Семашко Д. Д.

ПРОЕКТИРОВАНИЕ КОМПЬЮТЕРНОЙ ПРОГРАММЫ ДЛЯ ПРОГНОЗИРОВАНИЯ СПОРТИВНОГО РЕЗУЛЬТАТА

Научный руководитель канд. пед. наук, доц. Рукавицына С. Л.

Кафедра биомеханики

Белорусский государственный университет физической культуры, г. Минск.

Актуальность. Прогнозирование является важнейшей составной частью необходимой для управления подготовкой спортсмена. Верный прогноз позволяет принимать рациональные и эффективные решения, отслеживать формирующиеся направления и приоритеты развития, продумывать стратегию подготовки спортсмена, выстраивать рациональную тактику спортивной борьбы и т.д.

В настоящее время существует целый ряд методов спортивного прогнозирования. К ним относятся: регрессионный анализ, временные ряды, алгоритмы классификации и регрессии, экспертные и экспертно-статистические модели и др. Каждый из них имеет свои преимущества и недостатки. Некоторые, связанные с экспертным оцениванием, имеют высокую степень субъективности, другие требуют сбора большого числа исходных данных и специалистов по их обработке. Процедура прогнозирования, как правило, является сложной и недоступной для тренеров и спортсменов.

Оптимизировать решение этого вопроса можно в случае разработки сравнительно простой и доступной для пользователей компьютерной программы.

Цель: спроектировать компьютерную программу для успешного решения задачи прогнозирования спортивного результата.

Материалы и методы. Математико-статистическое моделирование.

Результаты и их обсуждение. Спортивный результат является случайной величиной, зависящей от воздействия случайных факторов. Предсказать его заранее крайне сложно. Однако, опираясь на теорию вероятностей и математическую статистику, можно достаточно точно установить какова вероятность того, что спортсмен может показать результат, заданный в некотором числовом интервале. Таким образом, спрогнозировать спортивный результат — это значит рассчитать вероятность попадания случайной величины в некоторый заданный участок. Решение поставленной задачи облегчается при условии нормального распределения исследуемой выборки, так как в этом случае появляется возможность в полной мере использовать табличные значения функций Лапласа. Кроме того, задача может быть успешно решена для выборок малого объёма. Для этого проверку на нормальность распределения следует проводить с помощью критерия Шапиро-Уилка. Ввод этого критерия может значительно уменьшить время сбора исходных данных.

Проведенный аналитический разбор позволил нам выстроить эффективный алгоритм будущей компьютерной программы, определить ее основные структурные элементы и связи между ними.

Выводы. Проектируемая компьютерная программа должна включать следующие основные модули: блок ввода, блок проверки на соответствие нормальному распределению, блок расчета основных статистических характеристик, блок расчета вероятностей с использованием функций Лапласа, блок вывода. Выделенные модули, объединенные в последовательную и взаимосвязанную систему, составляют проектную основу программы для прогнозирования спортивных результатов. Разработанный алгоритм послужил также основанием для выбора наиболее подходящих средств программирования, в том числе и языка кодирования. Для проектируемой программы мы планируем использовать язык программирования общего назначения C++.