генов и уметь решать типовые задачи по регуляции работы генов.

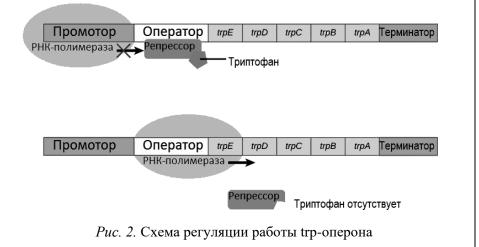
КОНТРОЛЬНЫЕ ВОПРОСЫ 6. Сайленсер — 1. Международные научные проекты изучения генома человека: Нитап genome, NCODE, Roadmap. 7. Экспрессия гена — 2. Характеристика генома человека. Избыточность генома, ее значение. 3. Классификация генов (структурные и функциональные, гены «домашнего хозяйства» и тканеспецифические). 8. Энхансер — 4. Транскриптом, протеом и метаболом человека. 5. Оперон. Лактозный и триптофановый опероны. Полицистронная РНК. 6. Регуляция транскрипции у эукариот: преинициаторный комплекс, эн-9. Эпигенетика хансеры, сайленсеры. 7. Эпигенетические механизмы регуляции работы генов: модфикации гистонов, метилирование цитозина, СрG-островки, регуляторные системы некодирующих РНК. ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ 1. Индуктор — 1. Классификация генов: а) структурные, модификаторы и репрессоры; б) интроны, экзоны и ингибиторы; в) функциональные и структурные; г) корепрессоры и операторы; д) тканеспецифические гены и гены «домаш-2. Оператор него хозяйства». 2. Функциональный ген — это: а) любой ген; б) любой ген, не кодирующий факторы, регулирующие работу других генов; в) любой ген, кодирую-3. Оперон щий РНК, но не белок; г) любой ген, кодирующий белок, но не РНК; д) любой ген, кодирующий белки или РНК, регулирующие работу других генов. 3. Ген-регулятор: а) содержит информацию о структуре белка-репрес-4. Репрессор сора; б) содержит информацию о структуре белков-ферментов; в) содержит информацию о структуре белков-гистонов; г) содержит информацию о структуре рРНК; д) непосредственно регулирует работу структурных ге-5. РНК-интерференция нов.

- **4. Роль оператора:** а) содержит информацию о структуре белка-репрессора; б) содержит информацию о структуре белков-ферментов; в) «включает» и «выключает» структурные гены; г) содержит информацию о структуре иРНК; д) регулирует работу функциональных генов.
- **5. Роль промотора:** а) содержит информацию о структуре белка-репрессора; б) содержит информацию о структуре белков-ферментов; в) «включает» и «выключает» структурные гены; г) содержит информацию о структуре иРНК; д) место первичного прикрепления фермента РНК-полимеразы.
- **6.** Вещества, стимулирующие транскрипцию в опероне и, как следствие, синтез ферментов, которые их расщепляют: а) ингибиторы; б) индукторы; в) белки-репрессоры; г) интенсификаторы; д) модификаторы.
- **7.** Единица транскрипции прокариот: а) нуклеотид; б) кодон; в) оперон; г) структурный ген; д) промотор.
- **8. В опероне отсутствуют:** а) промотор; б) регулятор; в) оператор; г) репрессор; д) терминатор.
- **9.** В состав оперона входят: а) оператор и интроны; б) ген-регулятор и экзоны; в) оператор и структурные гены; г) репрессор и промотор; д) промотор и ген-регулятор.
- **10.** Вещество, активирующее белок-репрессор, что приводит к прекращению транскрипции в опероне: а) ингибитор; б) индуктор; в) корепрессор; г) регулятор; д) терминатор.
- **11. Работа лактозного оперона бактерии регулируется путем:** а) ингибиции; б) индукции; в) репрессии; г) корепрессии; д) терминации.
- **12. Аутосинтетическая функция гена** это: а) репликация; б) транскрипция; в) репликация ДНК и репарация; г) трансформация; д) трансляния.
- **13. Роль структурных генов:** а) содержат информацию о структуре белкарепрессора; б) содержат информацию о структуре белков-ферментов; в) содержат информацию о структуре белков-гистонов; г) содержат информацию о структуре РНК; д) содержат информацию о структуре РНК и белкарепрессора.
- **14. Роль терминатора:** а) содержит информацию о структуре белкарепрессора; б) содержит информацию о структуре белков-ферментов; в) «включает» и «выключает» структурные гены; г) содержит информацию о структуре иРНК; д) завершает синтез полипептида.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Гены-регуляторы кодируют белки, которые называются ...
- **2.** Вещество, которое расщепляется под действием ферментов, закодированных в данном опероне это ...
- **3.** Во время «экспрессии» структурных генов, гены-операторы освобождаются от ...
- **4.** Экспрессия структурных генов оперона может начаться лишь когда, оператор освобождается от ...
- **5.** Участок оперона, который инициирует окончание транскрипции, называется ...
- **6.** Белковый комплекс, который образуют в области промотора базальные факторы транскрипции с РНК-полимеразой II, называется ... комплексом.
- **7.** Мобильные последовательности ДНК способные перемещаться в пределах генома называются ...
- 8. Фермент, транскрибирующий гены оперона, называется ...
- **9.** Специфическая структура эпигенетических модификаций, присутствующих в клетке в определенный период времени, называется ...
- **10.** Гены, кодирующие белки, необходимые для поддержания базовых функций любой клетки организма, называются «генами ...».


ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите таблицу «Геном человека».

Размер генома (1n)	Около 3 200 000 000 пар оснований		
Белок-кодирующие гены	Около 20 000 генов		
Гены длинных некодирующих РНК	Около 16 000 генов		
Гены коротких некодирующих РНК	Около 7 500 генов		
Псевдогены	Около 15 000 генов		
По одной из оценок (Laurence A. Moi	ran) геном человека содержит:		
Экзоны белок-кодирующих генов	1 %		
Интроны белок-кодирующих генов	22 % без учета других типов последовательностей, содержащихся в интронах		
Гены некодирующих РНК	0,6 %		
Вероятные гены некодирующих РНК	0,4 %		
Интроны генов некодирующих РНК	6 %		
Псевдогены	5 %		
Функциональные транспозоны	0,1 %		
Дефектные транспозоны и их фраг- менты	45 %		
Вирусные последовательности	0,1 %		
Дефектные вирусные последователь- ности и их фрагменты	9 %		
Центромеры	1 %		
Теломеры	0,1 %		
Точки начала репликации	0,3 %		
Области прикрепления скэффолда	0,3 %		
Регуляторные последовательности	0,2 %		
Ядерная митохондриальная ДНК	0,1 %		
Неизвестно	9 %		

Задание 3. Изучите схему.

Залание 4. Решите залачи.

Задача № 1. Проведен эксперимент с двумя группами мышей: в первой окрас шерсти был желтым, во второй — темным. Данные признаки являлись наследуемыми. Однако было обнаружено, что добавление в рацион беременных мышей с жёлтым окрасом фолиевой кислоты приводит к появлению мышат, имеющих темный окрас. Чем это можно объяснить?

Задача № 2. Один из оперонов бактерии содержит 5 генов. Ген **A**, ближайший к промотору, и ген **Б**, расположенный дальше других от промотора, имеют примерно равную длину. Однако было установлено, что белок, кодируемый геном **A**, в среднем появляется в клетке раньше, чем белок, кодируемый геном **Б**. Чем можно объяснить эту разницу?

Задача № 3. Одинакова ли длина генов у бактерии и у дрожжевой клетки, если они кодируют полипептиды с одинаковым числом аминокислот? Ответ поясните.

Задача № 4. Примем условно массу нуклеотида за 1. Определите в условных единицах массу некого оперона бактерии, в котором промотор, оператор и терминатор содержат по 10 пар нуклеотидов каждый, а каждый из 3 структурных генов кодирует белок, состоящий из 50 аминокислот.

Задание 5. Установите соответствие между терминами и соответствующими им определениями:

	1. Специфическая структура эпигенетических моди-		
А. Протеом	фикаций, присутствующих в клетке в определенный		
	период времени		
Б. Метилом	2. Качественный и количественный набор всех низко-		
В. МЕТИЛОМ	молекулярных молекул, присутствующих в клетке		
В. Геном	3. Вся последовательность ДНК, характеризующая		
Б. 1 СНОМ	вид, организм или определенный тип клеток		
	4. Весь набор белков, экспрессируемых в данном типе		
Г. Эпигеном	клеток или в организме, в данный период времени при		
	данных условиях		
П Мотоболом	5. Специфический набор транскриптов (молекул		
Д. Метаболом	РНК), представленный в клетках определенного типа		
	6. Определенная картина метилирования ДНК, при-		
Е. Транскриптом	сутствующая в определенное время в геноме или кон-		
	кретном типе клеток		

A	Б	В	Γ	Д	Е	

Подпись преподавателя

Занятие № 7. Тема: ГЕНОМИКА. МЕТОДЫ ИЗУЧЕНИЯ ДНК

‹ ‹	>>	202	Γ.
"	//	202	

Цель занятия: изучить методы исследования ДНК, методы секвенирования генома, разновидности полимеразной цепной реакции.

КОНТРОЛЬНЫЕ ВОПРОСЫ	8. Интеркалирующий краситель —
 Методы исследования ДНК: гель-электрофорез, рестрикционный анализ, гибридизация нуклеиновых кислот, ДНК-микрочипы. ПЦР и ее виды: количественная ПЦР, ПЦР с обратной транскрипцией, мультиплексная ПЦР. Методы секвенирования генома (по Сэнгеру, пиросеквенирование, 	9. Липкие концы —
нанопоровое, бисульфитное).	10. Праймер —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	
1. Амплификатор —	11. Полимеразная цепная реакция (ПЦР) —
2. Бисульфитное секвенирование —	12. Рестрикционный анализ —
3. Гель-электрофорез —	13. Рестрикционная карта —
4. Гибридизация нуклеиновых кислот —	14. Сайты рестрикции —
5. Дидезоксинуклеотид —	15. Секвенирование нуклеиновых кислот —
6. ДНК-зонд —	
or Allie sould	16. Тупые концы —
7. ДНК-микрочип —	

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1. При электрофорезе** ДНК: а) движется к аноду, так как имеет положительный заряд; б) движется к катоду, так как имеет положительный заряд; в) движется к аноду, так как имеет отрицательный заряд; г) движется к катоду, так как имеет отрицательный заряд; д) движется к катоду, так как не имеет заряда.
- **2.** Последовательность нуклеотидов в молекуле ДНК определяют при помощи методов: а) гибридизации нуклеиновых кислот; б) пиросеквенирования; в) рестрикционного анализа; г) полимеразной цепной реакции; д) секвенирования по Сэнгеру.
- **3.** На первой стадии ПЦР температуру повышают до более чем 90 °C для: а) гибридизации праймеров; б) обратной транскрипции; в) созданий оптимальных условий для работы Таq-полиеразы; г) разделения цепей ДНК; д) ускорения синтеза комплементарных цепей ДНК.
- **4.** Для проведения ПЦР требуются: а) дезоксинуклеотиды; б) термостабильная РНК-полимераза; в) термостабильная ДНК-полимераза; г) один вид праймеров; д) два вида праймеров.
- **5.** Для проведения рестрикционного анализа требуются: а) рестриктазы; б) ДНК-зонды; в) ДНК-микрочипы; г) проведение электрофореза; д) проведение секвенирования.
- **6.** В полимеразной цепной реакции праймеры выполняют следующие функции: а) ограничения амплифицируемой области ДНК; б) затравки для ДНК-полимеразы; в) матрицы, которая подвергается амплификации; г) фермента амплифицирующего ДНК; д) материала для синтеза полных комплементарных цепей ДНК.
- **7.** Для секвенирования по Сэнгеру характерно: а) использование ДНК-зондов; б) использование дидезоксинуклеотидов; в) детекция пирофосфата; г) проведение электрофореза; д) обработка ДНК бисульфитом.
- **8.** Для получения множества копий ДНК, комплементарной РНК используют: а) стандартную качественную ПЦР; б) ОТ-ПЦР; в) количественную ПЦР; г) мультиплексную ПЦР; д) пиросеквенирование.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Установление последовательности нуклеотидов в ДНК называется ...
- **2.** Первая стадия ПЦР, когда водородные связи между цепочками ДНК разрушаются, называется ...
- **3.** Короткие фрагменты одноцепочечной ДНК, необходимые для начала работы ДНК-полимеразы называются ...
- **4.** В ходе гель-электрофореза фрагменты ДНК движутся к электроду, который называется ...
- **5.** Разновидность ПЦР, которая позволяет определить изначальное количество амплифицируемого фрагмента ДНК в образце, называется ...
- **6.** Разновидность ПЦР, в которой происходит амплификация ДНК, комплементарной РНК из образца, называется ...
- **7.** Метод секвенирования ДНК, основанный на детекции пирофосфата, выделяющегося в ходе присоединения нуклеотида к растущей цепи ДНК, называется ...
- **8.** Небольшая пластинка, имеющая тысячи ячеек, в каждой из которых закреплены определённые последовательности олигонуклеотидов, называется ...
- **9.** Объединение двух комплементарных цепей нуклеиновой кислоты, полученных из разных источников, с образованием двухцепочечных молекул, называется ...
- **10.** Метод анализа двухцепочечных ДНК, основанный на их обработке рестриктазами и последующем разделении полученных фрагментов путем электрофореза, называется ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите рисунки.

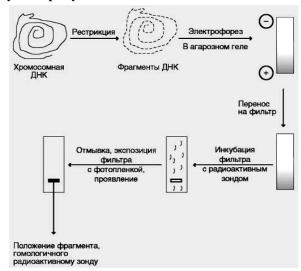


Рис. 1. Схема опыта по анализу фрагментов ДНК

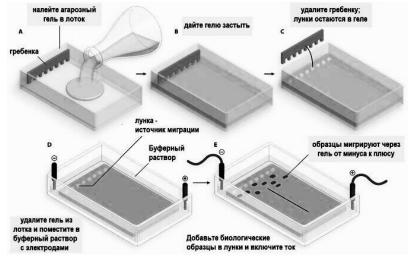


Рис. 2. Гель-электрофорез

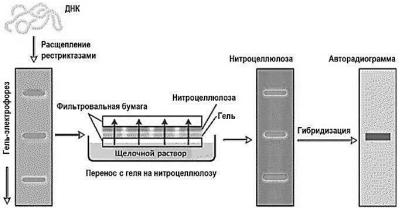
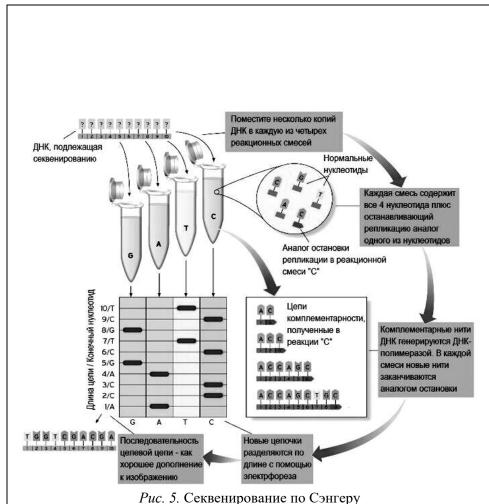



Рис. 3. Саузерн-блоттинг

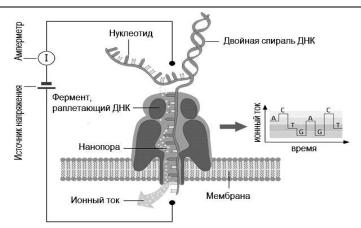
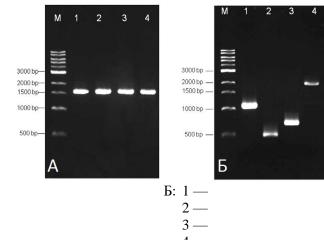
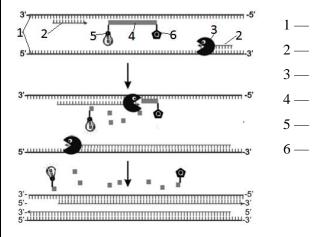



Рис. 6. Нанопоровое секвенирование

Задание 2. Решите задачи.

Задача № 1. На фотографии представлен агарозный гель, в котором визуализирована ДНК после электрофореза. Используя маркер длины (обозначен как М), определите приблизительную длину представленных фрагментов в парах оснований.

A: 1 —



Задача № 2. Установлено, что различные мутации в гене, кодирующем трансмембранный белок родопсин, вызывают различные формы наследственного заболевания пигментной ретинопатии, которое характеризуется прогрессирующей потерей зрения. Проведено секвенирование фрагмента ДНК нормального и мутантного гена, ответственного за синтез родопсина (смысловая цепь). Результаты секвениро-

вания представлены на рисунке. Направление движения нуклеотидов обозначено стрелкой. Читать кодоны следует с первого нуклеотида. Определите изменения в белке родопсине, приводящие к пигментной ретинопатии.

Задача № 3. Теоретически, после каждого цикла ПЦР количество амплифицируемого фрагмента ДНК удваивается. Сколько минут потребуется для получения 1 млн. копий из одной молекулы, если этапы денатурации, гибридизации праймеров и элонгации длятся 15, 30 и 90 секунд соответственно?

Задание 3. Изучите схему количественной ПЦР, сделайте обозначения.

Задание 4. Установите соответствие между методом секвенирования и его характеристикой и внесите соответствующую букву в таблицу: а) секвенирование по Сэнгеру; б) пиросеквенирование; в) нанопоровое секвенирование; г) бисульфитное секвенирование.

Подпись преподавателя

Занятие № 8. Тема: ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ

~	>>	202	Γ.

Цель занятия: изучить основы генной инженерии и клонирования организмов, уметь решать типовые задачи по генной инженерии.

контрольные вопросы	8. Плазмиды —
 Генетическая инженерия: цели, задачи и этапы. Способы получения генов для трансгенеза. Рекомбинантная ДНК. Конструирование векторов, их виды: плазмиды, космиды, фаговые векторы, фазмиды. 	9. Полилинкер —
4. Введение рекомбинантных ДНК в клетку-реципиент. Отбор трансформированных клеток. Селективные и репортерные гены.5. Биотехнология, ее значение для медицины. Генетически модифициро-	10. Рекомбинантная ДНК —
ванные организмы. Продукты питания, содержащие ГМО.	11. Репортерные гены —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ 1. Биотехнология —	12. Рестриктаза (эндонуклеаза рестрикции) —
2. Вектор (векторная молекула) —	13. Селективные гены —
3. Космиды —	14. Трансгенез —
4. Липосомы —	15. Трансдукция —
5. Липофекция —	16. Трансформация —
6. Маркерные гены —	17. Фазмиды —
7. Микроинъекция —	18. Челночный вектор —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1. Целью генной инженерии является:** а) конструирование генетических структур по заранее намеченному плану; б) расшифровка порядка нуклеотидов участка ДНК; в) создание организмов с новой генетической программой; г) выявление групп сцепления; секвенирование генов; д) построение генетической карты хромосомы.
- **2.** Основные этапы генной инженерии: а) получение необходимого генетического материала; б) построение генетической карты хромосомы; в) расшифровка порядка нуклеотидов участка ДНК и создание рекомбинантной ДНК; г) отбор трансформированных клеток; д) включение рекомбинантной молекулы ДНК в хромосому.
- **3.** Способы получения генов для пересадки: а) синтез простых генов химическим путем; б) синтез генов на молекуле белка; в) синтез сложных генов с помощью обратной транскрипции; г) построение генетической карты хромосомы; д) вырезание генов с помощью рестриктаз.
- **4.** Рекомбинантные молекулы ДНК могут быть получены методами встраивания гена в: а) белковую молекулу; б) плазмиду бактерий; в) геном вируса; г) липидную молекулу; д) геном бактериофага.
- **5. Ферменты, применяемые в генной инженерии:** а) ДНК-полимеразы; б) липазы; в) рестриктазы; г) амилазы; д) лигазы.
- **6. Методами генной инженерии получены:** а) штаммы кишечной палочки, способные синтезировать инулин; б) штаммы кишечной палочки, способные синтезировать соматотропин; в) растения; способные усваивать атмосферный азот; г) микроорганизмы, способные синтезировать из пищевых белков углеводы нефти; д) противовирусные сыворотки.
- **7.** Будущее генной инженерии базируется на следующих достижениях молекулярной биологии: а) возможности переноса генетической информации у эукариот половым путем; б) получении модификаций с помощью химических мутагенов; в) секвенировании генов; г) замене дефектных генов; д) включении в геном человека искусственно синтезированных генов.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. В генной инженерии для выделения генов используют ферменты ...
- **2.** Процесс обратной транскрипции лежит в основе метода ... синтеза сложных генов.
- **3.** В генной инженерии векторными молекулами могут быть: фаги, вирусы, ... бактерий.
- **4.** Ферменты, способные разрезать молекулу ДНК в определенных сайтах с образованием более коротких ее фрагментов,
- **5.** Гибридные векторы, способные развиваться и как фаг, и как плазмида, называются ...
- 6. В космидных векторах можно клонировать фрагменты ДНК размером ...
- **7.** Гибридные векторы, способные развиваться и как фаг, и как плазмида, называются ...
- **8.** Плазмиды, содержащие соs-участок (липкие концы) ДНК фага λ , называются ...
- **9.** Для отбора генетически трансформированных клеток векторная ДНК должна содержать ... и ... маркерные гены.
- **10.** Векторы, способные реплицироваться в клетках-хозяевах разных биологических видов, называются ... векторы.
- **11.** Растение или животное, чей генотип изменяется путем введения чужеродной ДНК, называют ...
- **12.** Ферменты, способные разрезать молекулу ДНК в определенных сайтах с образованием липких либо тупых концов, называются ...
- 13. Рестриктаза Есо R I при разрезе уступом образует в ДНК ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите таблицу 1.

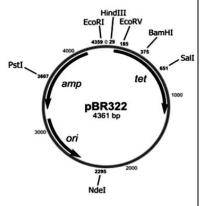
Таблица 1

Рестриктазы и их сайты рестрикции

№	Рестриктаза	Сайты распознавания и места разреза ДНК
1.	BalI	5'-ТГГ↓ЦЦА-3' 3'-АЦЦ↑ГГТ-5'
2.	BamHI	5'-Г↓ГАТЦЦ-3' 3'-ЦЦТАГ↑Г-5'
3.	EcoRI	5'-Γ↓ΑΑΤΤЦ-3' 3'-ЦТТАА↑Γ-5'
4.	HindIII	5'-А↓АГЦТТ-3' 3'-ТТЦГА↑А-5'
5.	SalI	5'-Г↓ТЦГАЦ-3' 3'-ЦАГЦТ↑Г-5'
6.	XbaI	5'-Τ↓ЦΤΑΓΑ-3' 3'-ΑΓΑΤЦ↑Τ-5'
7.	HaeIII	5'-ГГ↓ЦЦ-3' 3'-ЦЦ↑ГГ-5'

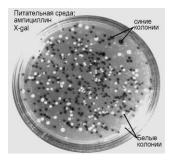
Задание 2. Решите задачи.

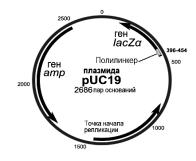
Задача № 1. Приведены последовательности двух ДНК (по одной цепочке из двуцепочечных молекул). Какую из них может разрезать рестриктаза EcoRI, узнающая последовательность 5'-ГААТТЦ-3'?


- а) 5'-АЦТЦЦАГААТТЦАЦТЦЦГ-3';
- б) 5'-ГЦЦТЦАТТЦГААГЦЦТА-3'.

Задача № 2. Имеется фрагмент ДНК из 27 нуклеотидных пар. Какой эндонуклеазой и на сколько частей можно его разрезать?

- 5'-ЦТГААТТАГГАТЦЦАГГЦААТАГТГТГ-3'
- 3'-ГАЦТТААТЦЦТАГГТЦЦГТТАТЦАЦАЦ-5'


Задача № 3. Эндонуклеаза рестрикции HindIII узнает и разрезает сайт 5' ААГЦТТ 3'. Определите вероятность случайного нахождения такой комбинации нуклеотидов в ДНК неизвестной последовательности и рассчитайте ожидаемую среднюю длину фрагментов, образующихся при ее разрезании.


Задача № 4. На рисунке изображена плазмида pBR322. Указаны сайты рестрикции для различных эндонуклеаз и их местоположение. Участок какого из ниже приведенных фрагментов двуцепочечной ДНК можно встроить в плазмиду, при помощи эндонуклеаз, приведенных в таблице 1?

- а) 5'-ЦЦГААТТЦАГАТГТААГГЦААТАГТГТААТТЦАЦА-3'
- 3'-ГГЦТТААГТЦТАЦАТТЦЦГТТАТЦАЦАЦТТААГТГТ-5'
- 5'-ЦЦΤΤΑΑΓЦΤΓΑΓΓЦΤΑΑΓΓЦΑΑΤΑΓΑΑΓЦΑΑЦΑЦΑΤΓ-3' 3'-ΓΓΑΑΤΤЦΓΑЦΤЦЦГАТТЦЦГТТАТЦТТЦГТТГТАЦ-5'
- 5'-ΑΓΓЦЦГАТАЦЦЦГАТАЦТЦГАЦЦГАТАЦТГТАГГЦЦГ-3' 3'-ΤЦЦГГЦТАТГГЦТАТГАГЦТГЦТАТГАЦАТЦЦГГЦ-5'

Задача № 5. Плазмида pUC19 содержит ген устойчивости к антибиотику ампициллину (amp), а также ген lacZa, позволяющий бактериям производить вещество синего цвета из вещества X-gal. Сайты рестрикции находятся в пределах гена *lacZa*, поэтому вставка фрагмента ДНК в плазмиду нарушает работу этого гена. Благодаря этому можно распознать успешно трансформированные клетки. Бактерии были посеяны на среде, содержащей ампициллин и X-gal. На среде выросли колонии белого и синего цвета (каждая колония — группа бактерий-потомков одной клетки, они имеют одинаковый геном).

- 1. Какова судьба бактерий, не подвергшиеся трансформации (т. е. без pUC19)?
- 2. Какова судьба бактерий, имеющих рUC19, но без желаемого гена?
- 3. Колонии какого цвета были успешно генно-модифицированы? Объясните свои ответы.

Задание 3. Изучите таблицу «Сравнение векторов для клонирования фрагментов ЛНК»

ppar mentus Alikii.					
Вектор	Клетка-хозяин	Размер вставки, т.п.н.			
Плазмида	E. coli	1–10			
ΦαΓ λ	E. coli	5–25			
Космиды	E. coli	35–45			
Фазмиды	E. coli	20			
ВАС (бактериальная искусственная хромосома)	E. coli	50–300			
YAC (дрожжевая искусственная хромосома)	S. cerevisiae	100–2000			

Задание 4. Сделайте обозначения к рисункам.

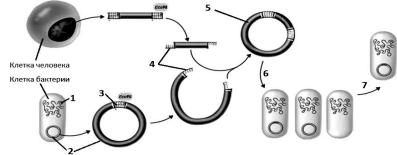
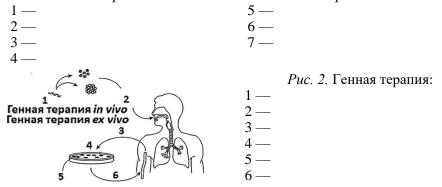



Рис. 1. Клонирование человеческого гена в бактериальных клетках:

задание 5. У становите соответствие между термином и его определением.						
A. Tpa	нсдукци	Я	1. Способность бактерий поглощать ДНК из раствора			
Б. Электропорация		oma	2. Введение ДНК в клетку при помощи везикулы,			
в. элег	стропора	киди	имеющей один или несколько билипидных слоев			
р п 1			3. Перенос рекомбинантной ДНК в бактериальную			
В. Липофекция			клетку с помощью бактериофага			
Г Траугафаруатура		ша	4. Непосредственное введение ДНК в ядро эукарио-			
Г. Трансформация			тической клетки с помощью тонкой иглы			
П Муум оуууд оууууд		ema a	5. Образование временных каналов в мембране под			
Д. Микроинъекция		кция	действие	ем элект	риче	ских разрядов
A	Б	В	Γ	Д		
				. '		Полина прополовотоля

Подпись преподавателя

ОЦЕНОЧНЫЙ ЛИСТ (чек-лист) для контроля практических навыков (решение задач) по разделу «Молекулярная биология» Задание № 1.

№ п/п	Параметр выполнения действия	Отметка в баллах
1.		
2.		
3.		
4.		
5.		
	Итоговая оценка	

Второе азотистое основание

		У	Ц	A	Γ	
		фен	cep	тир	цис	\mathbf{y}
	\mathbf{y}	фен	cep	тир	цис	Ц
		лей	cep	non	non	A
4)		лей	сер	non	три	Γ
ние		лей	про	гис	арг	\mathbf{y}
азотистое основание	Ц	лей	про	гис	арг	Ц
		лей	про	ГЛН	арг	A
		лей	про	ГЛН	арг	Γ
		иле	тре	асн	cep	\mathbf{y}
	A	иле	тре	асн	cep	Ц
		иле	тре	ЛИЗ	арг	A
		мет	тре	ЛИЗ	арг	Γ
30e		вал	ала	асп	гли	У
Первое	Γ	вал	ала	асп	ГЛИ	Ц
		вал	ала	глу	гли	A
		вал	ала	глу	гли	Γ
J		Dan	asia	1 J1 y	1 7111	

еипрастьо вотоптов в теаТ

Задание № 2.

№	Параметр выполнения действия	Отметка в
п/п		баллах
_		
1.		
2.		
3.		
3.		
4.		
٦٠.		
5.		
	Итоговая оценка	
	Общая оценка практического навыка	
	, , , , , , , , , , , , , , , , , , ,	
	Преподаватель И.О. Фамилия	
	Дата	

Занятие № 9. Тема: ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ. ВЗАИМОДЕЙСТВИЕ ГЕНОВ

«	02 г.
---	-------

Цель занятия: изучить закономерности наследования, взаимодействие генов, уметь решать типовые задачи, демонстрирующие указанные генетические закономерности.

КОНТРОЛЬНЫЕ ВОПРОСЫ 7. Плейотропия — 1. Генетика как наука. Гибридологический анализ, его сущность. 2. Закономерности наследования при моногибридном скрещивании. Гипо-8. Полимерия теза чистоты гамет. 3. Закономерности наследования при полигибридном скрещивании. 9. Реципрокное скрещивание — 4. Анализирующее скрещивание: прямое и возвратное. Условия, ограничивающие проявление законов Г. Менделя. Плейотропное действие гена. 10. Сверхдоминирование — 5. Внутриаллельное взаимодействие генов (полное и неполное доминирование, сверхдоминирование, кодоминирование и аллельное исключение). 11. Фенотип — 6. Множественные аллели. Наследование групп крови по системам: АВО, MN и резус-фактору. 12. Фенотипический радикал — 7. Межаллельное взаимодействие генов (комплементарность, эпистаз, полимерия и эффект положения). ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ ОТКРЫТЫЕ ТЕСТЫ **1.** Аллель — Вставьте пропущенное слово или понятие. 1. Разновидность межаллельного взаимодействия генов, при котором степень проявления признака зависит от количества доминантных генов в ге-2. Аллельное исключение нотипе, называется ... полимерия. **2.** Для проявления II и III законов Г. Менделя пенетрантность гена должна 3. Анализирующее скрещивание составлять ... % 3. Расщепление по фенотипу 9:7 при скрещивании дигетерозигот является 4. Кодоминирование результатом межаллельного взаимодействия генов, которое называется ... 4. Аллели, представленные в популяции более чем двумя вариантами, 5. Комплементарность называются ... 5. Свойство гена детерминировать развитие нескольких признаков называ-6. Множественный аллелизм ется ...

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Рецессивная аллель: а) проявляется фенотипически в гомозиготном состоянии при полном доминировании; б) проявляется фенотипически в гетерозиготном состоянии при полном доминировании; в) проявляется фенотипически в гомо- и гетерозиготном состоянии; г) проявляется фенотипически в гетерозиготном состоянии при неполном доминировании; д) фенотипически подавляется доминантной аллелью при полном доминировании.
- **2. Фенотип это совокупность:** а) фенотипических радикалов; б) незаменимых аминокислот; в) заменимых аминокислот; г) гибридов первого поколения; д) внешних и внутренних признаков организма.
- **3.** Свойства гомозиготного организма: а) образует один тип гамет; б) образует 2 типа гамет; в) содержит одинаковые аллели анализируемого гена; г) содержит разные аллели анализируемого гена; д) дает расщепление при скрещивании с аналогичной по генотипу особью.
- **4.** Второй закон Менделя называется: а) чистоты гамет; б) доминирования; в) единообразия гибридов первого поколения; г) расщепления признаков у гибридов; д) независимого наследования признаков.
- **5.** Характеристика неполного доминирования: а) доминантная аллель не полностью подавляет действие рецессивной; б) доминантная аллель полностью подавляет действие рецессивной; в) доминантные гомозиготы и гетерозиготы фенотипически неотличимы; г) доминантные гомозиготы и гетерозиготы фенотипически различны; д) доминантная аллель в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном.
- **6.** Виды межаллельного взаимодействия генов: а) эффект положения и криптомерия; б) эпистаз и некумулятивная полимерия; в) кодоминирование и полимерия; г) комплементарность и плейотропия; д) сверхдоминирование и пороговый эффект.
- 7. Характеристика комплементарности: а) взаимное влияние аллелей разных генов, занимающих соседние локусы одной хромосомы; б) присутствие в генотипе двух доминантных аллелей разных генов приводит к проявлению нового признака; в) присутствие в генотипе двух рецессивных аллелей разных генов приводит к проявлению нового признака; г) доминантная либо рецессивная аллель одного гена подавляет действие доминантной аллели другого гена; д) несколько разных генов влияют на степень проявления одного признака.

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Решите задачи.

Задача № 1. Сколько типов гамет, и какие именно образуют организмы, имеющие генотипы?

AaBb; MMnnRR; AaBbCc; Aabbccddpp

Задача № 2. У мышей ген доминантной желтой пигментации шерсти **А** обладает летальным действием (мыши с генотипом **АА** погибают в эмбриогенезе). Его аллель **а** вызывает черную пигментацию и обеспечивает нормальную жизнедеятельность. Скрещены две желтые особи. Какое расщепление по окраске шерсти ожидается в F_1 ?

Задача № 3. Ангиоматоз сетчатки глаза обусловлен доминантным аутосомным геном, пенетрантность которого 50 %. Какова вероятность рождения больного ребенка, если оба супруга гетерозиготны?

Задача № 4. У человека карий цвет глаз доминирует над голубым, а способность лучше владеть правой рукой доминирует над леворукостью; гены, влияющие на развитие этих признаков, находятся в разных хромосомах. Какими могут быть дети, если родители кареглазые правши, гетерозиготные по обоим признакам?

Задача № 6. Хондродистрофия (нарушение развития скелета) доминирует над нормальным скелетом, причем доминантные гомозиготы погибают до рождения. Семейная гиперхолестеринемия определяется доминантным геном. У гетерозигот заболевание проявляется лишь высоким содержанием холестерола в крови, у гомозигот, помимо этого, в период полового созревания развиваются доброкачественные опухоли кожи и сухожилий (ксантомы) и атеросклероз. Эти аутосомные признаки наследуются независимо. В семье оба родителя страдают хондродистрофией, при этом у матери нормальный уровень холестерола в крови, а у отца высокий, но у него нет ксантом и атеросклероза. Какова вероятность (%) рождения в этой семье ребенка, похожего по анализируемым признакам на мать, если расщепление соответствовало теоретически ожидаемому?

Задача № 5. Жена имеет группы крови 0(I), Rh–, MN; ее супруг AB(IV) и N группы крови, гомозиготный Rh+. Какое сочетание групп крови по всем системам может быть у их детей?

Наследование групп крови у человека

Признак	Ген	Генотип				
Система АВО						
0 (I) группа	I_0	$\mathbf{I}_0\mathbf{I}_0$				
А (II) группа	I^{A}	I^AI^A , I^AI^0				
В (III) группа	I^{B}	I^BI^B , I^BI^O				
AB (IV)	I ^A и I ^B	$I^A I^B$				
группа						
Сис	стема MN					
М группа	L^{M}	$L^{M}L^{M}$				
N группа	L^{N}	$L^{N}L^{N}$				
MN группа	L^{M} и L^{N}	$L^{M}L^{N}$				
Rh-фактор						
Rh+	D	DD, Dd				
Rh-	d	dd				

Задача № 7. Рост человека контролируется тремя парами несцепленных генов, которые взаимодействуют по типу полимерии. В какой-то популяции самые низкорослые люди имеют все рецессивные гены и рост 150 см, а самые высокие — рост 180 см и все доминантные гены. Определите рост людей, гетерозиготных по всем трем парам генов.

Подпись преподавателя

Занятие № 10. Тема: СЦЕПЛЕНИЕ ГЕНОВ. БИОЛОГИЯ И ГЕНЕТИКА ПОЛА

‹ ‹	>>	202	г.

Цель занятия: изучить закономерности наследования при сцеплении генов и генетике пола. Научиться решать типовые задачи, демонстрирующие указанные генетические закономерности.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- **1.** Опыты Т. Моргана. Сцепление генов: полное и неполное. Группы сцепления.
- 2. Хромосомная теория наследственности.
- 3. Генетические и цитологические карты хромосом.
- **4.** Пол как биологический признак. Ограниченные и контролируемые поломпризнаки. Признаки, сцепленные с полом и голандрические.
- **5.** Теории определения пола. Дифференцировка и переопределение пола в онтогенезе. Генная регуляция гонадогенеза у человека.
- **6.** Особенности детерминации пола у человека: физикальные, промежуточная и социально-психологические детерминанты.
- **7.** Нарушения формирования пола у человека. Этические и юридические аспекты изменения морфологического и гражданского пола.
- **8.** X-половой хроматин. Гипотеза М. Лайон о женском мозаицизме по половым хромосомам.

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

- 1. Генетическая карта хромосомы —
- 2. Гетерогаметный пол —
- 3. Гемизиготность —
- 4. Генетический пол —

- 5. Гоносомное наследование —
- 6. Голандрические признаки —
- 7. Кроссоверные гаметы —
- 8. Мозаичность —
- 9. Ограниченные полом признаки —
- 10. Первичные половые признаки —
- 11. Синдром нечувствительности к андрогенам —
- 12. Сцепленные гены —
- 13. Сцепленные с Х-хромосомой гены —
- 14. Тельце Барра —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1.** Явление сцепления наблюдается при расположении различных генов: а) в одной хромосоме; б) в разных хромосомах; в) только в аутосомах; г) только в X-хромосоме; д) только в Y-хромосоме.
- **2. Неполное сцепление генов наблюдается:** а) если гены разных аллельных пар расположены в одной хромосоме; б) если гены расположены в разных хромосомах; в) если происходит кроссинговер; г) если не происходит кроссинговер; д) у самца мухи дрозофилы и самки тутового шелкопряда.
- **3.** Развитие признаков, сцепленных с полом, обусловлено генами, локализованными: а) в аутосомах мужского организма; б) аутосомах женского организма; в) гомологичных участках X- и Y-хромосом; г) негомологичных участках X-хромосомы; д) в аутосомах обоих полов.
- **4.** Характерные черты некоторых признаков, сцепленных с Х-хромосомой: а) проявляются фенотипически только у женских особей; б) проявляются фенотипически только у мужских особей; в) чаще проявляются фенотипически у мужских особей; г) не проявляются у особей женского пола; д) не проявляются у особей мужского пола.
- **5.** Согласно хромосомной теории пол определяется: а) количеством аутосом; б) количеством X-хромосом; в) количеством Y-хромосом; г) сочетанием половых хромосом в момент оплодотворения; д) балансом между количеством Y-хромосом и наборов аутосом.
- **6.** Характеристика синдрома Шерешевского—Тернера: а) кариотип 45,X0; б) снижен интеллект; в) повышен риск заболевания шизофренией; г) недоразвиты первичные и вторичные половые признаки; д) крыловидная складка кожи на шее.
- **7. Характеристика синдрома Клайнфелтера:** а) кариотип 47,ХХҮ; б) крыловидная складка кожи на шее; в) женский организм с мужеподобным телосложением; г) гинекомастиия; д) кариотип 47,ХХХ.
- **8. Характеристика синдрома трисомии Х:** а) кариотип 47,ХХХ; б) кариотип 47,ХХХ; в) женский организм с мужеподобным телосложением; г) мужской организм с женоподобным телосложением; д) низкий рост.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

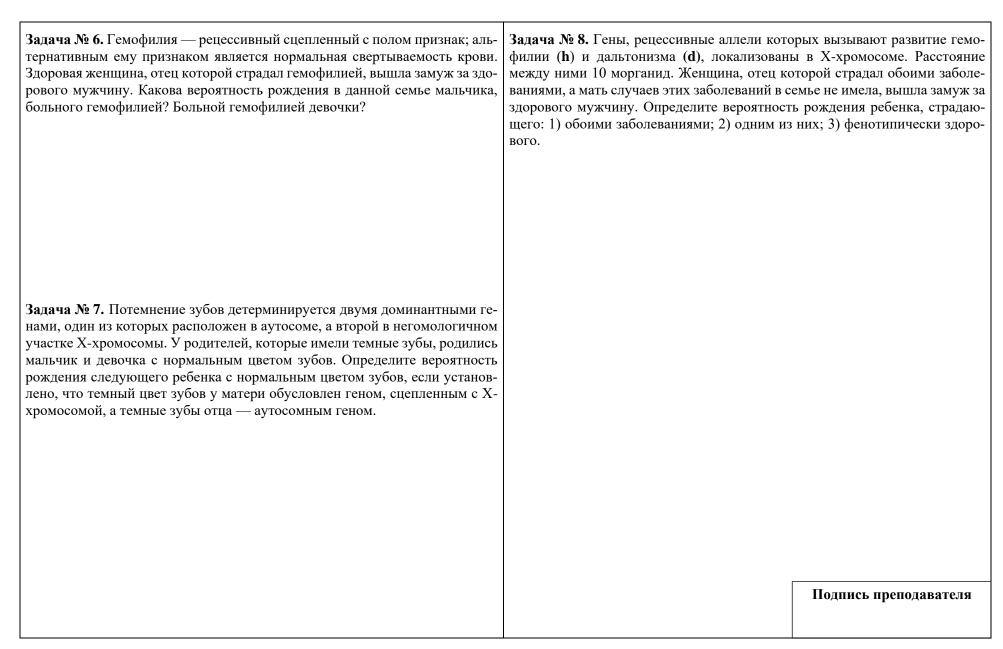
- 1. Если дигетерозиготный организм образует только 2 типа гамет, то наблюдается ... сцепление генов.
- 2. Расстояние между генами в морганидах равно проценту ...
- **3.** При сцепленном наследовании максимальная наблюдаемая при скрещивании вероятность кроссинговера составляет до ... %.
- **4.** Количество глыбок полового хроматина в ядрах клеток здоровых женщин составляет ... (ответ цифрой).
- **5.** Явление фенотипического проявления у мужчин единственного рецессивного гена, находящегося в негомологичном участке X-хромосомы, называется ...
- 6. Пол, образующий один тип гамет по половым хромосомам, называется ...
- 7. В момент оплодотворения у человека определяется ... пол.
- **8.** Закладка внутренних половых органов человека начинается на ...-й неделе внутриутробного развития (ответ цифрой).

ПРАКТИЧЕСКАЯ РАБОТА

Решите задачи.

Задача № 1. Напишите гаметы и их процентное соотношение для дрозофил с представленными генотипами. Расстояние между сцепленными генами составляет 28 морганид.

Задача № 2. У человека ген, доминантная аллель которого вызывает развитие эллиптоцитоза (EI) и ген, доминантная аллель которого обусловливает наличие резус-антигена в эритроцитах (D), располагаются в одной аутосоме на расстоянии 3 морганид. Один из супругов гетерозиготен по обоим признакам. При этом Rh^+ он унаследовал от одного родителя, а эллиптоцитоз — от другого. Второй супруг резус-отрицательный и имеет нормальные эритроциты. Определите процентное соотношение генотипов и фенотипов детей в этой семье.


Признак	Ген	Генотип	Локализация гена
Rh+	D	D-	
Rh-	d	dd	Одна аутосома
Элиптоцитоз	El	El-	Расстояние D-El = 3 морганиды
Норма	el	elel	

Задача № 3. Какова вероятность рождения рецессивных гомозигот в семье людей с указанными ниже генотипами? Расстояние между генами **A** и **B** равно 20 морганидам.

P:	AB a b	X	AB a b	
C .	O-	%	<u></u> -	%
G:	<u></u>	%	Ŏ-	%
	O-	%	Ŏ-	%
	O-	%	Ŏ-	%
F1:			_	

Задача № 4. Расстояние между аутосомным геном, определяющим группу крови по системе Лютеран, и геном, от которого зависит растворимость некоторых белков крови, равно 13 морганид. Укажите процент некроссоверных гамет у дигетерозиготной особи.

Задача № 5. Гладкая форма семян кукурузы доминирует над морщинистой, а окрашенные семена — над неокрашенными. При скрещивании дигетерозиготных растений получены следующие результаты: 4152 дочерние особи имели окрашенные гладкие семена, у 149 — окрашенные морщинистые, у 152 — неокрашенные гладкие, а неокрашенные морщинистые семена дали 4163 особи. Покажите механизм такого наследования при помощи генетической записи (схемы скрещивания); определите расстояние между анализируемыми генами.

Занятие № 11. Тема: ИЗМЕНЧИВОСТЬ. МУТАГЕНЕЗ. КАНЦЕРОГЕНЕЗ

‹ ‹	>>	202	г.
<<	>>	202	L

Цель занятия: изучить основные формы изменчивости, их причины, медицинскую и биологическую значимость; знать механизмы генных, хромосомных и геномных мутаций, репарацию генетического материала и биологические основы канцерогенеза.

контрольные вопросы	5. Кольцевые хромосомы —
 Изменчивость, ее виды. Фенотипическая изменчивость, фенокопии. Генотипическая изменчивость. Рекомбинации, механизмы их возникновения. Мутационная изменчивость. Генокопии. Причины мутаций: ошибки копирования ДНК, неравный кроссинговер. 	6. Миссенс-мутация —
 пирования дтих, неравный кроссинговер. Физические, химические и биологические мутагенные факторы. Генетическая опасность загрязнения окружающей среды мутагенами. Классификации мутаций. Устойчивость и репарация генетического материала. Антимутагены. 	7. Норма реакции —
 Виды репарации. Виды эксцизионной репарации, репарация двуцепочечных разрывов. Фотореактивация. Роль нарушений механизмов репарации в патологии человека. Канцерогенез, понятие об онкогенах и генах-супрессорах опухолей. 	8. Сдвиг рамки считывания —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ	9. Транзиция —
1. Делеция —	
	10. Трансверзия —
2. Дупликация —	
	11. Трансгенация —
3. Инверсия —	
4. Канцерогенез —	12. Транслокация —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1.** Свойства модификаций: а) носят приспособительный характер; б) наследуются; в) не наследуются; г) являются материалом для естественного отбора; д) являются материалом для искусственного отбора.
- **2. Биологические мутагены вызывают:** а) нарушение структуры генов и хромосом; б) полиплоидию; в) образование тиминовых димеров; г) гаплоидию; д) встраивание своей ДНК в ДНК клеток хозяина.
- **3.** Характерные признаки генеративных мутаций: а) происходят в половых клетках; б) происходят в соматических клетках; в) проявляются у самой особи; г) передаются потомкам при половом размножении; д) передаются потомкам при бесполом размножении.
- **4.** Виды мутаций функциональных генов: а) транспозиция; б) нарушение чередования рекогниции и терминации; в) нарушение чередования инициации и элонгации; г) нарушение чередования индукции и репрессии; д) транзиции.
- **5. Полиплоидия** это: а) некратное гаплоидному увеличение числа хромосом; б) кратное гаплоидному увеличение числа хромосом; в) некратное гаплоидному уменьшение числа хромосом; г) кратное гаплоидному уменьшение числа хромосом; д) одинарный набор хромосом.
- **6.** Гаплоидия это: а) положительная мутация; б) нулисомия; в) моносомия; г) отсутствие одной хромосомы; д) одинарный набор хромосом.
- **7.** Виды мутаций структурных генов: а) трансдукции; б) транспозиция; в) транслокации; г) сдвиг рамки считывания; д) транзиции.
- 8. Последовательность этапов темновой репарации генетического материала: 1) синтез нового участка ДНК; 2) «сшивание» синтезированного участка ДНК с основной нитью; 3) «узнавание» поврежденного участка; 4) «вырезание» поврежденного участка; 5) репликация молекулы ДНК: а) 1–5–2–3; б) 5–1–3–2; в) 3–4–5–2; г) 3–4–2–1; д) 3–4–1–2.
- **9.** В основе канцерогенеза согласно концепции онкогена лежат: а) получение организмами протоонкогенов от родителей либо внесение их интегративными вирусами; б) хромосомные мутации соматических клеток; в) наличие в соматических клетках организма протоонкогенов; г) геномные мутации соматических клеток; д) включения вирусной ДНК в геном соматических клеток.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- **1.** Ферменты, способные в процессе репарации вырезать поврежденный участок молекулы ДНК, называются ...
- **2.** Трансгенация, при которой одно пуриновое основание заменяется на другое пуриновое, называется ...
- **3.** Мутация, при которой происходит отрыв участка хромосомы и поворот его на 180° , называется ...
- **4.** Внутрихромосомные мутации называются ..., а межхромосомные мутации ...
- **5.** Мутации структурных генов, приводящие к изменению смысла кодонов и образованию других белков, называются ... мутациями.
- **6.** Нерасхождение хромосом при митозе или мейозе является причиной ... мутаций.
- **7.** Разновидность анеуплоидии, при которой в кариотипе находится только одна хромосома из пары гомологичных хромосом, называется ...
- **8.** Разновидность геномной мутации, при которой соматические клетки содержат одинарный набор хромосом, называется ...
- **9.** Заболевание, обусловленное нарушением механизмов репарации и характеризующееся недостаточностью функционирования костного мозга, приводящего к снижению содержания форменных элементов крови и гиперпигментации, называется

ПРАКТИЧЕСКАЯ РАБОТА Задание 1. Изучите схемы, таблицы. Изменчивость Ненаследственная Наследственная (фенотипическая) (генотипическая) модификационная Комбинативная Мутационная Хромосомные Генная Геномная перестройки 1) делеция; 1) гаплоидия; 2) дупликация; 2) полиплоидия; 3) инверсия; 3) анеуплоидия 4) транслокация Рис. 1. Виды изменчивости E \mathbf{C} D Норма (исходная форма хромосомы) Межхромосомные мутации Внутрихромосомные мутации Транслокация (перенос участка на негомологичную хромосому) Реципрокные + Инверсия Нехватка Дупликация (отрыв участка и его (удвоение участка) поворот на 180°) Нереципрокные • A Делеция Дефишенси (отрыв концевого В Робертсоновские среднего участка) участка) C A D D В D D E E \mathbf{E}

Рис. 2. Схема хромосомных мутаций

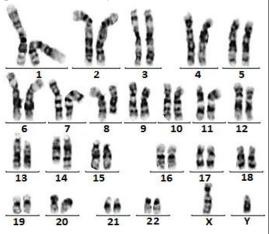
Таблица «Антимутагены»			
Экзогенные	Эндогенные		
Содержащиеся в продуктах: ✓ Аминокислоты (метионин, гистидин, аргинин, глютаминовая кислота и др.); ✓ Витамины и провитамины (A, E, C, K);	Антиоксидантная система		
 ✓ Полиненасыщенные жирные кислоты; ✓ Микроэлементы (Se), хлорид кобальта; ✓ Пищевые волокна 	S-содержащие соединения (глутатион)		
Проникающие в организм воздушно-ка- пельным путем (фитонциды)	Система репарации повреждено ДНК		
Антимутагены, поступающие в организм в процессе фармакотерапии, либо профилактического применения: ✓ Лекарства (стрептомицин, левомицитин	Мелатонин		
и др., применяемые в малых дозах); ✓ Специально синтезированные лекарства (бемитил);	Гормоны щитовидной железы		
✓ Биологически активные добавки (индол-3- карбинол и др.); ✓ Синтетические антимутагены (ионол, дибунол и др.)	Некоторые клеточные метаболиты		

Задание 2. Заполните таблицу «Классификации мутаций».

1. По причинам,	a)
вызвавшим мутации	6)
2. По мутировав-	a)
шим клеткам	6)
3. По изменению	a)
фенотипа	6)
4. По ноходу над	a)
4. По исходу для	б)
организма	в)
5. По изменению	a)
генетического	6)
материала	B)

Задание 3. Решите залачи.

Задача № 1. Ежедневно в каждой клетке человека около 200 цитозинов на гаплоидный геном превращается в урацил в результате спонтанного дезаминирования. К чему приведет дезаминирование цитозина при условии, что он метилирован?


Задача № 2. У женщины с моносомией по X-хромосоме обнаружен дальтонизм. Укажите ее генотип по гену дальтонизма, и вероятность передачи этого гена потомству.

Задача № 3. Женщина, переболевшая во время беременности коревой краснухой, родила глухого сына. У нее и мужа слух нормальный, в родословной обоих супругов глухота не отмечена. Как это можно объяснить?

Задача № 4. Известно, что лимфома Бёркитта (онкологическое заболевание, развивающееся из В-лимфоцитов) развивается из-за нарушения активности онкогена C-MYC, расположенного в 8-й хромосоме. Заболевание может быть спровоцировано тремя хромосомными мутациями:

- а) транслокация участка q-плеча 8-й хромосомы на q-плечо 14-й;
- б) транслокация участка р-плеча 2-й хромосомы на q-плечо 8-й;
- в) транслокация участка q-плеча 8-й хромосомы на q-плечо 22-й.

Имеется ли одна из данных мутаций в хромосомах, представленных на фотографии? Объясните, почему вы выбрали ваш вариант ответа.

Задача № 5. Отец голубоглазый, мать кареглазая (гомозиготна), а у дочери один глаз карий, а второй — голубой. Как это можно объяснить?

Задание 4. Объясните последовательность механизма работы эксцизионной репарации нуклеотидов. Образование Т-Т димера Повреждение ДНК

Задание 5. Заполните таблицу и сделайте выводы о влиянии различных точечных мутаций на структуру белка.

Изначальная иРНК	5'АУГАЦЦГАЦЦЦГАААГГГАЦЦЗ'
Пептид	
Мутация	5°АУГАЦЦГАЦЦЦ Ц АААГГГАЦЦ3°
Пептид	
Мутация	5'АУГЦЦЦГАЦЦЦГАААГГГАЦЦЗ'
Пептид	
Мутация	5°АУГАЦЦГАЦЦЦГ У ААГГГАЦЦЗ°
Пептид	
Мутация	5'АУГАЦЦГАЦГЦЦГАААГГГАЦЦЗ'
Пептид	

Задание 6. Установите соответствие между видом репарации и его характерными особенностями.

А. Прямая репарация	1. Склонный к ошибкам механизм соедине-		
	ния двуцепочечных разрывов		
Б. Репарации путем гомоло-	2. Происходит замена отдельного нуклео-		
гичной рекомбинации	тида		
В. Эксцизионная репарация	3. Способ, которым устраняются пиримиди-		
оснований	новые димеры у человека		
Г. Негомологичное соедине-	4. Повреждения устраняются без замены		
ние концов	нуклеотидов		
Д. Эксцизионная репарация	5. Репарация с участием белков, обладаю-		
нуклеотидов	щих эндо- и экзонуклеазной активностью и		
	последующим заполнением бреши в нук-		
	леотидной цепи ДНК-полимеразой		
Е. Репарация ошибочно спа-	6. Использование комплементарного		
ренных нуклеотидов	участка гомологичной хромосомы или сест-		
	ринской хроматиды для восстановления		
	двуцепочечного разрыва		

Α	Б	В	Γ	Д	Е

Подпись преподавателя

Занятие № 12. Тема: ГЕНЕТИКА ПОПУЛЯЦИЙ

‹ ‹	>>	202	г.

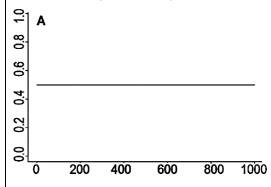
Цель занятия: изучить генетику популяций человека; влияние элементарных эволюционных факторов, научиться решать задачи с использованием закона Харди—Вайнберга.

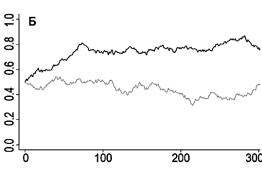
177	
контрольные вопросы	5. Естественный отбор —
 Популяция. Экологическая и генетическая характеристики популяции. Генофонд. Идеальная популяция. Закон Харди–Вайнберга. Факторы, нарушающие равновесие аллелей и генотипов: естественный отбор, мутации, миграция, дрейф генов. Отличительные признаки популяции человека. 	6. Иммиграция —
5. Типы браков. Инбридинг. Брачная ассортативность. Коэффициент инбридинга.6. Большие популяции, демы и изоляты. Особенности генофонда изолятов.	7. Коэффициент инбридинга —
 Эффекты родоначальника и «бутылочного горлышка». 7. Влияние элементарных эволюционных факторов на популяции человека. 8. Генетический груз, его биологическая сущность и медицинское значение. 	8. Положительное ассортативное скрещивание —
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ 1. Генетический груз —	9. Популяция —
2. Генофонд —	10. Эффект «бутылочного горлышка» —
3. Дем —	11. Эффект основателя (родоначальника) —
4. Дрейф генов —	

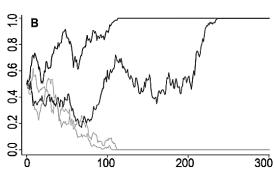
ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1. Характерные признаки идеальной популяции:** а) большая численность; б) малая численность; в) полная панмиксия; г) отсутствие мутаций; д) наличие мутаций.
- **2.** В математическом выражении закона Харди–Вайнберга р обозначает частоту: а) доминантной аллели; б) рецессивной аллели; в) доминантных гомозигот; г) рецессивных гомозигот; д) гетерозигот.
- **3.** В математическом выражении закона Харди–Вайнберга р² обозначает частоту: а) доминантной аллели; б) рецессивной аллели; в) доминантных гомозигот; г) рецессивных гомозигот; д) гетерозигот.
- **4.** В математическом выражении закона Харди–Вайнберга 2рq обозначает частоту: а) доминантной аллели; б) рецессивной аллели; в) доминантных гомозигот; г) рецессивных гомозигот; д) гетерозигот.
- **5.** Суть закона Харди-Вайнберга: а) существуют гомологические ряды в наследственной изменчивости; б) в малых популяциях частоты генов и генотипов не изменяются в ряду поколений; в) малые популяции не обладают генетическим полиморфизмом; г) в идеальной популяции частоты генов и генотипов не изменяются в ряду поколений; д) в идеальной популяции частоты генов и генотипов изменяются в ряду поколений.
- **6.** Дрейф генов это: а) случайные колебания частот генов и генотипов в популяциях; б) увеличение численности природных популяций; в) уменьшение численности природных популяций; г) колебания численности природных популяций вследствие колебаний факторов внешней среды; д) результат борьбы за существование.
- 7. Изоляция это: а) случайные колебания частот генов и генотипов в малых популяциях; б) стабильность частот генов и генотипов в больших популяциях; в) колебания численности природных популяций вследствие колебаний факторов внешней среды; г) ограничение свободного скрещивания между особями разных популяций; д) объединение малых популяций в большие.
- 8. Генетический груз это: а) насыщенность популяций положительными мутациями; б) насыщенность популяций мутациями, снижающими приспособленность отдельных особей; в) насыщенность популяций нейтральными мутациями; г) насыщенность популяций отрицательными мутациями; д) отсутствие мутаций в популяциях.

- **9.** Генетические процессы, сильно проявляющиеся в малых популяциях: а) соблюдается закон Харди—Вайнберга; б) изменяются рождаемость и смертность; в) изменяются частоты генотипов; г) изменяется возрастной и половой состав; д) изменяется численность.
- 10. Коэффициент инбридинга это: а) вероятность рождения дизиготных близнецов; б) вероятность инцестных браков; в) вероятность того, что у какой-то особи в данном локусе гомологичных хромосом окажутся две аллели, разные по происхождению; г) вероятность рождения монозиготных близнецов; д) вероятность того, что у какой-то особи в данном локусе гомологичных хромосом окажутся две аллели, одинаковые по происхождению.


ОТКРЫТЫЕ ТЕСТЫ


Вставьте пропущенное слово или понятие.


- 1. Приток в популяцию новых генотипов из других популяций называется...
- **2.** Популяции человека численностью от 1500 до 4000 человек, внутригрупповые браки в которых составляют 80–90 %, называются ...
- **3.** Популяции человека, численность которых не превышает 1500 человек и в которых внутригрупповые браки превышают 90 %, называются ...
- **4.** Отсутствие ограничений для скрещивания особей в популяции, называется ...
- **5.** Явление случайных колебаний частот генов и генотипов, особенно заметное в малых популяциях, называется ...
- **6.** Насыщение популяций рецессивными генами, снижающими приспособленность отдельных особей к условиям существования, называется
- **7.** Кровнородственные браки приводят к ... депрессии, так как у родственников высока степень вероятности гетерозиготности по одному и тому же рецессивному патологическому гену.

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите схему и объясните механизм наблюдаемого явления.

Puc. 1. Моделирование дрейфа генов

По оси X — поколения, по Y — частота p.

Обе аллели не влияют на приспособленность, изначальная частота p=0,5.

А — идеальная популяция на протяжении 1000 поколений, дрейфа нет;

Б — 2 популяции из 1000 особей на протяжении 300 поколений:

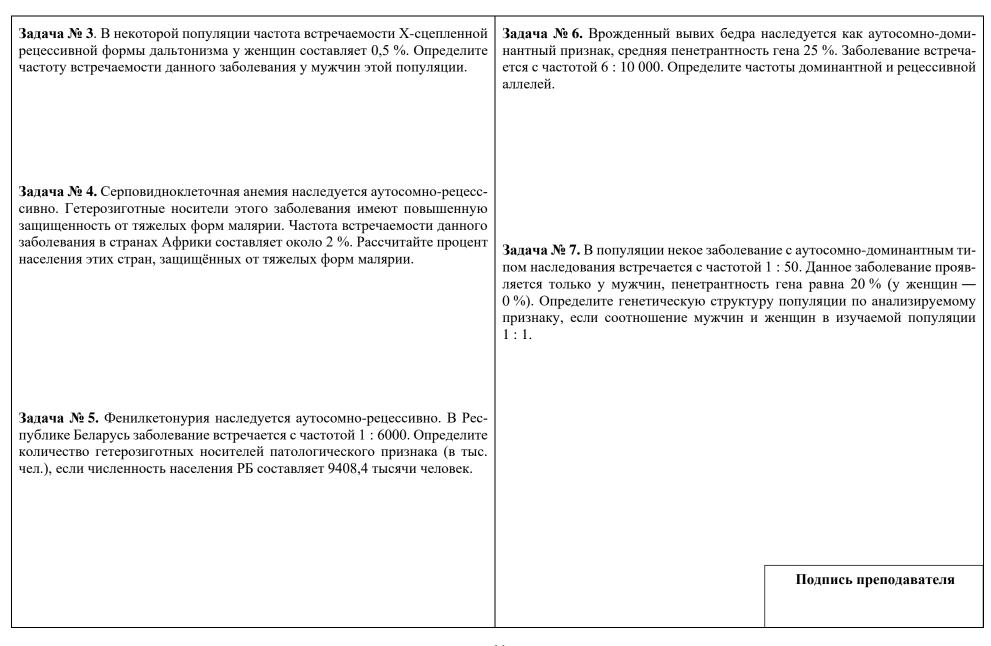
В — 4 популяции из 100 особей на протяжении 300 поколений.

Менее чем за 300 поколений одна из аллелей теряется (частота p достигает либо 0 %, либо 100 %).

Залание 2. Решите задачи.

Задача № 1. Определите частоту встречаемости альбиносов в большой по численности африканской популяции, где концентрация патологического рецессивного гена составляет 10 %.

Признак	Ген	Генотип
Норма	В	BB; Bb
Альбинизм	b	bb


 ${\bf B}$ — частота доминантной аллели $({\bf p}); {\bf b}$ — частота рецессивной аллели $({\bf q});$

BB — частота доминантных гомозигот (p^2); Bb — частота гетерозигот (2pq);

bb — частота рецессивных гомозигот (q^2).

$$p + q = 1$$
$$p^2 + 2pq + q^2 = 1$$

Задача № 2. В ходе обследования 4300 лиц одной из популяций было обнаружено, что 3009 из них могут распознать горький вкус фенилтиокарбамида (ФТК), а 1291 — нет. Определите генетическую структуру данной популяции, если способность ощущать вкус ФТК наследуется как аутосомно-доминантный признак

Занятие № 13. Тема: ГЕНЕТИКА ЧЕЛОВЕКА

‹ ‹	>>	202	Γ.

Цель занятия: изучить задачи генетики человека на современном этапе, основные методы, экспресс-методы и методы пренатальной диагностики наследственных заболеваний; научиться решать задачи по анализу родословных, выявлению роли наследственности и среды в формировании признаков.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Генетика человека. Медицинская генетика и ее задачи.
- 2. Человек как специфический объект генетического анализа.
- 3. Классификация методов генетики человека.
- **4.** Основные методы генетики человека: генеалогический, близнецовый, цитогенетический, биохимический и другие.
- **5.** Методы диагностики хромосомных болезней человека: классическое кариотипирование, FISH-, SKY- и SNP-кариотипирование.
- **6.** Экспресс-методы диагностики: микробиологические, выявление X- и Y- полового хроматина, биохимические, дерматоглифический.
- 7. Пренатальные методы выявления наследственной патологии.
- **8.** Пренатальный скрининг. Морально-этические аспекты пренатальной диагностики.
- **9.** Медико-генетическое консультирование, его цели, задачи и этапы. По-казания для медико-генетического консультирования.

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

- 1. Биологическое моделирование —
- 2. Кариотипирование спектральное (SKY) —
- 3. Конкордантность —
- 4. Пробанд —
- 5. Родословная —
- 6. Скрининг новорожденных (неонатальный скрининг) —
- 7. Цитогенетика —

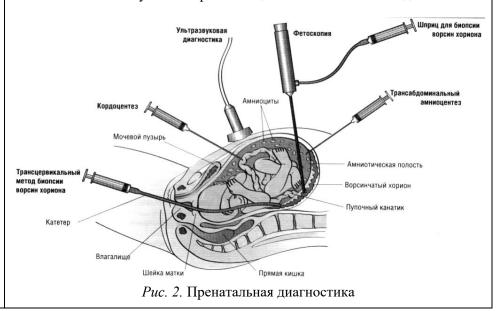
ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1. Трудности изучения генетики человека:** а) простой кариотип; б) раннее половое созревание; в) малое количество потомков; г) большое количество потомков; д) возможность экспериментирования.
- **2.** Этапы генеалогического анализа: а) сбор анамнеза; б) определение частот генов и генотипов в популяции; в) построение генетической карты хромосомы; г) изучение роли среды в проявлении признака; д) анализ родословной.
- **3. Цитогенетический метод основан:** а) на использовании закона Харди–Вайнберга; б) изучении активности ферментов; в) построении и анализе родословных; г) изучении моно- и дизиготных близнецов; д) на изучении кариотипа.
- 4. Последовательность этапов цитогенетического метода: 1) обработка клеток гипотоническим раствором NaCl; 2) окрашивание хромосом; 3) остановка митоза колхицином на стадии метафазы; 4) культивирование клеток на искусственных питательных средах; 5) стимуляция митозов $\Phi\Gamma$ A. a) 1-5-3-4-2; б) 4-5-3-1-2; в) 4-1-5-3-2; г) 5-3-4-1-2; д) 4-5-1-3-2.
- **5.** Формула Хольцингера используется для вычисления: а) частоты генов и генотипов в популяции; б) коэффициента наследования; в) роли среды в проявлении признака; г) вероятности наследования; д) степени генетического риска.
- **6.** Биохимические методы генетики человека это изучение: а) общего анализа крови; б) активности ферментов плазмы крови; в) активности ферментов желудочного сока; г) состава первичной мочи; д) пространственной структуры ферментов.
- **7. Микробиологические тесты позволяют:** а) строить генетические карты хромосом человека; б) определять количество X-хромосом; в) определять количество Y-хромосом; г) выявлять некоторые хромосомные мутации; д) выявлять некоторые дефекты обмена веществ.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- **1.** Вероятность рождения больного ребенка у гетерозиготных родителей при аутосомно-доминантном типе наследования (полное доминирование, пенетрантность гена 25%) составляет ... %.
- **2.** Вероятность рождения больных детей при X-сцепленном доминантном типе наследования у гетерозиготной матери и здорового отца (пенетрантность гена 40%) составляет ... %.
- **3.** Тип наследования, при котором отец передает свой признак всем дочерям, но ни одному из сыновей, называется ...
- **4.** Метод генетики, позволяющий выявлять геномные и хромосомные мутации, называется ...
- **5.** Гетерозиготных носителей патологического гена позволяют выявлять биохимические ... тесты.


ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Заполните таблицу.

	Конкордан	нтность, %		Фактор,
Признаки	монози-	Дизигот-		определяющий
или заболевания	готные	ные близ-	Н	проявление признака
или заоблевания	близнецы	нецы		(наследственность
	(MZ)	(DZ)		или среда)
Папиллярные линии	92	40		
Корь	95	87		
Туберкулез	76	28		
Сахарный диабет	69	18		
Шизофрения	65	10		
Расщелины губы и нёба	30	5		
Эндемичный зоб	92	87		
Флюороз эмали	97	94		

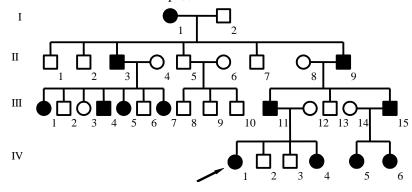
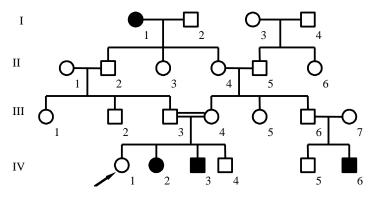

Задание 2. Изучите рисунки. ** ** ** ** ** ** XX XX Кариотип Фотографирование Распределение клеток на предметном стекле Отделение эритроцитов путём раскапывания **Добавление** среды в суспензию Фиксация клеток лейкопитов Инкубация добавление Отделение Гипотонизация гечение 3 дней колхицина лейкоцитов солевым раствором

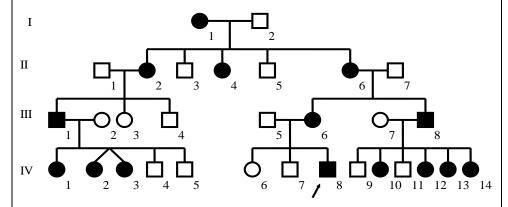
Рис. 1. Получение кариотипа цитогенетическим методом

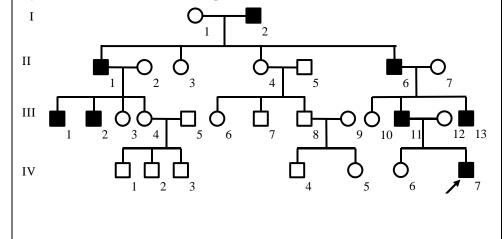
Задание 3. Решите задачи.


Задача № 1. Проанализируйте родословную, определите тип наследования и установите генотипы членов родословной.

Тип	Название	Локализация	Признаки
наследования	синдрома	гена	Признаки
Аутосомно-	Волосо-зубо-	Длинное плечо	Мелкие зубы с тонкой эма-
доминантный	костный	17-й хромосомы	лью, аномальное расположе-
	синдром		ние пульпы и увеличенную
			полость
	Глазо-зубо-	Длинное плечо	Неправильный рост зубов,
	пальцевый	6-й хромосомы	микродентия и частичная
	синдром		адентия, гипоплазия эмали,
			ранний кариес
	Синдром	Длинное плечо	Гипоплазия нижней челюсти
	Томсона	5-й хромосомы	(78 %) и скуловых костей
			(81 %), высокое арковидное
			нёбо или его расщелина
			(35 %)
	ЕЕС-синдром	Длинное плечо	Расщелина губы и нёба, мик-
		7-й хромосомы	родентия, неправильная
			форма зубов, гипоплазия
			эмали

Примечание. После названия аномалии в скобках указана пенетрантность признака.

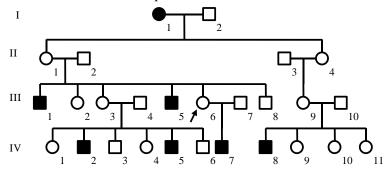

Задача № 2. Проанализируйте родословную, определите тип наследования и установите генотипы членов родословной.


Тип	Название син-	Локализация	Признаки
наследования	дрома	гена	
Аутосомно-	Синдром	Длинное плечо	Гипоплазия верхней челюсти (81 %), выступающие резцы (65 %), микрогения (97 %)
рецессивный	Коэна	8-й хромосомы	
	Хондроэкто- дермальная дистрофия	Короткое плечо 4-й хромосомы	Частичная адентия, мелкие, рано выпадающие зубы неправильной формы, расщелина губы
	Пикнодизостоз	Длинное плечо 1-й хромосомы	Гипоплазия нижней челюсти, нарушение прорезывания зубов, аномалии формы и расположения зубов

Примечание. После названия аномалии в скобках указана пенетрантность признака.

Задача № 3. Проанализируйте родословную, определите тип наследования и установите генотипы членов родословной.

Задача № 4. Проанализируйте родословную, определите тип наследования и установите генотипы членов родословной.

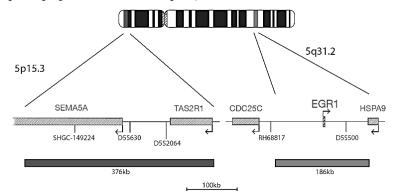


Тип	Название	Локализация	Аномалии
наследования	синдрома	гена	
Х-сцепленный	Рото-лице-	Короткое	Расщелина нёба (80%),
доминантный	пальцевой	плечо	аномалии передних зубов
	синдром, тип I	Х-хромосомы	(50 %, дольчатость языка (100 %), гипоплазия скуловых костей (75 %)
	Ото-палато- дигитальный синдром	Длинное плечо X-хромосомы	Расщелина нёба, аномальный рост зубов, частичная адентия
	Синдром недержания пиг-	Длинное плечо	Коническая форма зубов, гипо- или адентия (65 %),
	мента	Х-хромосомы	расщелина губы и нёба

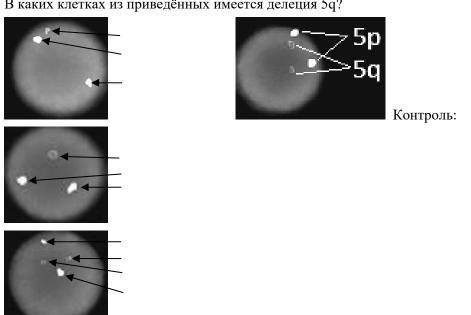
признака.

Голандриче-	Азооспермия	Негомологичный	Мужское бесплодие. Сек-
ский		участок	суальная функция может
		Ү-хромосомы	оставаться не нарушен-
			ной. Дискомфорт, боль,
			отек или припухлость мо-
			шонки

Задача № 5. Проанализируйте родословную, определите тип наследования и установите генотипы членов родословной.



Тип	Название	Локализация	Признаки
наследования	синдрома	гена	
Х-сцепленный	Ангидротическая	Длинное плечо	Гипо- или адентия,
рецессивный	эктодермальная	Х-хромосомы;	аномальная форма
	дисплазия;		зубов, тремы
	Синдром	Короткое плечо	Гипоплазия верхней
	Аарского	Х-хромосомы	челюсти (85 %),
			макродентия


Примечание. После названия аномалии в скобках указана пенетрантность.

Задача № 6. Конкордантность монозиготных близнецов по избыточной массе тела составляет 80 %, а дизиготных — 30 %. Каково соотношение наследственных и средовых факторов в формировании признака?

Задача № 7. Для проверки на наличие делеции в длинном плече пятой хромосомы использовался метод FISH. Сигналы от зондов к p- и q-плечам данной хромосомы имеют зеленый и красный цвета соответственно (на чернобелой фотографии — белый и серый).

В каких клетках из приведённых имеется делеция 5q?

Задание 4. Заполните таблицу. Задача № 8. Определите наследственную патологию по идиограмме (кариотипу). Методы генетики Цель и возможности метода Запись мутации: ____ человека Название заболевания: ____ 1. Генеалогический Характерные признаки: 2. Цитогенетический 3. Близнецовый 4. Биохимический Запись мутации: ___ 5. Метод Название заболевания: _ биологического Характерные признаки: моделирования 6. Методы пренатальной диагностики 7. Методы экспрессдиагностики Подпись преподавателя

Занятие № 14. ИТОГОВОЕ ЗАНЯТИЕ ПО МОЛЕКУЛЯРНОЙ БИОЛОГИИ И ГЕНЕТИКЕ

« »	202	Γ.
-----	-----	----

Цель занятия: итоговый контроль знаний студентов по цитологии и генетике и умению решать типовые задачи.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Сущность жизни, роль белков и нуклеиновых кислот в организации живых систем. Уровни организации живой материи.
- 2. Роль биологии в системе медицинского образования.
- 3. Человек как биологическое и социальное существо.
- **4.** Клеточная теория. Предмет, задачи и методы цитологии (световая, электронная и люминисцентная микроскопия, гистохимический и иммуногистохимический, дифференциальное центрифугирование, авторадиография, морфометрия и др.).
- 5. Вирусы. Прокариоты и эукариоты.
- **6.** Модели элементарной биологической мембраны. Строение, свойства и функции плазмалеммы.
- **7.** Транспорт веществ через мембрану: пассивный транспорт (диффузия, осмос, облегченная диффузия), активный транспорт (ионные каналы, их функции, эндоцитоз, экзоцитоз). Ионные каналы и их функции.
- **8.** Цитозоль. Цитоскелет: микротрубочки, промежуточные филаменты, микрофиламенты. Внутриклеточный транспорт веществ.
- 9. Ассимиляция и диссимиляция. Пластический обмен. Рибосомы.
- **10.** Эндомембранная система клетки (мембрана ядра, ЭПС, КГ, лизосомы, пероксисомы, эндосомы, везикулы).
- **11.** Характеристика этапов энергетического обмена в клетке. Митохондрии. Ферментные системы митохондрий.
- 12. Болезни человека, обусловленные нарушениями на клеточном уровне (лизосомные и пероксисомные).
- 13. Доказательства роли ДНК в передаче наследственной информации.
- 14. Строение и функции ДНК. Правила Чаргаффа.
- **15.** Организация наследственного материала у неклеточных и прокариотических форм жизни.
- 16. Строение и функции ядра клетки.
- **17.** Организации генетического материала (генный, хромосомный и геномный уровни). Упаковка генетического материал. Эухроматин и гетерохроматин.
- **18.** Строение метафазной хромосомы. Типы хромосом. Правила хромосом. Кариотип и идиограмма. Классификации хромосом человека.

- 19. Плазмогены. Цитоплазматическая наследственность.
- **20.** Клеточный цикл. Регуляторы клеточного цикла (циклины и циклинзависимые киназы). Интерфаза.
- 21. Полуконсервативный механизм репликации ДНК. Репликон.
- 22. Амитоз, эндомитоз. Политения. Бинарное деление прокариот.
- 23. Митоз: характеристика фаз, распределение генетического материала, биологическое значение. Мейоз: характеристика фаз, распределение генетического материала, биологическое значение.
- 24. Клеточная пролиферация и гибель клеток. Некроз и апоптоз. Каспазы.
- 25. Центральная догма молекулярной биологии.
- 26. Ген, его свойства и функции. Генетический код и его свойства.
- 27. Рибонуклеиновая кислота, ее виды, функции РНК.
- **28.** Транскрипция. Транскрипционные факторы. Синтез иРНК у эукариот: первичный транскрипт, процессинг про-иРНК.
- 29. Рекогниция. Трансляция: инициация, элонгация и терминация.
- 30. Посттрансляционные изменения белков, фолдинг белков (шапероны).
- **31.** Международные научные проекты изучения генома человека: Human genome, NCODE, Roadmap.
- 32. Характеристика генома человека. Избыточность генома, ее значение
- 33. Классификация генов (структурные и функциональные, гены домашнего хозяйства и тканеспецифические).
- 34. Транскриптом, протеом и метаболом человека.
- 35. Оперон. Лактозный и триптофановый опероны. Полицистронная РНК.
- **36.** Регуляция транскрипции у эукариот: преинициаторный комплекс, энхансеры, сайленсеры.
- **37.** Эпигенетические механизмы регуляции работы генов: модификации гистонов, метилирование цитозина, СрG-островки, регуляторные системы некодирующих РНК.
- **38.** Методы исследования ДНК: гель-электрофорез, рестрикционный анализ, гибридизация нуклеиновых кислот, ДНК-микрочипы.
- **39.** ПЦР и ее виды: количественная ПЦР, ПЦР с обратной транскрипцией, мультиплексная ПЦР.
- **40.** Методы секвенирования генома (по Сэнгеру, пиросеквенирование, нанопоровое, бисульфитное).

- **41.** Генетическая инженерия: цели, задачи и этапы. Способы получения генов для трансгенеза.
- **42.** Рекомбинантная ДНК. Конструирование векторов, их виды: плазмиды, космиды, фаговые векторы, фазмиды.
- **43.** Введение рекомбинантных ДНК в клетку-реципиент. Отбор трансформированных клеток. Селективные и репортерные гены.
- **44.** Биотехнология, ее значение для медицины. Генетически модифицированные организмы. Продукты питания, содержащие ГМО.
- 45. Генетика как наука. Гибридологический анализ, его сущность.
- **46.** Закономерности наследования при моногибридном скрещивании. Гипотеза чистоты гамет. Закономерности наследования при полигибридном скрещивании.
- **47.** Анализирующее скрещивание: прямое и возвратное. Условия, ограничивающие проявление законов Г. Менделя. Плейотропное действие гена.
- **48.** Внутриаллельное взаимодействие генов (полное и неполное доминирование, сверхдоминирование, кодоминирование и аллельное исключение).
- **49.** Множественные аллели. Наследование групп крови по системам: AB0, MN и резус-фактору.
- **50.** Межаллельное взаимодействие генов (комплементарность, эпистаз, полимерия).
- **51.** Опыты Т. Моргана. Сцепление генов: полное и неполное. Группы сцепления. Хромосомная теория наследственности. Генетические и цитологические карты хромосом.
- **52.** Пол как биологический признак. Признаки ограниченные и контролируемые полом, сцепленные с полом и голандрические. Теории определения пола. Дифференцировка и переопределение пола в онтогенезе. Генная регуляция гонадогенеза у человека.
- **53.** Особенности детерминации пола у человека: физикальные, промежуточная и социально-психологические детерминанты.
- **54.** Нарушения формирования пола у человека. Этические и юридические аспекты изменения морфологического и гражданского пола.
- **55.** X-половой хроматин. Гипотеза М. Лайон о женском мозаицизме по половым хромосомам.
- 56. Изменчивость, ее виды. Фенотипическая изменчивость, фенокопии.
- **57.** Генотипическая изменчивость. Рекомбинации, механизмы их возникновения. Мутационная изменчивость.

- **58.** Классификации мутаций. Причины мутаций: ошибки копирования ДНК, неравный кроссинговер. Генокопии.
- **59.** Физические, химические и биологические мутагенные факторы. Генетическая опасность загрязнения окружающей среды мутагенами.
- 60. Устойчивость и репарация генетического материала. Антимутагены.
- **61.** Виды репарации. Виды эксцизионной репарации, репарация двуцепочечных разрывов. Фотореактивация. Роль нарушений механизмов репарации в патологии человека.
- 62. Канцерогенез, понятие об онкогенах и генах-супрессорах опухолей.
- **63.** Популяция. Экологическая и генетическая характеристики популяции. Генофонд. Идеальная популяция. Закон Харди-Вайнберга.
- **64.** Факторы, нарушающие равновесие аллелей и генотипов: естественный отбор, мутации, миграция, дрейф генов.
- **65.** Отличительные признаки популяции человека. Типы браков. Инбридинг. Брачная ассортативность. Коэффициент инбридинга.
- **66.** Большие популяции, демы и изоляты. Особенности генофонда изолятов. Эффекты родоначальника и «бутылочного горлышка».
- **67.** Влияние элементарных эволюционных факторов на популяции человека. Генетический груз, его биологическая сущность и медицинское значение.
- 68. Генетика человека. Медицинская генетика и ее задачи.
- **69.** Человек как специфический объект генетического анализа. Классификация методов генетики человека. Основные методы: генеалогический, близнецовый, цитогенетический, биохимический и другие.
- **70.** Методы диагностики хромосомных болезней человека: классическое кариотипирование, FISH-, SKY- и SNP-кариотипирование.
- **71.** Экспресс-методы диагностики: микробиологические, выявление X- и Y-полового хроматина, биохимические, дерматоглифический.
- 72. Пренатальные методы выявления наследственной патологии.
- **73.** Пренатальный скрининг. Морально-этические аспекты пренатальной диагностики.
- **74.** Медико-генетическое консультирование, его цели, задачи и этапы. По-казания для медико-генетического консультирования.

Коллоквиум (компьютерное тестирование) содержит 22 вопроса: 12 закрытых вопросов (от 1 до 3 верных вариантов, засчитывается только полный ответ), 5 открытых вопросов, 3 задачи, 2 теста на установление соответствия либо последовательности. На решение отводится 25 минут.

ОЦЕНОЧНЫЙ ЛИСТ (чек-лист) для контроля практических навыков (решение задач) по разделу «Генетика»

Задание № 1.

У	п -	0
№	Параметр выполнения действия	Отметка в
Π/Π		баллах
1.		
2.		
3.		
4.		
5.		
	Итоговая оценка	

Задание № 2.

<u>№</u> п/п	Параметр выполнения действия	Отметка в баллах
11/11		Оаллах
1.		
2.		
2.		
3.		
4.		
		
5.		
	Итоговая оценка	
	Общая оценка практического навыка	
	Преподаватель И.О. Фамилия	
	Дата	

Занятие № 15. Тема: РАЗМНОЖЕНИЕ ОРГАНИЗМОВ

‹ ‹	>>	202	Γ
11	//	202	

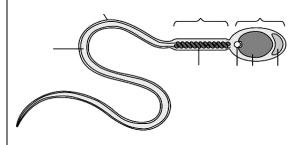
Цель занятия: изучить размножение как одно из универсальных свойств живого, его способы и эволюцию; изучить строение половых клеток, гаметогенез и особенности репродукции человека.

КОНТРОЛЬНЫЕ ВОПРОСЫ 5. Оплодотворение — 1. Размножение — универсальное свойство живого. Формы бесполого размножения, биологическое значение. 2. Формы полового размножения, биологическое значение. Половой про-6. Половой процесс цесс. Гермафродитизм. 3. Гаметогенез (овогенез и сперматогенез) у человека. 4. Регуляция гаметогенеза у человека. 7. Пронуклеус — 5. Морфологические и функциональные особенности зрелых гамет человека. 6. Осеменение. Особенности оплодотворения у человека. 8. Синкарион — 7. Преодоление бесплодия у человека. Искусственное осеменение, экстракорпоральное оплодотворение и его варианты. 8. Преимплантационная генетическая диагностика. 9. Сперматогенез — 9. Этические проблемы научных исследований с использованием человеческих эмбрионов. ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ 1. Основные формы размножения организмов: а) половое; б) с оплодо-1. Акросома творением; в) партеногенез; г) фрагментация; д) бесполое. 2. Характеристика бесполого размножения: а) в воспроизведении себе подобного участвуют две особи; б) в воспроизведении себе подобного 2. Анизогамия участвует одна особь; в) генотип дочерней особи отличается от родительского; г) генотип дочерней особи идентичен родительскому; д) число дочерних особей возрастает медленно. 3. Гиногенез — 3. Характеристика полового размножения: а) в воспроизведении себе подобного участвуют две особи; б) в воспроизведении себе подобного всегда участвует одна особь; в) генотип дочерней особи отличается от родительских; г) генотип дочерней особи идентичен родительским; д) быстро 4. Оогенез увеличивается число дочерних особей. 4. Формы бесполого размножения животных: а) вегетативными орга-

нами; б) конъюгация; в) копуляция; г) полиэмбриония; д) фрагментация.

- **5.** Половой процесс это: а) размножение организмов; б) слияние двух гамет; в) образование половых клеток; г) обмен генетической информацией между особями одного вида; д) объединение генетической информации особей одного вида.
- **6.** Продвижение сперматозоидов в женских половых путях обеспечивается: а) подвижностью сперматозоидов; б) неподвижностью яйцеклетки; в) сокращением мышечной оболочки стенки яйцевода; г) выделением гиногамонов; д) сокращением мышц брюшной стенки.
- **7.** Типы яйцеклеток в зависимости от содержания и распределения желтка: а) изолецитальные; б) анимальные; в) вегетативные; г) центролецитальные; д) смешанные.
- **8. Изолецитальные яйцеклетки:** а) содержат много желтка; б) содержат мало желтка; в) желток распределен равномерно; г) желток сконцентрирован на вегетативном полюсе: д) желток расположен на анимальном полюсе.
- **9.** Оплодотворение это: а) слияние яйцеклетки и сперматозоида; б) процесс сближения яйцеклетки и сперматозоида; в) движение сперматозоидов по половым путям самки; г) выход яйцеклетки из яичника; д) половой процесс.
- **10. Характерные признаки сперматозоида:** а) подвижен; б) неподвижен; в) имеет округлую или овальную форму; г) имеет головку, шейку и хвост; д) содержит мало желтка.
- **11. Партеногенез это:** а) слияние сперматозоида и яйцеклетки; б) половой процесс; в) сближение сперматозоида и яйцеклетки; г) развитие яйцеклетки после оплодотворения; д) развитие яйцеклетки без оплодотворения.
- **12.** Этапы оплодотворения: а) разрушение яйцеклеток гиалуронидазой сперматозоидов; б) дистантное взаимодействие гамет; в) контактное взаимодействие гамет; г) проникновение головки и шейки сперматозоида в цитоплазму яйцеклетки; д) дробление яйцеклетки.
- **13.** Особенности репродукции человека: а) женщины способны к репродукции с периода полового созревания до пожилого возраста; б) мужчины способны к репродукции с периода полового созревания до 50 лет; в) у женщин в течение лунного месяца образуется один овоцит ІІ порядка; г) у мужчин сперматозоиды образуются периодически; д) чем старше мужчина, тем больший промежуток времени между мейозом-1 и мейозом-2.

- **14. Периоды овогенеза:** а) развития, размножения и роста; б) размножения, роста и созревания; в) роста, созревания и формирования; г) созревания, формирования и развития; д) формирования, роста и развития.
- **15.** В период размножения при гаметогенезе клетки делятся: а) митозом; б) мейозом; в) амитозом; г) фрагментацией; д) шизогонией.
- **16.** В период созревания при гаметогенезе клетки делятся: а) митозом; б) мейозом; в) амитозом; г) фрагментацией; д) шизогонией.
- **17.** В результате мейоза образуются клетки: а) с диплоидным набором хромосом; половые; б) с гаплоидным набором хромосом; в) нервные с диплоидным набором хромосом; г) соматические с гаплоидным набором хромосом; д) половые.
- **18.** Гаметогенез это: а) деление соматических клеток; б) размножение гамет; в) слияние гамет; г) процесс образования и созревания гамет; д) мейотическое деление клеток.


ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- 1. Обмен генетической информацией между особями одного вида называется ...
- 2. Стадия слияния женского и мужского пронуклеусов при оплодотворении называется ...
- 3. Половое размножение без оплодотворения называется ...
- **4.** Развитие организма на основе генетической информации только мужских гамет называется ...
- 5. В период размножения при гаметогенезе клетки делятся ...
- 6. В период созревания при гаметогенезе клетки делятся ...
- **7.** Бесполое размножение зародыша, возникшего путем полового размножения, называется ...
- **8.** Гамоны, инактивирующие агглютинацию сперматозоидов, называются ...
- 9. Сперматозоиды человека обладают способностью к оплодотворению в течение ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите схемы и микропрепараты, сделайте обозначения.

Рис. 1. Схема сперматозоида человека:

- 1 головка,
- 2 средняя часть,
- 3 мембрана,
- 4 акросома,
- 5 ядро,
- 6 митохондрии,
- 7 жгутик,
- 8 центросома

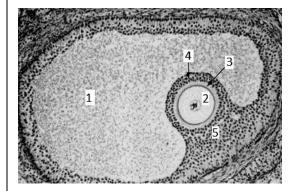
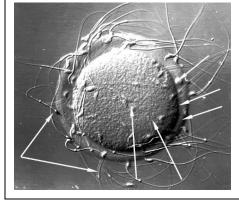



Рис. 2. Граафов пузырек:

- овоцит II порядка,
- яйценосный бугорок,
- лучистый венец,
- полость фолликула,
- прозрачная оболочка

Puc. 3. Оплодотворение яйцеклетки мыши *in vitro:*

- 1 полярное тельце,
- 2 прозрачная оболочка,
- 3 пронуклеус,
- 4 мембрана,
- 5 цитоплазма,
- 6 сперматозоиды

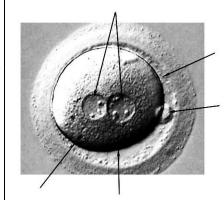


Рис. 4. Зигота человека:

- 1 полярное тельце,
- 2 прозрачная оболочка,
- 3 пронуклеусы,
- 4 мембрана,
- 5 цитоплазма.

Задание 2. Заполните таблицу «Отличия полового и бесполого размножения».

Тип размножения	Половое	Бесполое
Оплодотворение		
Изменение набора хромосом		
Генотип потомства		
Скорость воспроизведения потомства		
Количество родительских организмов		
Используемые клетки		
Биологическая роль		

Залание 3. Решите залачи.

Задача № 1. В овоците II порядка и в сперматоците II порядка в одной из хроматид возник мутантный ген. Одинакова ли вероятность наличия этого гена в мужской и женской гамете?

Задача № 2. Для половых клеток характерно необычное отношение объема ядра к объему цитоплазмы: у яйцеклеток оно сильно снижено (1 : 500), а у сперматозоидов, наоборот, ядерно-цитоплазматическое отношение очень высокое (2 : 1). Свяжите показатели ядерно-цитоплазменных отношений с функциональной ролью половых клеток.

Задача № 3. При вскрытии трупа 22-летней женщины оказалось, что при исследовании яичников в них обнаружено:

Правый яичник (меньший)	Левый яичник (больший)
17 000 фолликулов	25 000 фолликулов
26 рубцов от желтых тел	48 рубцов от желтых тел

В каком приблизительно возрасте у этой женщины могли начаться овуляции?

Задача № 4. При партеногенезе организм развивается из неоплодотворенной яйцеклетки. Почему сперматозоид без оплодотворения не может дать начало новому организму?

Задача № 5. Белая планария — гермафродит и может дать потомство в результате самооплодотворения. Кроме этого, она способна размножаться бесполым путем. Одинаков ли генотип у потомков одной особи, полученных в результате самооплодотворения и в результате бесполого размножения?

Задача № 6. При исследовании оплодотворяющей способности сперматозоидов у мужчин по фамилии П. и И. установлено, что сперматозоиды выглядят нормально, но у П. они не движутся, а у И. собираются на наружной оболочке женской половой клетки, не проникая внутрь. Объясните, с дефектами в каких структурах теоретически могут быть связаны эти нарушения?

Задание 4. Изучите рисунок.

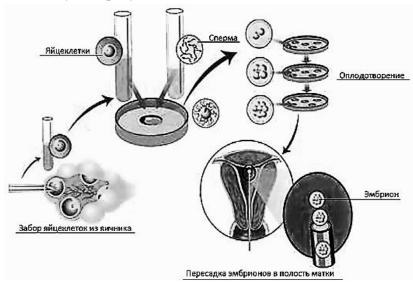


Рис. 5. Экстракорпоральное оплодотворение

Показания к проведению ЭКО

Мужское бесплодие:

- снижение количества, подвижности сперматозоидов;
- нарушение нормального строения сперматозоидов;
- отсутствие сперматозоидов в эякуляте из-за «закупорки» семявыносящих протоков.

Женское бесплодие:

- отсутствие или непроходимость маточных труб;
- ановуляция (недостаточность яичников, выражающаяся в отсутствии созревания фолликулов и овуляции);
- поздний репродуктивный возраст (при истощении функции яичников может потребоваться использовать яйцеклетки донора или донорские эмбрионы);
- во всех случаях безуспешного лечения бесплодия (эндометриоз, нарушения овуляции и т.д.) другими методами. Бесплодие неясного генеза.

Задание 5. Заполните таблицу «Этапы ЭКО».

Название этапа	Описание этапа
1.	
2.	
3.	
4.	
5.	
6.	
7.	

Подпись преподавателя

Занятие № 16. Тема: ГЕНЕТИЧЕСКИЕ ОСНОВЫ ОНТОГЕНЕЗА

~	>>	202	Γ.

Цель занятия: изучить стадии эмбриогенеза, механизмы реализации генетической информации в эмбриогенезе; изучить периодизацию онтогенеза человека, критические периоды онтогенеза, типы роста тканей, основные теории старения; иметь представления о геронтологии, гериатрии, акселерации, реанимации.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Онтогенез, его типы. Периодизация онтогенеза.
- **2.** Эмбриональный период, характеристика стадий (предзиготный период, зигота, дробление, гаструляция, гисто- и органогенез).
- **3.** Взаимодействие частей развивающегося организма. Эмбриональная индукция, морфогенетические поля, градиент физиологической активности.
- **4.** Периодизация постнатального онтогенеза у человека. Генный контроль постэмбрионального развития.
- **5.** Рост и развитие организма человека, их регуляция. Акселерация. Конституция и габитус человека, и их медицинское значение.
- **6.** Критические периоды пренатального постнатального онтогенеза. Тератогенные факторы.
- 7. Старение. Смерть организма.

- 6. Гериатрия —
- 7. Геронтология —
- 8. Конституция человека —
- 9. Критические периоды онтогенеза —

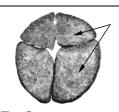
ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

- 1. Акселерация —
- 2. Амнион —
- 3. Бластула —
- 4. Габитус человека —
- 5. Гаструляция –

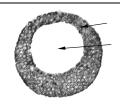
ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1.** Первопричинами дифференцировки клеток в процессе эмбриогенеза являются: а) химическая однородность цитоплазмы яйцеклетки; б) химическая разнородность цитоплазмы яйцеклетки; в) химическая однородность цитоплазмы сперматозоида; г) химическая разнородность цитоплазмы сперматозоида; д) разные потенции анимального и вегетативного полюсов яйпеклетки.
- **2.** Реализация действия генов в онтогенезе: а) ДНК → белок-фермент → и-РНК → биохимическая реакция → признак; б) ДНК → и-РНК → белок-фермент → биохимическая реакция → признак; в) другие гены влияют на проявление признака; г) другие гены не влияют на проявление признака; д) факторы внешней среды не влияют на проявление признака.
- **3.** Способы гаструляции: а) инвагинация; б) телобластический; в) иммиграция; г) деляминация; д) энтероцельный.
- **4. Производные мезодермы:** а) мышцы; б) скелет; в) дыхательная система; г) хорда; д) эпидермис кожи.

- **5. Производные** энтодермы: а) эпителий задней кишки; б) нервная система; в) дыхательная система; г) мочеполовая система; д) хорда.
- **6.** Характерные признаки тотипотентных клеток: а) их развитие окончательно запрограммировано; б) их развитие не запрограммировано; в) каждая из них может дать начало любому типу клеток; г) каждая из них может дать начало только определенному типу клеток; д) большинство транскриптонов заблокированы.
- **7. Характерные признаки** детерминированных клеток: а) их развитие окончательно запрограммировано; б) их развитие не запрограммировано; в) каждая из них может дать начало любому типу клеток; г) каждая из них может дать начало только определенному типу клеток; д) в работу может включаться большинство блоков генов.
- **8. Критические периоды эмбриогенеза у человека:** а) предэмбриональный; б) оплодотворение; в) имплантация; г) плацентация; д) роды.
- **9.** Критические периоды постнатального онтогенеза человека: а) роды; б) новорождения; в) полового созревания; г) полового увядания; д) старческий возраст.
- **10.** Общий тип роста характерен для: а) тела в целом; б) головы, головного и спинного мозга; в) тимуса и селезенки; г) половых органов; д) скелета и мыши.
- **11.** Гиперстеники предрасположены к: а) неврозам; б) гипертонической болезни; в) язвенной болезни желудка и 12-перстной кишки; г) атеросклерозу; д) ожирению.
- **12. Морфофизиологические особенности астеников:** а) широкая грудная клетка; б) узкая грудная клетка; в) пониженная возбудимость; г) высокое содержание холестерина в крови; д) низкое артериальное давление.
- **13. Морфофизиологические особенности нормостеников:** а) пропорциональное телосложение; б) узкая грудная клетка; в) толстые кости; г) умеренное отложение жира; д) высокое содержание холестерина в крови.
- **14.** Суть генетических гипотез старения: а) изменения коллоидных свойств цитоплазмы; б) снижение продукции половых гормонов; в) нарушение процессов репарации и репликации ДНК; г) нарушение процессов адаптации и регуляции; д) запрограммированное число митозов клеток.
- **15. Критерии биологического возраста:** а) степень развития волосяного покрова; б) размеры половых органов; в) скелетозрелость; г) рост человека; д) зубная зрелость.


ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.


- **1.** Период эмбрионального развития человека с начала четвертой недели и до конца восьмой после оплодотворения называется ...
- **2.** Способ гаструляции, при котором отдельные клетки бластодермы перемещаются внутрь бластоцеля и, размножаясь, образуют второй слой клеток, называется ...
- **3.** Амнион, хорион, аллантоис, желточный мешок и плацента это ... органы хордовых животных.
- 4. Нервная система и эпидермис кожи развиваются из ...
- **5.** Первопричиной дифференцировки клеток в процессе эмбриогенеза является ... питоплазмы яйпеклеток.
- **6.** Влияние одной группы клеток эмбриона на соседние путем выделения определенных веществ называется ...
- 7. Для тимуса и селезенки характерен ... тип роста.
- 8. Особое значение в регуляции роста человека имеет гормон гипофиза ...
- 9. К неврозам, язвенной болезни, туберкулезу склонны люди ... конституционного типа.
- **10.** Состояние организма, при котором наблюдается остановка сердца и дыхания, потеря сознания, но не нарушен метаболизм клеток, называется ... смертью.
- **11.** Добровольный уход из жизни безнадежно больного человека при помощи медицинского работника называется ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите препараты, сделайте обозначения.

Рис. 1. Дробление лягушки (7×8) : 1 — бластомеры

Рис. 2. Бластула лягушки (7×8) : 1 — бластомеры; 2 — бластоцель

Рис. 3. Гаструла лягушки (7 × 8): 1 — дорсальная губа бластопора; 2 — вентральная губа бластопора

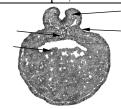
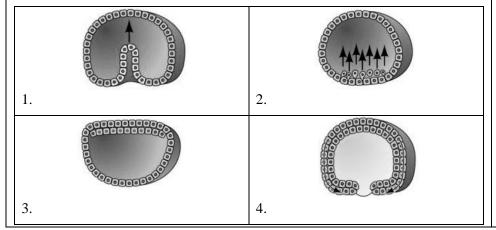



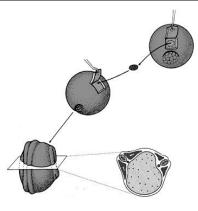
Рис. 4. Нейрула лягушки (7×8) : 1 — эктодерма; 2 — нервный валик; 3 — хорда; 4 — энтодерма

Задание 2. Укажите названия приведенных на рисунках процессов, происходящих в ходе гаструляции.

Задание 3. Установите соответствие между зародышевым листком и его производными.

	1. Хрящи и кости				
А. Эктодерма	2. Эпидерм	2. Эпидермис кожи			
	3. Поджелу	удочна	ая жел	еза	
	4. Кровено	сные	сосудн	Ы	
Б. Мезодерма	5. Эпители	5. Эпителий дыхательных путей			тей
_	6. Дерма кожи				
	7. Печень				
В. Энтодерма	8. Молочні	8. Молочные железы			
_	9. Эпифиз				
A	Б	БВ			

Задание 4. Установите соответствие между провизорным органом и его функцией.


А. Желточный мешок	1. Участвует в образовании плаценты
Б. Амнион	2. Входит в состав пупочного канатика
В. Хорион	3. Защищает эмбрион от высыхания и механи-
	ческих воздействий
Г. Аллантоис	4. Место образования первичных половых кле-
	ток, первый кроветворный орган зародыша

A	Б	В	Γ

Задание 5. Решите задачи.

Задача № 1. Зародыши, имеющие лишние хромосомы, во время дробления остаются живыми, но после его завершения большинство из них гибнет. Чем можно объяснить их выживаемость в период дробления?

Задача № 2. В результате оперативного вмешательства был получен эмбрион лягушки с двумя нервными трубками — на спинной и на брюшной стороне. Нервную трубку ему не подсаживали. В чем состояла операция?

Задача № 3. Какие периоды постнатального онтогенеза человека у мужского организма более продолжительны по сравнению с женским организмом?

Задача № 4. Какое значение для врача имеет учение о конституционных типах человека?

Задача № 5. Чем отличаются клиническая и биологическая смерть?

Задание 6. Впишите в таблицу названия периодов постнатального онтогенеза по их срокам.

Период	Возраст
	1–28 дней
	29 дней – 12 месяцев
	1–3 года
	4–6 лет
	девочки 6–11 лет, мальчики 6–12 лет
	девочки 11–15 лет, мальчики 12–16 лет
	девушки 15-20 лет, юноши 16-21 год
	женщины 20-35 лет, мужчины 21-35 лет
	женщины 35-55 лет, мужчины 35-60 лет
	женщины 55-75 лет, мужчины 60-75 лет
	75–90 лет
	свыше 90 лет

Задание 7. Установите соответствие типа роста органов и их примерами.

А. Общий	1. Печень
,	2. Головной мозг
	3. Селезенка
Б. Головной	4. Фаллопиевы трубы
	5. Предстательная железа
	6. Миндалины
В. Лимфоидный	7. Глаза
	8. Скелет
	9. Тимус
Г. Репродуктивный	10. Спинной мозг
	11. Яичники
	12. Мышцы

A		Б		В		Γ	

Задание 8. Изучите таблицы.

Таблица 1

Действие тератогенов

Тератоген	Врожденные пороки развития				
Инфекционные агенты					
Вирус краснухи	Катаракта, глаукома, пороки сердца,				
Rubella virus	потеря слуха, аномалии зубов				
Цитомегаловирус	Микроцефалия, нарушение зрения,				
Cytomegalovirus	умственная отсталость, гибель плода				
Вирус простого герпеса	Микрофтальмия, микроцефалия, дис-				
Herpes simplex virus	плазия сетчатки глаза				
Возбудитель токсоплазмоза	Гидроцефалия, кальцификаты голов-				
Toxoplasma gondii	ного мозга, микрофтальмия				
	ческие агенты				
Рентгеновские лучи	Микроцефалия, расщелина неба, де-				
X-rays	фекты конечностей				
	ческие агенты				
Аминоптерин	Анэнцефалия, гидроцефалия, расще-				
(Aminopterin) — противо-	лина губы и нёба				
опухолевой препарат					
Триметадион (Trimetha-	Расщелина неба, пороки сердца, ано-				
dione) — противоэпилепти-	малии мочеполовой системы и скелета				
ческий препарат					
Алкоголь	Фетальный алкогольный синдром				
Alcohol	(ФАС), короткие нёбные дуги, гипо-				
	плазия верхнечелюстной кости, по-				
	роки сердца, умственная отсталость				
Амфетамины (Ampheta-	Расщелина губы и нёба, пороки сердца				
mine) — психостимуляторы					
	Гормоны				
Андрогенные агенты	Маскулинизация женских половых ор-				
Androgenic agents	ганов: сросшиеся половые губы, ги-				
	пертрофия клитора				
Диабет матери	Различные пороки развития сердца и				
Maternal diabetes	нервной трубки				

Ключевые п	пизнаки ста	рения (Lope	ez-Otin et al	2013)
IVIII AGGORICII	ризнаки ста	рспия (дорс	cz-Oun et ai	., 4 013)

KJIR	учевые признаки старения (Lopez-Otin et al., 2013)
Геномная	Существуют доказательства, что многочисленные мутации в ядерной
нестабиль-	и митохондриальной ДНК, хромосомах, нарушения структурной ор-
ность	ганизации хроматина вносят свой вклад в старение. Искусственная
	индукция повреждений генома может вызывать появление некоторых
	признаков ускоренного старения
Сокращение	Старение сопровождается истощением теломер у млекопитающих.
длины теломер	Патологическая дисфункция теломер ускоряет старение
Эпигенетиче-	Имеются свидетельства о наличии связи между процессом старения и
ские измене-	работой системам клетки, отвечающими за модификацию гистонов,
ния	метилирование ДНК и перестройку хроматина
Нарушение	Есть свидетельства, что старение связано с дефектами системы, под-
протеостаза	держивающей трехмерную структуру белков, а экспериментальное
	нарушение ее работы ведет к развитию возраст-зависимых патологий.
	Имеются примеры генетических манипуляций, которые улучшают
	протеостаз и замедляют старение млекопитающих
Нарушение	Имеются свидетельства, что анаболический сигналинг ускоряет ста-
распознавания	рение, а катаболический сигналинг увеличивает продолжительность
питательных	жизни. Кроме того, фармакологические манипуляции, которые ими-
веществ	тируют состояние ограниченной доступности нутриентов, могут уве-
	личивать продолжительность жизни у мышей
Митохондри-	Митохондриальная дисфункция у млекопитающих может ускорять
альная	процессы старения, однако остается неясным, обеспечивает ли повы-
дисфункция	шение митохондриальной функции у млекопитающих увеличение
	продолжительности жизни
Клеточное	Старение связано с накоплением в организме сенесцентных клеток
старение	(старых клеток, которые перестают делиться, и не подвержены
	апоптозу). Так как при старении их число растет, предполагается, что
	сенесцентность вносит определённый вклад в старение
Истощение	Истощение стволовых клеток является следствием множества различ-
стволовых	ных возраст-ассоциированных повреждений, и, вероятно, является
клеток	одной из основных причин старения тканей и организма
Изменения	Существуют доказательства, что старение затрагивает не только
межклеточной	клетки, но и влияет на общие изменения в межклеточной коммуника-
коммуникации	ции

Подпись преподавателя

Таблица 2

Занятие № 17. Тема: ОСНОВЫ ОБЩЕЙ ПАРАЗИТОЛОГИИ

‹ ‹	>>	202 г.

Цель занятия: изучить и знать паразитизм как биологический феномен, классификацию паразитов и их хозяев, закономерности отношений в системе «паразит – хозяин», адаптации паразитов, их патогенное действие и ответные реакции хозяев.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Паразитизм антагонистический симбиоз. Критерии паразитизма.
- **2.** Паразитарная система. Система паразит-хозяин. Микробиом. Паразитоценоз.
- 3. Классификация паразитов и их хозяев.
- **4.** Механизмы передачи паразитозов. Пути проникновения паразитов в организм хозяина.
- 5. Патогенное действие и специфичность паразитов.
- 6. Морфофизиологические и биологические адаптации паразитов.
- 7. Ответные реакции организма хозяина на внедрение паразитов.
- **8.** Классификация паразитарных болезней. Медицинская паразитология, ее цели и задачи.

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

- 1. Болезни инвазионные —
- 2. Болезни инфекционные —
- 3. Гиперпаразитизм —
- 4. Мимикрия молекулярная —
- 5. Микробиом —

- 6. Паразит —
- 7. Паразитоценоз —
- 8. Патогенность паразита —
- 9. Симбиоз —
- 10. Стадия инвазионная —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- **1. Формы биотических связей**: а) конкуренция и хищничество; б) симбиоз и парабиоз; в) парабиоз; г) симбиоз и антибиоз; д) анабиоз.
- **2. Конкурентные взаимоотношения** это: а) прямое уничтожение одного организма другим; б) выделение одними видами веществ, угнетающих жизнедеятельность организмов других видов; в) необходимость одинаковых условий существования для разных организмов; г) любое сожительство организмов разных видов; д) взаимовыгодное сожительство организмов разных видов.
- **3.** При антибиозе наблюдается: а) прямое уничтожение одного организма другим; б) выделение одними видами веществ, угнетающих жизнедеятельность организмов других видов; в) необходимость одинаковых условий существования для разных организмов; г) любое сожительство видов; д) вза-имовыгодное сожительство.

- **4. Комменсализм** такое сожительство организмов разных видов, при котором: а) организмы получают взаимную выгоду; б) особь одного вида использует особь другого вида только как жилище; в) особь одного вида использует особь другого вида как жилище и источник питания, не причиняя ей вреда; г) особь одного вида использует особь другого вида как жилище и источник питания и причиняет ей вред; д) ни один из организмов не получает выгоды.
- **5.** Паразитизм такое сожительство организмов разных видов, при котором: а) организмы получают взаимную выгоду; б) особь одного вида использует особь другого вида только как жилище; в) особь одного вида использует особь другого вида как жилище и источник питания, не причиняя ей вреда; г) особь одного вида использует особь другого вида как жилище и источник питания и причиняет ей вред; д) ни один из организмов не получает выгоды.
- **6. Критерии паразитизма:** а) пространственные отношения с хозяином; б) контакт паразита и хозяина необязателен; в) питание за счет хозяина и болезнетворное воздействие на хозяина; г) использует хозяина как место обитания, не причиняя ему вреда; д) снабжает хозяина витаминами.
- 7. Для формирования системы паразит-хозяин необходимы условия: а) паразит и хозяин должны вступать в контакт друг с другом; б) паразит должен вызывать гибель хозяина; в) паразит и хозяин не обязательно должны вступать в контакт друг с другом; г) хозяин должен обеспечивать оптимальные условия для развития паразита; д) паразит не должен противостоять реакциям со стороны хозяина.
- **8.** Уровни защитных реакций организма хозяина: а) субклеточный и клеточный; б) клеточный и организменный; в) видовой и тканевой; г) клеточный и тканевой; д) популяционно-видовой.
- 9. Адаптации паразитов к хозяевам на популяционном уровне: а) наличие покоящихся стадий и активный поиск хозяев; б) упрощение строения нервной системы и редукция пищеварительной системы у ленточных червей; в) молекулярная «мимикрия» и выделение антиферментов; г) включение в цикл развития промежуточных и резервуарных хозяев; д) синхронизация циклов развития паразита и поведения хозяев.

- **10. Виды симбиоза:** а) мутуализм и синойкия; б) антибиоз и паразитизм; в) конкуренция и антибиоз; г) хищничество и каннибализм; д) комменсализм и паразитизм.
- **11.** Патогенное действие паразита: а) механическое повреждение органов и тканей и токсико-аллергическое; б) снабжение организма хозяина витаминами; в) снабжение организма хозяина питательными веществами; г) поглощение питательных веществ и витаминов из организма хозяина; д) открытие ворот для вторичной инфекции.

ОТКРЫТЫЕ ТЕСТЫ

Вставьте пропущенное слово или понятие.

- **1.** Свободноживущие организмы, которые при случайном попадании в организм другого вида, способны к паразитированию, называются ...
- **2.** Хозяева, которые обеспечивают оптимальные биохимические условия для развития паразита и имеют с ним биоценотические связи, называются ...
- **3.** Хозяева, которые обеспечивают биохимические условия для развития паразита, но не имеют с ним биоценотических связей, называются ...
- 4. Болезни, вызываемые членистоногими, называются ...
- **5.** Хозяева, которые характеризуются наличием биоценотических связей с паразитами, но отсутствием оптимальных биохимических условий для их развития, называются ...
- **6.** Путь проникновения паразита в организм хозяина с водой или с продуктами питания через рот называется ...
- **7.** Путь проникновения паразита в организм хозяина через слизистые оболочки дыхательных путей называется ...
- **8.** Путь проникновения паразита в организм хозяина при непосредственном контакте с больными человеком или животными и с предметами домашнего обихола называется ...
- **9.** Путь проникновения паразита в организм хозяина при переливании нестерильной донорской крови называется ...

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите таблицу.

Таблица 1

Таксоны паразитов и вызываемые ими заболевания человека

Таксоны паразитов	Названия заболеваний	Группы заболеваний
Вирусы, бактерии (микоплазмы,	Инфекции	Инфекции
хламидии, риккетсии, спирохеты и		
др.)		
Грибы	Микозы	Микозы
Протисты	Протозоозы	Инвазии
Гельминты	Гельминтозы	
Клещи	Акаринозы	Инфестации
Насекомые	Инсектозы	

Задание 2. Заполните таблицы.

Таблица 2

Виды взаимоотношений между организмами

Вид	Разновидности,	Примеры		
взаимоотношений	характеристика	примеры		
1. Хищничество	а) Внутривидовое			
1. Лищничество	хищничество			
	б) Межвидовое			
	хищничество			
2 Volumentum	а) Внутривидовая			
2. Конкуренция	конкуренция			
	б) Межвидовая кон-			
	куренция			
3. Симбиоз	а) Мутуализм			
	б) Комменсализм			
	 Нахлебничество 			
	– Синойкия			
	(квартиранство)			
	в) Паразитизм			

Адаптации паразитов

Морфофизиологические прогрессивные:

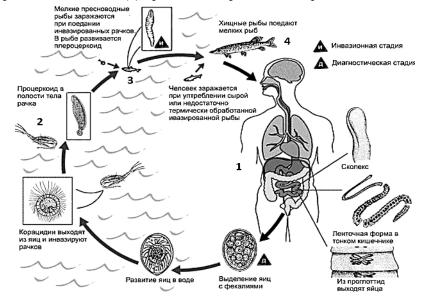
Таблица 3

Морфофизиологические регрессивные:
Биологические:

Задание 3. Установите соответствие между механизмом передачи паразита и его характеристикой.

А. Контактный	1. Механизм передачи возбудителей от беременной плоду в течение всего периода внутриутробного развития
Б. Гемоконтактный	2. Возбудители локализуются в слизистой оболочке дыхательных путей источника и переносятся в восприимчивый организм через воздух
В. Трансплацентарный	3. Возбудители локализуются на коже или на слизистой оболочке, откуда могут попадать на поверхность различных предметов, и при контакте с ними происходит заражение восприимчивого организма
Г. Аэрозольный	4. Механизм передачи осуществляется посредством переносчиков, как правило, это кровососущие членистоногие
Д. Фекально-оральный	5. Возбудители локализуются преимущественно в желудочно-кишечном тракте, выводятся из зараженного организма с испражнениями или рвотными массами
Е. Трансмиссивный	6. Возбудители циркулируют в крови (лимфе), проникновение в восприимчивый организм происходит при контакте с кровью зараженного человека

A	Б	В	Γ	Д	Е


Задание 4. Классифицируйте паразитов.

		По харак-	По длитель-	По локали-
Паразит	Описание	теру связи	ности связи	зации
		с хозяином	с хозяином	у хозяина
	Обитает в моче-			
	половых путях.			
	Заражение про-			
	исходит при по-			
a T	ловых контактах			
Трихомонада				
урогенитальная				
	Обитает в стенке			
(o) (° =)	кишечника. За-			
	ражение проис-			
	ходит алимен-			
	тарным путем;			
Дизентерийная	инвазионная ста-			
амеба	дия — циста			
-	Обитает в желч-			
· / 🛝	ных ходах. Зара-			
	жение происхо-			
	дит при употреб-			
	лении рыбы с			
	метацеркари-			
	ями; яйца выде-			
Кошачий	ляются во внеш-			
сосальщик	нюю среду с фе-			
сосальщик	калиями			
TARREST	Заражение про-			
	исходит при упо-			
	треблении сви-			
	нины с финнами;			
	яйца выделя-			
	ются во внеш-			
Вооруженный	нюю среду с фе-			
цепень	калиями			

Паразит	Описание	По харак- теру связи с хозяином	По длительности связи с хозяином	По локали- зации у хозяина
Аскарида человеческая	Заражение про- исходит алимен- тарным путем; яйца паразита выделяются во внешнюю среду с фекалиями			
Чесоточный клещ	Обитает в толще рогового слоя кожи. Заражение происходит при непосредственном контакте с больными или их вещами			
Собачий клещ	Насыщение клещей кровью длится от нескольких часов до нескольких суток			
	Обитает на волосистой части головы, обычно передаётся при прямом контакте			
Вошь головная				

Задание 5. Изучите жизненный цикл лентеца широкого. Классифицируйте хозяев данного паразита в зависимости от стадии его развития.

- из организма человека (1) с фекалиями выделяются оплодотворённые яйца паразита;
- в воде из яйца выходит личинка (корацидий), которая проглатывается **пресноводным рачком (2)**; в кишечнике рачка образуется следующая личиночная стадия (процеркоид);
- при проглатывании рачка **рыбой (3)** в ее мышцах и половых органах процеркоид превращается в плероцеркоид;
- **хищные рыбы (4)** могут поедать поражённых рыб, накапливая плероцеркоидов;
- заражение человека (1) происходит при поедании рыбы.

Какими хозяевами являются организмы, обозначенные цифрами?

1 -

_

3 –

4 —

Подпись преподавателя

Тема: ОСНОВЫ ЧАСТНОЙ ПАРАЗИТОЛОГИИ (часть 1) Занятие № 18.

« » 202 ı

Цель занятия: изучить и знать особенности морфологии и биологии паразитических представителей классов Саркодовые, Жгутиковые и Споровики – возбудителей болезней человека, их патогенное действие; знать методы диагностики и профилактики вызываемых ими заболеваний.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Общая характеристика царства Протисты.
- 2. Жизненный цикл возбудителей малярии человека. Виды малярийных 6. Ооциста плазмодиев, паразитирующих у человека, их морфологическая характеристика в тонком мазке крови.
- 3. Механизмы и пути заражения человека малярией, патогенное действие плазмодиев. Симптомы, диагностика и профилактика малярии.
- 4. Токсоплазма: особенности морфологии и цикла развития, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика токсоплазмоза.
- 5. Дизентерийная и ротовая амебы: особенности морфологии и жизненного цикла, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика амебиаза.
- 6. Трихомонада: особенности морфологии и жизненного цикла, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика урогенитального трихомоноза.
- 7. Биологические основы профилактики протозойных заболеваний.

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

- 1. Гипнозоиты (брадиспорозоиты) —
- 2. Малярия шизонтная —
- 3. Мерозоит —
- 4. Меруляция —

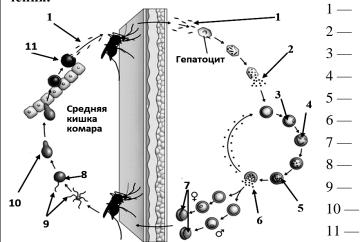
- 5. Оокинета —
- 7. Псевдоциста (тканевая циста) —
- 8. Ундулирующая мембрана —
- 9. Шизогония —

ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

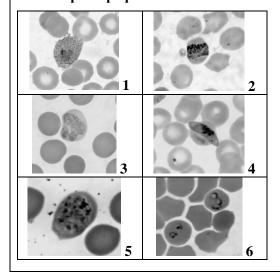
- 1. Последовательность стадий развития возбудителей малярии при **предэритроцитарной шизогонии:** а) спорозоиты \rightarrow кровяные шизонты \rightarrow тканевые шизонты → тканевые мерозоиты; б) спорозоиты → тканевые шизонты \rightarrow кровяные шизонты \rightarrow тканевые мерозоиты; в) спорозоиты \rightarrow тканевые шизонты \rightarrow тканевые мерозоиты; г) кровяные шизонты \rightarrow спорозоиты \rightarrow гаметоциты; д) спорозоиты \rightarrow кровяные шизонты \rightarrow тканевые шизонты \rightarrow гаметоциты.
- 2. Последовательность стадий развития при эритроцитарной шизого**нии**: а) кольцевидный шизонт \rightarrow амебоидный шизонт \rightarrow гаметоцит \rightarrow округлый шизонт \rightarrow кровяной мерозоит; б) округлый шизонт \rightarrow кровяной мерозоит \rightarrow гаметоцит \rightarrow кольцевидный шизонт \rightarrow амебоидный шизонт; в) амебоидный шизонт \rightarrow кольцевидный шизонт \rightarrow округлый шизонт \rightarrow гаметоцит → кровяной мерозоит; г) кольцевидный шизонт → амебоидный шизонт \rightarrow округлый шизонт \rightarrow кровяной мерозоит \rightarrow гаметоцит; д) гаметоцит \rightarrow округлый шизонт \rightarrow кольцевидный шизонт \rightarrow амебоидный шизонт → кровяной мерозоит.

- **3.** Последовательность стадий гаметогонии у возбудителей малярии человека: а) ооциста \rightarrow гаметоциты \rightarrow макро- и микрогаметы \rightarrow зигота \rightarrow оокинета; б) гаметоциты \rightarrow макро- и микрогаметы \rightarrow зигота \rightarrow оокинета; в) макро- и микрогаметы \rightarrow зигота \rightarrow оокинета; г) макро- и микрогаметы \rightarrow зигота \rightarrow оокинета \rightarrow гаметоциты; д) гаметоциты \rightarrow зигота \rightarrow оокинета \rightarrow макро- и микрогаметы.
- **4.** Последовательность проявления симптомов при приступе малярии: а) обильный пот \to жар \to озноб; б) жар \to обильный пот \to озноб; в) озноб \to жар \to обильный пот; г) жар \to озноб \to обильный пот; д) озноб \to обильный пот \to жар.
- **5. Профилактика малярии:** а) не пить воду из открытых источников; б) выявление и лечение больных, химиопрофилактика; в) уничтожение переносчиков, защита от укусов комаров; г) хорошая термическая обработка свинины и говядины; д) тщательный контроль за донорской кровью.
- **6.** Лабораторная диагностика токсоплазмоза основана на: а) обнаружении трофозоитов в фекалиях и дуоденальном содержимом; б) иммунологических методах; в) обнаружении трофозоитов в моче; г) обнаружении трофозоитов в поперечнополосатых мышцах; д) обнаружении трофозоитов в спинномозговой жидкости и пунктатах лимфатических узлов.
- **7. Профилактика токсоплазмоза:** а) соблюдение правил личной гигиены после контактов с кошками; б) соблюдение правил личной гигиены после контактов с собаками и больными людьми; в) хорошая термическая обработка рыбных продуктов; г) хорошая термическая обработка мясных продуктов; д) уничтожение мух и тараканов.
- 8. Последовательность стадий цикла развития дизентерийной амебы: a) forma minuta \rightarrow forma magna \rightarrow тканевая \rightarrow циста \rightarrow forma magna; в) циста \rightarrow forma minuta \rightarrow traheвая \rightarrow циста \rightarrow forma magna; в) циста \rightarrow forma minuta \rightarrow forma magna \rightarrow traheвая \rightarrow forma magna; г) циста \rightarrow forma minuta \rightarrow forma magna \rightarrow forma minuta \rightarrow циста; д) тканевая \rightarrow forma magna \rightarrow forma minuta \rightarrow циста.
- **9. Профилактика амебиаза:** а) хорошая термическая обработка свинины и говядины; б) хорошая термическая обработка рыбы, раков и крабов; в) соблюдение правил личной гигиены и лечение больных амебиазом; г) прививки; д) не употреблять воду из открытых источников.

10. Симптомы амебиаза: а) нарушение дыхания; б) частый жидкий стул с примесью крови; в) снижение аппетита и нарушение свертывания крови; г) нарушение работы сердца; д) общая слабость и боли в животе.


ОТКРЫТЫЕ ТЕСТЫ

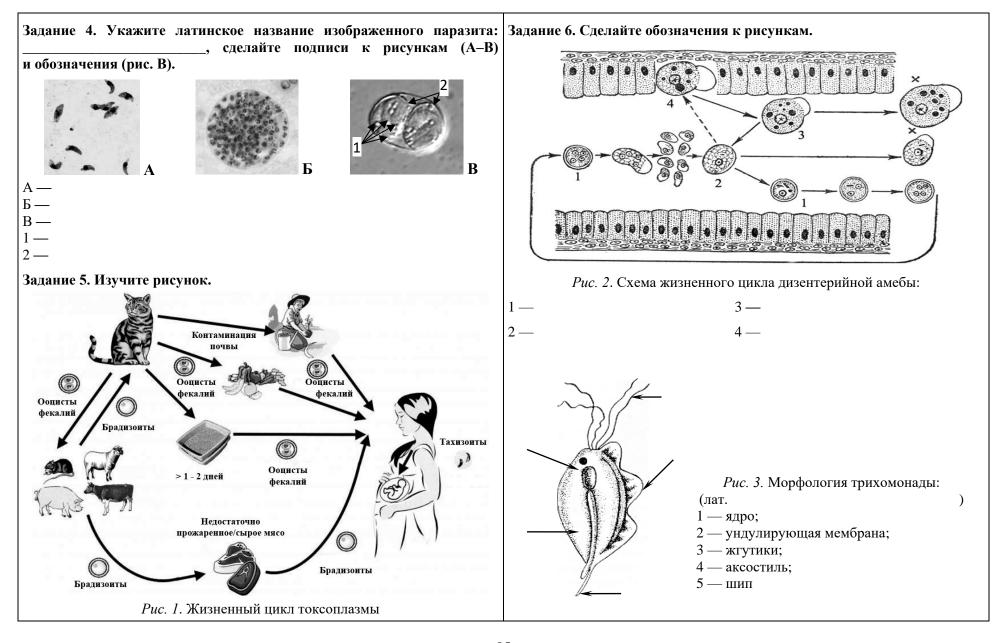
Вставьте пропущенное слово или понятие.


- 1. Вегетативная форма протистов называется ...
- 2. Эластичная оболочка, являющаяся уплотненным слоем эктоплазмы клетки протистов, называется ...
- 3. Пищеварительная вакуоль протистов образуется путем слияния эндосомы и первичной ...
- **4.** Функции осморегуляции и выделения жидких продуктов обмена у протистов выполняют ... вакуоли.
- 5. Возбудителем тропической малярии является Р. ...
- 6. Возбудителем четырехдневной малярии является Р. ...
- **7.** Стадия жизненного цикла малярийного плазмодия, инвазионная для промежуточного хозяина при трансмиссивном пути заражения, называется ...
- **8.** Конечная стадия развития возбудителей малярии в организме человека называется ...
- **9.** Образование, служащее для прикрепления токсоплазмы к клетке хозяина, называется ...
- 10. Основными хозяевами токсоплазмы являются представители семейства ...
- 11. Инвазионными стадиями токсоплазмы для основного хозяина являются ... и ...
- **12.** Инвазионными стадиями токсоплазмы для промежуточных хозяев являются ... и ...
- 13. Урогенитальная трихомонада имеет ... жгутиков (ответ запишите цифрой).

ПРАКТИЧЕСКАЯ РАБОТА

Задание 1. Изучите жизненный цикл *Plasmodium spp.*, сделайте обозначения.

Задание 2. Определите видовую принадлежность паразитов, указанных на фотографиях.


- Морула *P. ovale*
- Гаметоцит *P. falciparum*
- Трофозоит *P. ovale*
- Лентовидный трофозоит*P. malaria*
- Кольцевидные трофозоит *P. falciparum*
- Амёбовидный трофозоит *P. vivax*

Задание 3. Изучите таблицу.

Таблица 1

Дифференциальная диагностика возбудителей малярии в мазке крови (окраска по Романовскому-Гимзе)

	(окраска по Романовскому-1 имзе) Возбудитель				
Признак	P. vivax	P. malaria	удитель P. falciparum	P. ovale	
Стотич					
Стадии	Все стадии	Все стадии	Кольца и га-	Все стадии	
развития	шизонтов и	шизонтов и	монты; шизонты	шизонтов	
	гамонты	гамонты	— в тяжелых	и гамонты	
~	_		случаях		
Стадия	Форма	Как у <i>P. vivax</i>	Мелкие, размер	Как у <i>P. vivax</i>	
кольца	перстня раз-	всегда по од-	¹ / ₆ — ¹ / ₅ диаметра		
	меры $^{1}/_{3}$ — $^{1}/_{2}$	ному в эрит-	эритроцита,		
	диаметра	роците	часто 2–3		
	эритроцита,		в эритроците		
	иногда 2–3 в				
	эритроците				
Шизонты	Неправиль-	Округлой или	Округлой формы	Округлой	
	ной амебо-	лентовидной	крупнее, чем	формы, круп-	
	видной	формы, раз-	y P. malaria,	нее, чем у	
	формы,	мер не пре-	обнаруживаются	P. malaria	
	крупные с	вышает нор-	в тяжелых		
	вакуолями	мальный	случаях		
		эритроцит			
Морула	12-18 мерозо-	8-12 мерозои-	12-24 мерозоита,	6-12 мерозои-	
	итов средней	тов средней	мелкие	тов, крупные	
	величины	величины		1.	
Гамонты	Округлые,	Как у <i>P. vivax</i>	Полулунные	Округлые	
	крупные, за-	не превы-		1 0	
	полняют уве-	шают размера			
	личенный	нормального			
	эритроцит	эритроцита			
Зерни-	Мелкая,	Отсутствует	Выявляется	Более крупная	
стость в	обильная,		редко, розово-	и менее	
поражен-	красная		фиолетовые	обильная, чем	
ных эрит-	(Шюффнера)		пятна (Маурера)	y P. vivax	
роцитах	((1.1m) p - pu)	(Джеймса)	
Поражен-	Увеличены,	Не изменены	Не изменены	Увеличены,	
ные эрит-	неправильной	110 HOMOHOHBI	110 HOMOHORDI	с неровными	
роциты	формы			краями	
Родиты	формы			краями	

Залание 7. Решите залачи.

Задача № 1. Больной П. доставлен в больницу с жалобами на сильную головную и мышечную боли, резкую общую слабость, чувство жара во всем теле. Болен 4-й день. Заболевание началось с резкого озноба, который через 2 часа сменился чувством жара во всем теле, температура тела повысилась до 40 °C. Через несколько часов температура снизилась до 35 °C, что сопровождалось обильным потом. Приступ повторился через 2 дня. Больной П. недавно вернулся из командировки из Экваториальной Африки. Какое заболевание можно предположить? Как подтвердить диагноз?

Задача № 2. Изучение мазка периферической крови показало: пораженные эритроциты не изменены, морула содержит от 12 до 24 мелких мерозоитов, в эритроцитах по 2—4 мелких кольцевидных шизонта, гамонты имеют полулунную форму. Определите вид плазмодия и дайте его латинское название.

Задача № 3. У беременной женщины 22 лет на 5 месяце беременности произошел выкидыш. При гистологическом исследовании плаценты, плодных оболочек и ряда органов плода в клетках обнаружены скопления протистов полулунной формы (4–7 мкм), с ярко-красным ядром и голубой цитоплазмой. При опросе выяснилось, что женщина любит животных, у нее в квартире живут кошка и морская свинка. Определите вид паразита.

Задача № 4. При профилактическом обследовании работников пищеблока в анализах кала у двух из них были обнаружены цисты: у повара — восьмиядерные, крупные (13–25 мкм), у официантки — размером 10–12 мкм, четырехъядерные. Кто из них является источником паразитарного заболевания для питающихся в столовой людей?

Задача № 5. В инфекционную больницу поступила женщина с подозрением на острую бактериальную дизентерию. Больная жалуется на частый, жидкий стул со слизью и кровью, схваткообразные боли в животе, повышение температуры до 39 °С. Обследование больной не подтвердило диагноза бактериальной дизентерии. При микроскопировании нативного препарата испражнений больной обнаружены крупные (30–40 мкм) подвижные протисты, в цитоплазме которых много эритроцитов. Какое заболевание можно предположить?

Задача № 6. В женскую консультацию обратилась женщина с жалобами на серозно-гнойные выделения из влагалища. В нативном мазке, приготовленном из свежесобранных выделений, обнаружены подвижные грушевидной формы протисты, размером 15–30 мкм, на переднем конце 4 жгутика и ундулирующая мембрана. Какое паразитарное заболевание можно предположить?

Подпись преподавателя

Тема: ОСНОВЫ ЧАСТНОЙ ПАРАЗИТОЛОГИИ (часть 2) Занятие № 19.

~	>>	202	Γ.
"	//	202	L

Цель занятия: изучить особенности морфологии и биологии паразитических представителей классов Сосальщики, Ленточные черви, Круглые черви, Паукообразные и Насекомые, их патогенное действие; знать методы диагностики и профилактики вызываемых ими заболеваний.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Кошачий сосальщик: особенности морфологии и цикла развития, механизмы и пути заражения человека и животных, патогенное действие. Симптомы, диагностика и профилактика описторхоза.
- 2. Цепень вооруженный (свиной): особенности морфологии, механизмы и пути заражения человека и животных, патогенное действие. Симптомы, диагностика и профилактика тениоза и цистицеркоза.
- 3. Аскарида человека: особенности морфологии и биологии, механизмы и пути заражения человека, патогенное действие личинок и половозрелых аскарид. Симптомы, диагностика миграционного и кишечного аскаридоза, профилактика аскаридоза.
- 4. Острица: особенности морфологии и биологии, механизмы и пути зара- 9. Сколекс жения человека, патогенное действие. Симптомы, диагностика и профилактика энтеробиоза.
- 5. Саркоптовые клещи возбудители заболеваний человека: особенности их морфологии и биологии.
- 6. Отряд Вши: особенности морфологии и биологии. Вши возбудители и переносчики возбудителей заболеваний человека и меры борьбы с ними.
- 7. Учение академика Е. Н. Павловского о природной очаговости болезней.

- 5. Марита —
- 6. Метацеркарий —
- 7. Педикулез —
- 8. Скабиоз —
- 10. Фтириоз —
- 11. Церкарий —

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

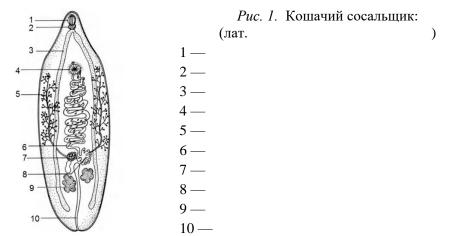
- 1. Аутоинвазия —
- 2. Бульбус —
- **3.** Колтун —
- **4.** Гниды —

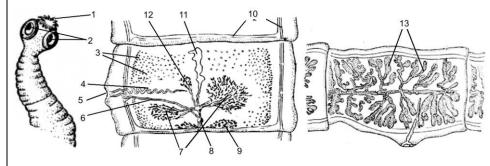
ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Инвазионная стадия кошачьего сосальщика для второго промежуточного хозяина: а) яйцо; б) мирацидий; в) метацеркарий; г) редия; д) церкарий.
- 2. Инвазионная стадия кошачьего сосальщика для окончательного хозяина: а) яйцо и мирацидий; б) церкарий и адолескарий; в) спороциста и редия; г) метацеркарий; д) онкосфера.
- 3. Заражение человека описторхозом происходит: а) при несоблюдении правил личной гигиены; б) питье воды из открытых водоемов; в) употреблении недостаточно термически обработанной свинины и говядины; г) употреблении недостаточно термически обработанной рыбы; д) употреблении недостаточно термически обработанных раков и крабов.

- **4.** Инвазионные для человека стадии свиного цепня: а) яйцо; б) онкосфера; в) плероцеркоид; г) цистицеркоид; д) цистицерк.
- **5.** Заражение человека тениозом: а) несоблюдение правил личной гигиены; б) контакты с больными тениозом и цистицеркозом; в) употребление термически недостаточно обработанной говядины; г) употребление термически недостаточно обработанной свинины; д) употребление термически недостаточно обработанных рыбы, раков и крабов.
- **6. Заражение человека цистицеркозом:** а) проглатывание яиц свиного цепня при несоблюдении правил личной гигиены; б) употребление недостаточно термически обработанной свинины и говядины; в) аутоинвазия при тениаринхозе; г) проглатывание яиц бычьего цепня при несоблюдении правил личной гигиены; д) аутоинвазия при тениозе.
- 7. Последовательность миграции личинок аскарид в теле человека: а) кишечник \rightarrow правое сердце \rightarrow легкие \rightarrow кровеносные сосуды \rightarrow печень \rightarrow бронхи \rightarrow трахея \rightarrow глотка \rightarrow кишечник; б) кишечник \rightarrow печень \rightarrow бронхи \rightarrow правое сердце \rightarrow легкие \rightarrow кровеносные сосуды \rightarrow трахея \rightarrow глотка \rightarrow кишечник; в) печень \rightarrow бронхи \rightarrow правое сердце \rightarrow легкие \rightarrow кровеносные сосуды \rightarrow трахея \rightarrow глотка \rightarrow кишечник; г) кишечник \rightarrow кровеносные сосуды \rightarrow печень \rightarrow правое сердце \rightarrow легкие \rightarrow бронхи \rightarrow трахея \rightarrow глотка \rightarrow кишечник; д) кишечник \rightarrow кровеносные сосуды \rightarrow правое сердце \rightarrow легкие \rightarrow печень \rightarrow бронхи \rightarrow трахея \rightarrow глотка \rightarrow кишечник.
- **8.** Диагностические признаки миграционного аскаридоза: а) непроходимость кишечника; б) лихорадка и астматический бронхит; в) летучие эозинофильные инфильтраты в легких; г) закупорка желчного протока; д) аппендицит.
- **9. Медицинское значение** *S. scabiei*: а) переносчик возбудителей шотландского и таежного энцефалитов; б) переносчик возбудителей туляремии и бруцеллеза; в) возбудитель катаральных явлений ЖКТ; г) вызывает бронхоспазмы; д) возбудитель чесотки.
- **10.** Лабораторная диагностика энтеробиоза основана на: а) иммунологических методах; б) обнаружении личинок в крови и поперечнополосатых мышцах; в) обнаружении взрослых паразитов и яиц на коже промежности; г) обнаружении паразитов и яиц в фекалиях; д) обнаружении личинок и яиц на коже промежности.

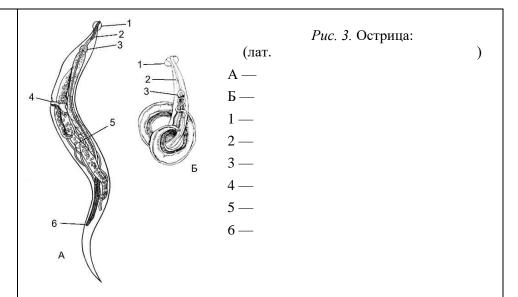
- **11.** Основные диагностические признаки энтеробиоза: а) нарушение сна и снижение памяти; б) нарушение зрения; в) боли по ходу тонкого кишечника и в правом подреберье; г) кашель; д) зуд в области промежности.
- **12. Профилактика чесотки:** а) выявление и лечение больных, санитарный надзор за общежитиями и банями; б) уничтожение переносчиков; в) поддержание чистоты, тела, белья, жилищ; г) тщательное мытье овощей и фруктов; д) достаточная термическая обработка мясных продуктов.
- **13. Морфологические особенности вшей рода** *Phthirus*: а) тело короткое и широкое, размером до 10 мм; б) тело короткое и широкое, размером до 1,5 мм; в) тело удлиненное, размером до 5 мм; г) ротовой аппарат колющесосущего типа; д) ротовой аппарат грызущего типа.
- **14. Медицинское** значение вшей *P. pubis*: а) механические переносчики возбудителей возвратного и сыпного тифов; б) специфические переносчики цист протистов и яиц гельминтов; в) возбудители фтириоза; г) специфические переносчики возбудителей малярии; д) поражают кожу с редкими жесткими волосами, укусы вызывают зуд.


ОТКРЫТЫЕ ТЕСТЫ


Вставьте пропущенное слово или понятие.

- **1.** Жизненный цикл кошачьего сосальщика включает стадии: яйцо $\rightarrow \dots \rightarrow$ спороциста \rightarrow редия \rightarrow церкарий \rightarrow метацеркарий \rightarrow марита.
- 2. Человек для кошачьего сосальщика является ... хозяином.
- 3. Финна свиного цепня называется ...
- **4.** Зрелая проглоттида вооруженного цепня имеет ... пар боковых ответвлений матки (ответ запишите цифрой).
- **5.** Среди представителей класса Собственно круглые черви аскарида является геогельминтом, а острица ... гельминтом.
- 6. Заболевание, вызываемое острицей, называется ...
- **7.** Вши рода Pediculus являются специфическими переносчиками вшивого ... и ... тифов.
- 8. Возбудителями вшивого ... тифа являются риккетсии Провачека.
- 9. Возбудителями вшивого ... тифа являются спирохеты Обермейера.
- 10. Латинское название отряда Вши ...

ПРАКТИЧЕСКАЯ РАБОТА


Задание 1. Сделайте обозначения к рисункам.

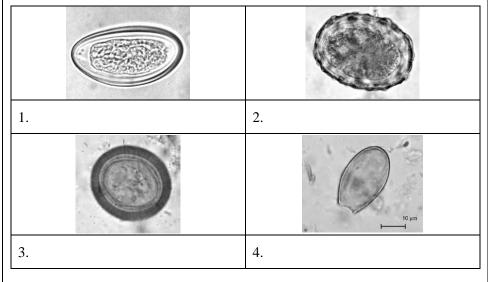


Рис. 2. Сколекс, гермафродитная и зрелая проглоттиды вооруженного цепня (лат.):

1 —	7 —
2 —	8 —
3 —	9 —
4 —	10 —
5 —	11, 13 —
6—	12 —

Задание 2. Впишите в таблицу латинские названия паразитов, яйца которых показаны на фотографиях.

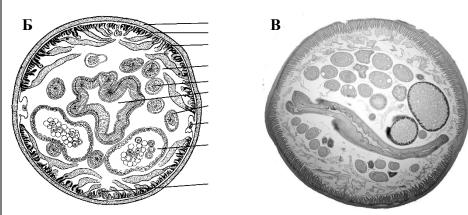
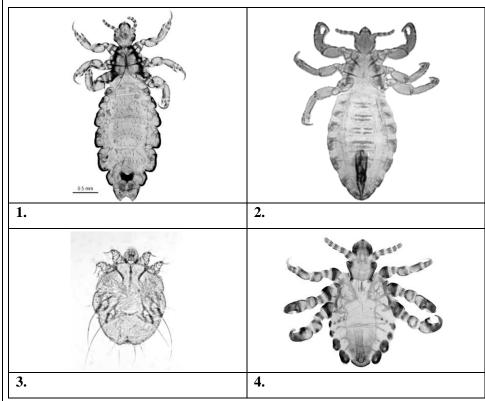
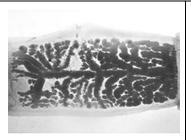



Рис. 4. Внешний вид, поперечный срез аскариды (лат.):

А — самец и самка; Б — схема; В — микропрепарат; 1 — кутикула; 2 — гиподерма; 3 — мускульные клетки; 4 — первичная полость тела; 5 — канал выделительной системы; 6 — нервные стволы; 7 — просвет кишечника; 8 — яичники; 9 — яйцеводы; 10 — матка


Задание 3. Изучите фотографии, определите паразитов и впишите в таблицу их латинские названия.

Задание 4. Решите задачи.

Задача № 1. Больной И. проживающий в районном центре Паричи, жалуется на боли в области печени. При проведении дуоденального обследования обнаружены мелкие гельминты бледно-желтого цвета, размером около 10 мм. Определите вид гельминта.

Задача № **2.** В лабораторию доставлены проглоттиды цепня. При микроскопии обнаружено, что от центрального ствола матки отходит от 7 до 12 боковых ответвлений с каждой стороны. Определите вид гельминта.

Задача № 5. При плановом обследовании сотрудников детского сада у воспитательницы в фекалиях обнаружены яйца размером 60 × 45 мкм, овальные с толстой бугристой оболочкой, желто-коричневого цвета, без крышечки. Какому виду паразита они могут принадлежать?

Задача № 3. В хирургическую клинику поступил больной мужчина 40 лет, с симптомами непроходимости кишечника. При операции в содержимом кишечника обнаружено 6 червей (веретенообразной формы, длиной 30 см, бело-розового цвета), что и явилось, по мнению хирурга, причиной непроходимости кишечника. Какое паразитарное заболевание можно предположить?

Задача № 6. У больного, обратившегося на прием по поводу сильного зуда, на коже кистей рук и живота обнаружены тонкие извилистые беловато-грязного цвета полоски, заканчивающиеся небольшим пузырьком с жидкостью внутри. Какое паразитарное заболевание можно предположить?

Задача № 4. Мать, обнаружив у ребенка белых гельминтов, вызывающих у него зуд и беспокойство, доставила их в лабораторию. Гельминты длиной до 1 см, концы тела заострены, у некоторых слегка закручены. Определите вид гельминта.

Задача № 7. Мальчика 9 лет беспокоит сильный зуд в области волосистой части головы. При осмотре на голове обнаружено огрубление и пигментация кожи, струпья, на волосах — гниды. Какое паразитарное заболевание можно предположить?

Подпись преподавателя

ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ

- 1. Сущность жизни, роль белков и нуклеиновых кислот в организации живых систем. Уровни организации живой материи.
- 2. Роль биологии в системе медицинского образования.
- 3. Человек как биологическое и социальное существо.
- 4. Клеточная теория. Вирусы. Прокариоты и эукариоты.
- **5.** Предмет, задачи и методы цитологии (световая, электронная и люминесцентная микроскопия, гистохимический и иммуногистохимический, дифференциальное центрифугирование, авторадиография, морфометрия и др.).
- **6.** Модели элементарной биологической мембраны. Строение, свойства и функции плазмалеммы.
- **7.** Транспорт веществ через мембрану: пассивный транспорт (диффузия, осмос, облегченная диффузия), активный транспорт (ионные каналы, их функции, эндоцитоз, экзоцитоз). Ионные каналы и их функции.
- **8.** Цитозоль. Цитоскелет: микротрубочки, промежуточные филаменты, микрофиламенты. Внутриклеточный транспорт веществ.
- 9. Ассимиляция и диссимиляция. Пластический обмен в клетке. Рибосомы.
- **10.** Эндомембранная система клетки (мембрана ядра, ЭПС, КГ, лизосомы, пероксисомы, эндосомы, везикулы).
- **11.** Характеристика этапов энергетического обмена в клетке. Митохондрии. Ферментные системы митохондрий.
- 12. Болезни человека, обусловленные нарушениями на клеточном уровне (лизосомные и пероксисомные).
- 13. Доказательства роли ДНК в передаче наследственной информации.
- 14. Строение и функции ДНК. Правила Чаргаффа.
- **15.** Организация наследственного материала у неклеточных и прокариотических форм жизни.
- **16.** Строение и функции ядра клетки. Организация генетического материала эукариот (генный, хромосомный и геномный уровни).
- **17.** Упаковка генетического материала эукариот. Эухроматин и гетерохроматин. Строение метафазной хромосомы. Типы хромосом. Правила хромосом.
- 18. Кариотип и идиограмма. Классификации хромосом человека.
- 19. Плазмогены. Цитоплазматическая наследственность.
- 20. Клеточный цикл. Интерфаза.
- 21. Полуконсервативный механизм репликации ДНК. Репликон.

- 22. Регуляторы клеточного цикла (циклины и циклинзависимые киназы).
- 23. Виды и типы деления клеток: митоз, амитоз, эндомитоз. Политения. Бинарное деление бактерий.
- **24.** Митоз: характеристика фаз, распределение генетического материала, биологическое значение.
- **25.** Мейоз: характеристика фаз, распределение генетического материала, биологическое значение.
- 26. Клеточная пролиферация и гибель клеток. Некроз и апоптоз. Каспазы.
- 27. Центральная догма молекулярной биологии.
- 28. Ген, его свойства и функции. Генетический код и его свойства.
- 29. Рибонуклеиновая кислота, ее виды, функции РНК.
- 30. Транскрипция. Транскрипционные факторы. Синтез иРНК у эукариот: первичный транскрипт, процессинг про-иРНК.
- 31. Рекогниция. Трансляция: инициация, элонгация и терминация.
- 32. Посттрансляционные изменения белков, фолдинг белков (шапероны).
- **33.** Международные научные проекты изучения генома человека: Human genome, NCODE, Roadmap. Транскриптом, протеом и метаболом человека.
- 34. Характеристика генома человека. Избыточность генома, ее значение.
- **35.** Классификация генов (структурные и функциональные, гены «домашнего хозяйства» и тканеспецифические).
- 36. Оперон. Лактозный и триптофановый опероны. Полицистронная РНК.
- **37.** Регуляция транскрипции у эукариот: преинициаторный комплекс, энхансеры, сайленсеры.
- **38.** Эпигенетические механизмы регуляции работы генов: модификации гистонов, метилирование цитозина, СрG-островки, регуляторные системы некодирующих РНК.
- **39.** Методы исследования ДНК: гель-электрофорез, рестрикционный анализ, гибридизация нуклеиновых кислот, ДНК-микрочипы.
- **40.** ПЦР и ее виды: количественная ПЦР, ПЦР с обратной транскрипцией, мультиплексная ПЦР.
- **41.** Методы секвенирования генома (по Сэнгеру, пиросеквенирование, нанопоровое, бисульфитное).
- **42.** Генетическая инженерия: цели, задачи и этапы. Способы получения генов для трансгенеза.

- **43.** Рекомбинантная ДНК. Конструирование векторов, их виды: плазмиды, космиды, фаговые векторы, фазмиды.
- **44.** Введение рекомбинантных ДНК в клетку-реципиент. Отбор трансформированных клеток. Селективные и репортерные гены.
- **45.** Биотехнология, ее значение для медицины. Генетически модифицированные организмы. Продукты питания, содержащие ГМО.
- 46. Генетика как наука. Гибридологический анализ, его сущность.
- **47.** Закономерности наследования при моногибридном скрещивании. Гипотеза чистоты гамет. Закономерности наследования при полигибридном скрещивании.
- **48.** Анализирующее скрещивание: прямое и возвратное. Условия, ограничивающие проявление законов Г. Менделя. Плейотропное действие гена.
- 49. Внутриаллельное взаимодействие генов (полное и неполное доминирование, сверхдоминирование, кодоминирование и аллельное исключение).
- **50.** Множественные аллели. Наследование групп крови по системам: AB0, MN и резус-фактору.
- **51.** Межаллельное взаимодействие генов (комплементарность, эпистаз, полимерия и эффект положения).
- **52.** Опыты Т. Моргана. Сцепление генов: полное и неполное. Группы сцепления. Хромосомная теория наследственности.
- 53. Генетические и цитологические карты хромосом.
- **54.** Пол как биологический признак. Признаки ограниченные и контролируемые полом, сцепленные с полом и голандрические.
- **55.** Теории определения пола. Дифференцировка и переопределение пола в онтогенезе. Генная регуляция гонадогенеза у человека.
- **56.** Особенности детерминации пола у человека: физикальные, промежуточная и социально-психологические детерминанты.
- **57.** Нарушения формирования пола у человека. Этические и юридические аспекты изменения морфологического и гражданского пола.
- **58.** X-половой хроматин. Гипотеза М. Лайон о женском мозаицизме по половым хромосомам.
- 59. Изменчивость, ее виды. Фенотипическая изменчивость, фенокопии.
- 60. Генотипическая изменчивость. Рекомбинации, механизмы их возникновения.
- **61.** Мутационная изменчивость. Генокопии. Причины мутаций: ошибки копирования ДНК, неравный кроссинговер.

- **62.** Физические, химические и биологические мутагенные факторы. Генетическая опасность загрязнения окружающей среды мутагенами. Классификации мутаций.
- 63. Устойчивость и репарация генетического материала. Антимутагены.
- **64.** Виды репарации. Виды эксцизионной репарации, репарация двуцепочечных разрывов. Фотореактивация.
- 65. Роль нарушений механизмов репарации в патологии человека.
- 66. Канцерогенез, понятие об онкогенах и генах-супрессорах опухолей.
- **67.** Популяция. Экологическая и генетическая характеристики популяции. Генофонд.
- 68. Идеальная популяция. Закон Харди-Вайнберга.
- **69.** Факторы, нарушающие равновесие аллелей и генотипов: естественный отбор, мутации, миграция, дрейф генов.
- 70. Отличительные признаки популяции человека. Типы браков. Инбридинг. Брачная ассортативность. Коэффициент инбридинга.
- **71.** Влияние элементарных эволюционных факторов на популяции человека. Генетический груз, его биологическая сущность и медицинское значение.
- **72.** Большие популяции, демы и изоляты. Особенности генофонда изолятов. Эффекты родоначальника и «бутылочного горлышка».
- 73. Генетика человека. Медицинская генетика и ее задачи.
- **74.** Человек как специфический объект генетического анализа. Классификация метолов генетики человека.
- **75.** Основные методы генетики человека: генеалогический, близнецовый, цитогенетический, биохимический и другие.
- **76.** Методы диагностики хромосомных болезней человека: классическое кариотипирование, FISH-, SKY- и SNP-кариотипирование.
- **77.** Экспресс-методы диагностики: микробиологические, выявление X-и Y-полового хроматина, биохимические, дерматоглифический.
- **78.** Пренатальные методы выявления наследственной патологии. Пренатальный скрининг. Морально-этические аспекты пренатальной диагностики.
- **79.** Медико-генетическое консультирование, его цели, задачи и этапы. По-казания для медико-генетического консультирования.
- **80.** Размножение универсальное свойство живого. Формы бесполого размножения, биологическое значение.
- **81.** Формы полового размножения, биологическое значение. Половой процесс. Гермафродитизм.

- **82.** Гаметогенез (овогенез и сперматогенез) у человека. Регуляция гаметогенеза у человека. Морфологические и функциональные особенности зрелых гамет человека.
- 83. Осеменение. Особенности оплодотворения у человека.
- **84.** Преодоление бесплодия у человека. Искусственное осеменение, экстракорпоральное оплодотворение и его варианты.
- 85. Преимплантационная генетическая диагностика.
- **86.** Этические проблемы научных исследований с использованием человеческих эмбрионов.
- 87. Онтогенез, его типы. Периодизация онтогенеза.
- **88.** Эмбриональный период, характеристика стадий (предзиготный период, зигота, дробление, гаструляция, гисто- и органогенез).
- **89.** Взаимодействие частей развивающегося организма. Эмбриональная индукция, морфогенетические поля, градиент физиологической активности.
- **90.** Периодизация постнатального онтогенеза у человека. Генный контроль постэмбрионального развития.
- 91. Рост и развитие организма человека, их регуляция. Акселерация. Конституция и габитус человека, и их медицинское значение.
- 92. Критические периоды нтогенеза человека.
- **93.** Организм как открытая саморегулирующаяся система. Общие закономерности регуляции гомеостаза. Кибернетические основы гомеостаза. Уровни и механизмы регуляции гомеостаза.
- **94.** Биоритмология. Медицинское значение хронобиологии. Хронопрофилактика, хронодиагностика и хронотерапия. Регенерация органов и тканей. Физиологическая регенерация как механизм поддержания гомеостаза. Классификация клеток по способности к регенерации.
- **95.** Репаративная регенерация, ее виды и способы. Регуляция регенерации. Значение регенерации для биологии и медицины. Регенеративная медицина.
- **96.** Трансплантация органов и тканей, ее виды: аутотрансплантация, аллотрансплантация, гомотрансплантация и ксенотрансплантация. Тканевая и видовая специфичность белков.
- **97.** Иммунологические механизмы тканевой несовместимости и пути ее преодоления. Понятие о трансплантационном иммунитете. Система HLA.
- **98.** Культивирование клеток и тканей вне организма человека, консервирование тканей. Стволовые клетки. Клеточные линии в биологических и медицинских экспериментах.

- **99.** Искусственные органы. Выращивание органов человека у животных и децеллюляризация, терапевтическое клонирование, 3D-биопринтинг.
- **100.** Морально-этические и юридические аспекты трансплантации тканей и органов: констатация смерти, концепция смерти мозга, донорство и его коммерциализация.
- 101. Паразитизм антагонистический симбиоз. Критерии паразитизма.
- **102.** Паразитарная система. Система паразит-хозяин. Микробиом. Паразитоценоз. Классификация паразитов и их хозяев.
- 103. Пути проникновения паразитов в организм хозяина. Механизмы передачи паразитозов. Патогенное действие и специфичность паразитов.
- 104. Морфофизиологические и биологические адаптации паразитов.
- 105. Ответные реакции организма хозяина на внедрение паразитов.
- 106. Классификация паразитарных болезней. Медицинская паразитология, ее цели и задачи.
- 107. Общая характеристика царства Протисты.
- **108.** Жизненный цикл возбудителей малярии человека. Виды малярийных плазмодиев, паразитирующих у человека, их морфологическая характеристика в тонком мазке крови.
- 109. Механизмы и пути заражения человека малярией, патогенное действие возбудителей. Симптомы, диагностика и профилактика малярии.
- **110.** Токсоплазма: особенности морфологии и цикла развития, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика токсоплазмоза.
- **111.** Дизентерийная и ротовая амебы: особенности морфологии и жизненного цикла, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика амебиаза.
- **112.** Трихомонада: особенности морфологии и жизненного цикла, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика урогенитального трихомоноза.
- 113. Биологические основы профилактики протозойных заболеваний.
- **114.** Кошачий сосальщик: особенности морфологии и цикла развития, механизмы и пути заражения человека и животных, патогенное действие. Симптомы, диагностика и профилактика описторхоза.
- 115. Цепень вооруженный (свиной): особенности морфологии, механизмы и пути заражения человека и животных, патогенное действие. Симптомы, диагностика и профилактика тениоза и цистицеркоза.

- **116.** Аскарида человека: особенности морфологии и биологии, механизмы и пути заражения человека, патогенное действие личинок и половозрелых аскарид. Симптомы, диагностика миграционного и кишечного аскаридоза, профилактика аскаридоза.
- **117.** Острица: особенности морфологии и биологии, механизмы и пути заражения человека, патогенное действие. Симптомы, диагностика и профилактика энтеробиоза.
- 118. Саркоптовые клещи возбудители заболеваний человека: особенности их морфологии и биологии.
- **119.** Отряд Вши: особенности морфологии и биологии. Вши возбудители и переносчики возбудителей заболеваний человека и меры борьбы с ними.
- 120. Учение академика Е. Н. Павловского о природной очаговости болезней.
- **121.** Ядовитость универсальное явление в живой природе. Понятие о ядах и токсинах. Классификация ядовитых животных.
- 122. Ядовитые животные, представители типов: Кишечнополостные, Членистоногие и Хордовые (рыбы, земноводные, пресмыкающиеся).
- **123.** Физиологическая характеристика токсинов беспозвоночных (медузы, паукообразные, перепончатокрылые), действие их на человека; первая помощь и меры профилактики укусов и отравлений.
- **124.** Физиологическая характеристика токсинов позвоночных (рыбы, амфибии, рептилии), действие их на человека; первая помощь и меры профилактики укусов и отравлений.
- 125. Ядовитые грибы и растения, их характеристика.
- **126.** Значение ядовитых организмов как источника сырья для фармации и медицины.
- **127.** Индивидуальное и историческое развитие. Законы К. Бэра. Рекапитуляции.
- **128.** Филогенез как процесс эволюции онтогенезов. Биогенетический закон. Понятие о ценогенезах и палингенезах.
- 129. Учение А.Н. Северцова о филэмбриогенезах.
- 130. Эволюция систем органов позвоночных: черепа и пищеварительной системы, онтофилогенетическая обусловленность пороков развития черепа и пищеварительной системы.

письменный экзамен

Структура билета:

15 закрытых тестов,

5 открытых тестов,

3 задачи.

Студенты отвечают на вопросы билета 60 минут.

Критерии оценки

№	Вид задания номера вопроса	Количество баллов за 1 задание	Количество заданий	Максимальное количество баллов
1.	Закрытые тесты (1–15)	3	15	45
2.	Открытые тесты (16–20)	5	5	25
3.	Задачи (21–23)	10	3	30
	Итого		23	100

Количество баллов	Оценка	Количество баллов	Оценка
94–100	«10»	49–55	«5»
83–93	«9»	42–48	«4»
73–82	«8»	26–41	«3»
63–72	«7»	11–25	«2»
56-62	«6»	0–10	«1»

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Основная

- 1. Медицинская биология для иностранных студентов: учеб.-метод. пособие. В 2 ч. Ч. 1 / В. Э. Бутвиловский, В. В. Давыдов, В. В. Григорович. Минск: БГМУ, 2023. 199 с.
- 2. Медицинская биология для иностранных студентов: учеб.-метод. пособие. В 2 ч. Ч. 2 / В. Э. Бутвиловский, В. В. Давыдов, В. В. Григорович. Минск: БГМУ, 2023. 226 с.
 - 3. Медицинская биология: сборник задач / В. Э. Бутвиловский, В. В. Григорович, В. В. Давыдов, Ю. Л. Корбут. Минск: БГМУ, 2024. 159 с.
 - 4. Медицинская биология: терминологический словарь / В. Э. Бутвиловский [и др.]. Минск: БГМУ, 2025. 76 с.
 - 5. ЭУМК «Медицинская биология и общая генетика» [Электронный ресурс]. URL: http://etest.bsmu.by.

Дополнительная

- 1. Медицинская биология и общая генетика: учеб. / Р. Г. Заяц [и др.]. 3-е изд., испр. Минск: Вышэйшая школа, 2017. 480 с.
- 2. Тейлор, Д. Биология: в 3 т. / Д. Тейлор, Н. Грин, У. Стаут; пер. с англ. 13-е изд. М.: БИНОМ. Лаборатория знаний, 2021. 1340 с.
- 3. Бекиш, O.-Я. Л. Медицинская биология и общая генетика : учеб. для студентов высш. учеб. учр. по спец. «Лечебное дело» / О.-Я. Л. Бекиш, В. Я. Бекиш. -3-е изд., испр. и доп. Витебск : Издательство ВГМУ, 2018.-420 с.
- 4. *Практические* задания по медицинской биологии и общей генетике : учеб. пособие. В 2 ч. Ч. 1 / Е. В. Чаплинская [и др.]. Минск : БГМУ, 2020. 174 с.
- 5. *Практические* задания по медицинской биологии и общей генетике : учеб. пособие. В 2 ч. Ч. 2 / Е. В. Чаплинская [и др.]. Минск : БГМУ, 2021. 176 с.

Учебное издание

Бутвиловский Валерий Эдуардович **Давыдов** Владимир Витольдович **Григорович** Виктор Васильевич

МЕДИЦИНСКАЯ БИОЛОГИЯ

Практикум для иностранных студентов, обучающихся по специальности «Стоматология»

3-е издание, исправленное и дополненное

Ответственный за выпуск В. В. Давыдов Компьютерная вёрстка М. Г. Миранович

Подписано в печать 26.03.25. Формат 60×84/8. Бумага писчая «Снегурочка». Ризография. Гарнитура «Times». Усл. печ. л. 12,55. Уч.-изд. л. 5,42. Тираж 65 экз. Заказ 205.

Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный медицинский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий №1/187 от 24.11.2023. Ул. Ленинградская, 6, 220006, Минск.