Воравко В. А.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ БАВ ТРАВЫ ПОСТЕННИЦЫ ЛЕКАРСТВЕННОЙ РАЗЛИЧНЫХ ГОДОВ ЗАГОТОВКИ МЕТОДОМ ВЭЖХ

Научный руководитель ст. преп. Борабанова Н. М.

Кафедра фармацевтической химии Белорусский государственный медицинский университет, г. Минск

Актуальность. Распространенным сорняком, пыльца которого — сильный аллерген, является постенница лекарственная (лат. *Parietaria officinalis*). Это растение, произрастающее в умеренном климате, в том числе на территории Республики Беларусь. Трава Р. officinalis входит лишь во Французскую гомеопатическую фармакопею, состав её не стандартизирован. Издавна применяется в народной медицине в виде настоя и экстракта при кровотечениях различного происхождения, как муколитическое, мочегонное, литолитическое, наружно для достижения ранозаживляющего эффекта. Растение имеет потенциал применения в медицине, что обуславливает необходимость дальнейшего его изучения.

Цель: изучение состава биологически активных веществ в этанольных экстрактах травы постенницы лекарственной различных годов заготовки и сравнение полученных данных.

Материалы и методы. Для анализа использовали извлечение из измельчённого сырья Parietaria officinalis, собранного на территории Гомельской и Минской областей Республики Беларусь в июле-августе 2021, 2022 и 2023 года и высушенного воздушно-теневым способом, с применением 70% этанола (соотношение сырья и экстрагента 1:50) на водяной бане при температуре 80°C в течение 45 минут.

Испытуемый раствор (ИР): к 0.2 г измельчённого сырья прибавляют 10 мл 70% (об/об) раствора этанола, выдерживают на водяной бане при температуре 80^{0} С в течение 45 минут.

Применяли хроматограф жидкостный Dionex UltiMate 3000, программу Chromeleon 7. Условия хроматографирования: $\Pi\Phi$ A – кислота фосфорная-вода (1:999), $\Pi\Phi$ B – ацетонитрил; хроматографическая колонка – HPLC-COLUMN 250*4.6 mm MZ-Aqua Perfect C18; скорость потока $\Pi\Phi$ – 1,5 мл/мин; температура колонки – +35°C; объём вводимой пробы – 20 мкл; время элюирования – 20 минут; детектор спектрофотометрический с длиной волны 330 нм. Режим элюирования градиентный, подобран в соответствии с лучшим разделением пиков.

Для количественного определения рутина методом добавок был изготовлен ИР 2: в виалу помещали 0,650 мл ИР и 0,650 мл стандартного раствора рутина гидрата (0,1 мг рутина гидрата, что соответствует 0,097 мг рутина, на 1 мл 70% спирта этилового). Расчёт вели по формуле для метода добавок, учитывая разбавление в 2 раза.

Результаты и их обсуждение. Полученные площади пиков для извлечений из лекарственного растительного сырья 2021 года заготовки: ИР - (4,91 \pm 0,22) mAu*min; ИР 2- (14,00 \pm 0,63) mAu*min. Для 2022 года заготовки: ИР - (12,15 \pm 0,58) mAu*min; ИР 2- (17,94 \pm 0,86) mAu*min. Для 2023 года заготовки: ИР - (13,62 \pm 0,65) mAu*min; ИР 2- (18,14 \pm 0,86) mAu*min.

Количественное содержание рутина в экстракте травы P.officinalis, приготовленном на 70% этаноле для сырья 2021 года заготовки составило $20,63 \pm 0,93 \frac{\text{мкг}}{\text{мл}}$, для сырья 2022 года заготовки $-49,66 \pm 2,38 \frac{\text{мкг}}{\text{мл}}$ и для травы 2023 года заготовки $-58,30 \pm 2,77 \frac{\text{мкг}}{\text{мл}}$,

Выводы. Отмечено разрушение рутина в сырье постенницы лекарственной за 2 года хранения практически на 65% от исходного количества.