Суббот К. В.

СРАВНЕНИЕ ХЕЛАТИРУЮЩЕЙ АКТИВНОСТИ ТРУТОВЫХ ГРИБОВ

Научный руководитель канд.хим.наук, доц. Горбацевич Г. И.

Кафедра фармацевтической химии Белорусский государственный медицинский университет, г. Минск

Актуальность. Фенольные соединения являются известными природными антиоксидантами благодаря их способности нейтрализовать свободные радикалы. Активные формы кислорода в избыточных количествах опасны тем, что они участвуют в перекисном окислении липидов мембран клеток, способны повреждать белки и ДНК. Это может привести к развитию различных заболеваний и патологических состояний.

Один из механизмов антиоксидантного действия основан на способности веществ фенольной природы образовывать стабильные комплексы с ионами металлов переменной валентности (Fe(II), Cu(II)), ограничивая участие данных ионов в образовании радикалов.

Фенольными соединениями богаты базидиомицеты, в частности Piptoporus betulinus, Ganoderma lucidum, Fomes fomentarius, Fomitopsis pinicola. Их антиоксидантные свойства, основанные в том числе и на хелатирующей активности, могут лечь в основу их применения в производстве лекарственных средств.

Цель: определить хелатирующую активность экстрактов трутовых грибов Piptoporus betulinus, Ganoderma lucidum, Fomes fomentarius, Fomitopsis pinicola.

Материалы и методы. Сухие экстракты были получены методом циркуляционной экстракции по Сокслету с последующим фракционированием растворителями разной полярности: вода, петролейный эфир, хлороформ, этилацетат, этанол 70%.

Метод определения Fe(II)-хелатирующей активности основан на способности биологически активных веществ экстрактов связывать ионы железа (II) в стабильные комплексы. Не связанная с ними часть ионов образует окрашенный комплекс с 1,10-фенантролином, который определяется с помощью спектрофотометрии.

В основе определения Cu(II)-хелатирующей активности лежит способность фенольных соединений связывать ионы меди (II). Не связавшиеся ионы формируют окрашенный комплекс с пирокатехиновым фиолетовым. Интенсивность окраски получившегося раствора определяется фотометрически.

Fe(II)- и Cu(II)-хелатирующую активность экстрактов определяли в эквивалентах ЭДТА (мг/г).

Результаты и их обсуждение. Среди экстрактов Piptoporus betulinus наибольшей Fe(II)- и Cu(II)-хелатирующей активностью обладает этанольная фракция (55,9 и 61,4 мг/г экв. ЭДТА соответственно).

Для Ganoderma lucidum лучшие результаты показала этанольная фракция со значениями 81,65 мг/г (Fe(II)) и 78,03 мг/г (Cu(II)).

В случае экстрактов Fomitopsis pinicola наибольшей Fe(II)- и Cu(II)-хелатирующей активностью обладает этанольный экстракт: 66,03 мг/г и 52,45 мг/г соответственно.

Экстракты Fomes fomentarius обладают самой высокой хелатирующей активностью. Этанольная фракция гименофора гриба показала значения 103,54 мг/г (Fe(II)), 79,75 мг/г (Cu(II)), этанольная фракции мякоти – 101,8 мг/г (Fe(II)) и 99,42 мг/г (Cu(II)).

Выводы. Экстракты Fomes fomentarius обладают более сильной хелатирующей способностью в сравнении с Piptoporus betulinus, Ganoderma lucidum и Fomitopsis pinicola. Природа растворителя для получения экстракта влияет на хелатирующую активность. Лучшие результаты наблюдаются в случае использования этанола 70%. Таким образом, содержащиеся в базидильаных грибах антиоксиданты в комплексе с микроэлементами, витаминами и другими биологически активными веществами являются основой для разработки лекарственных препаратов из природного сырья.